Geosci. Model Dev., 14, 1553-1574, 2021
https://doi.org/10.5194/gmd-14-1553-2021

© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

MLAIr (v1.0) — a tool to enable fast and flexible
machine learning on air data time series

Lukas Hubert Leufen'-2, Felix Kleinert!2, and Martin G. Schultz'

UJiilich Supercomputing Centre, Research Centre Jiilich, Jiilich, Germany
2Institute of Geosciences, Rhenish Friedrich Wilhelm University of Bonn, Bonn, Germany

Correspondence: Lukas Hubert Leufen (l.leufen @fz-juelich.de)

Received: 9 October 2020 — Discussion started: 23 October 2020

Revised: 29 January 2021 — Accepted: 2 February 2021 — Published: 17 March 2021

Abstract. With MLAir (Machine Learning on Air data) we
created a software environment that simplifies and acceler-
ates the exploration of new machine learning (ML) models,
specifically shallow and deep neural networks, for the anal-
ysis and forecasting of meteorological and air quality time
series. Thereby MLAIr is not developed as an abstract work-
flow, but hand in hand with actual scientific questions. It thus
addresses scientists with either a meteorological or an ML
background. Due to their relative ease of use and spectacular
results in other application areas, neural networks and other
ML methods are also gaining enormous momentum in the
weather and air quality research communities. Even though
there are already many books and tutorials describing how to
conduct an ML experiment, there are many stumbling blocks
for a newcomer. In contrast, people familiar with ML con-
cepts and technology often have difficulties understanding
the nature of atmospheric data. With MLAir we have ad-
dressed a number of these pitfalls so that it becomes easier
for scientists of both domains to rapidly start off their ML
application. MLAir has been developed in such a way that it
is easy to use and is designed from the very beginning as a
stand-alone, fully functional experiment. Due to its flexible,
modular code base, code modifications are easy and personal
experiment schedules can be quickly derived. The package
also includes a set of validation tools to facilitate the evalu-
ation of ML results using standard meteorological statistics.
MLAIr can easily be ported onto different computing envi-
ronments from desktop workstations to high-end supercom-
puters with or without graphics processing units (GPUs).

1 Introduction

In times of rising awareness of air quality and climate is-
sues, the investigation of air quality and weather phenomena
is moving into focus. Trace substances such as ozone, nitro-
gen oxides, or particulate matter pose a serious health haz-
ard to humans, animals, and nature (Cohen et al., 2005; Ben-
tayeb et al., 2015; World Health Organization, 2013; Lefohn
et al., 2018; Mills et al., 2018; US Environmental Protec-
tion Agency, 2020). Accordingly, the analysis and prediction
of air quality are of great importance in order to be able to
initiate appropriate countermeasures or issue warnings. The
prediction of weather and air quality has been established op-
erationally in many countries and has become a multi-million
dollar industry, creating and selling specialized data products
for many different target groups.

These days, forecasts of weather and air quality are gener-
ally made with the help of so-called Eulerian grid point mod-
els. This type of model, which solves physical and chemical
equations, operates on grid structures. In fact, however, lo-
cal observations of weather and air quality are strongly in-
fluenced by the immediate environment. Such local influ-
ences are quite difficult for atmospheric chemistry models
to accurately simulate due to the limited grid resolution of
these models and because of uncertainties in model parame-
terizations. Consequently, both global models and so-called
small-scale models, whose grid resolution is still in the mag-
nitude of about a kilometre and thus rather coarse in compar-
ison to local-scale phenomena in the vicinity of a measure-
ment site, show a high uncertainty of the results (see Vautard,
2012; Brunner et al., 2015). To enhance the model output,
approaches focusing on the individual point measurements

Published by Copernicus Publications on behalf of the European Geosciences Union.

1554

at weather and air quality monitoring stations through down-
scaling methods are applied allowing local effects to be taken
into account. Unfortunately, these methods, being optimized
for specific locations, cannot be generalized for other regions
and need to be re-trained for each measurement site.

Recently, a variety of machine learning (ML) methods
have been developed to complement the traditional down-
scaling techniques. Such methods (e.g. neural networks, ran-
dom forest) are able to recognize and reproduce underly-
ing and complex relationships in data sets. Driven in par-
ticular by computer vision and speech recognition, tech-
nologies like convolutional neural networks (CNNs; Lecun
et al., 1998), or recurrent networks variations such as long
short-term memory (LSTM; Hochreiter and Schmidhuber,
1997) or gated recurrent units (GRUs; Cho et al., 2014) but
also more advanced concepts like variational autoencoders
(VAEs; Kingma and Welling, 2014; Rezende et al., 2014), or
generative adversarial networks (GANs; Goodfellow et al.,
2014), are powerful and widely and successfully used. The
application of such methods to weather and air quality data
is rapidly gaining momentum.

Although the scientific areas of ML and atmospheric sci-
ence have existed for many years, combining both disciplines
is still a formidable challenge, because scientists from these
areas do not speak the same language. Atmospheric scientists
are used to building models on the basis of physical equations
and empirical relationships from field experiments, and they
evaluate their models with data. In contrast, data scientists
use data to build their models on and evaluate them either
with additional independent data or physical constraints. This
elementary difference can lead to misinterpretation of study
results so that, for example, the ability of the network to gen-
eralize is misjudged. Another problem of several published
studies on ML approaches to weather forecasting is an in-
complete reporting of ML parameters, hyperparameters, and
data preparation steps that are key to comprehending and re-
producing the work that was done. As shown by Musgrave
et al. (2020) these issues are not limited to meteorological
applications of ML only.

To further advance the application of ML in atmospheric
science, easily accessible solutions to run and document ML
experiments together with readily available and fully docu-
mented benchmark data sets are urgently needed (see Schultz
et al., 2021). Such solutions need to be understandable by
both communities and help both sides to prevent unconscious
blunders. A well-designed workflow embedded in a meteo-
rological and ML-related environment while accomplishing
subject-specific requirements will bring forward the usage of
ML in this specific research area.

In this paper, we present a new framework to enable
fast and flexible Machine Learning on Air data time series
(MLAIr). Fast means that MLAIr is distributed as full end-
to-end framework and thereby simple to deploy. It also al-
lows typical optimization techniques to be deployed in ML
workflows and offers further technical features like the use

Geosci. Model Dev., 14, 1553-1574, 2021

L. H. Leufen et al.: MLAIr (v1.0)

of graphics processing units (GPUs) due to the underlying
ML library. MLAIr is suitable for ML beginners due to its
simple usage but also offers high customization potential for
advanced ML users. It can therefore be employed in real-
world applications. For example, more complex model archi-
tectures can be easily integrated. ML experts who want to ex-
plore weather or air quality data will find MLAIr helpful as it
enforces certain standards of the meteorological community.
For example, its data preparation step acknowledges the au-
tocorrelation which is typically seen in meteorological time
series, and its validation package reports well-established
skill scores, i.e. improvement of the forecast compared to ref-
erence models such as persistence and climatology. From a
software design perspective, MLAIr has been developed ac-
cording to state-of-the-art software development practices.

This article is structured as follows. Section 2 introduces
MLAIr by expounding the general design behind the MLAir
workflow. We also share a few more general points about
ML and what a typical workflow looks like. This is followed
by Sect. 3 showing three application examples to allow the
reader to get a general understanding of the tool. Further-
more, we show how the results of an experiment conducted
by MLAIr are structured and which statistical analysis is ap-
plied. Section 4 extends further into the configuration options
of an experiment and details on customization. Section 5 de-
lineates the limitations of MLAir and discusses for which
applications the tool might not be suitable. Finally, Sect. 6
concludes with an overview and outlook on planned devel-
opments for the future.

At this point we would like to point out that in order to
simplify the readability of the paper, highlighting is used.
Frameworks are highlighted in italics and typewriter font is
used for code elements such as class names or variables.
Other expressions that, for example, describe a class but do
not explicitly name it, are not highlighted at all in the text.
Last but not least, we would like to mention that MLAir is an
open-source project and contributions from all communities
are welcome.

2 MLAir workflow and design

ML in general is the application of a learning algorithm to
a data set whereby a statistical model describing relations
within the data is generated. During the so-called training
process, the model learns patterns in the data set with the
aid of the learning algorithm. Afterwards, this model can be
applied to new data. Since there is a large number of learning
algorithms and also an arbitrarily large number of different
ML architectures, it is generally not possible to determine in
advance which approach will deliver the best results under
which configuration. Therefore, the optimal setting must be
found by trial and error.

ML experiments usually follow similar patterns. First, data
must be obtained, cleaned if necessary, and finally put into a

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

suitable format (preprocessing). Next, an ML model is se-
lected and configured (model setup). Then the learning algo-
rithm can optimize the model under the selected settings on
the data. This optimization is an iterative procedure and each
iteration is called an epoch (training). The accuracy of the
model is then evaluated (validation). If the results are not sat-
isfactory, the experiment is continued with modified settings
(i.e. hyperparameters) or started again with a new model. For
further details on ML, we refer to Bishop (2006) and Good-
fellow et al. (2016) but would also like to point out that there
is a large amount of further introductory literature and freely
available blog entries and videos, and that the books men-
tioned here are only two of many options out there.

The overall goal of designing MLAir was to create a ready-
to-run ML application for the task of forecasting weather
and air quality time series. The tool should allow many cus-
tomization options to enable users to easily create a custom
ML workflow, while at the same time it should support users
in executing ML experiments properly and evaluate their re-
sults according to accepted standards of the meteorological
community. At this point, it is pertinent to recall that MLAir’s
current focus is on neural networks.

In this section we present the general concepts on which
MLAir is based. We first comment on the choice of the un-
derlying programming language and the packages and frame-
works used (Sect. 2.1). We then focus on the design consid-
erations and choices and introduce the general workflow of
MLAir (Sect. 2.2). Thereafter we explain how the concepts
of run modules (Sect. 2.3), model class (Sect. 2.4), and data
handler (Sect. 2.5) were conceived and how these modules
interact with each other. More detailed information on, for
example, how to adapt these modules can be found in the
corresponding subsection of the later Sect. 4.

2.1 Coding language

Python (Python Software Foundation, 2018, release 3.6.8)
was used as the underlying coding language for several rea-
sons. Python is pretty much independent of the operating sys-
tem and code does not need to be compiled before a run.
Python is flexible to handle different tasks like data load-
ing from the web, training of the ML model or plotting.
Numerical operations can be executed quite efficiently due
to the fact that they are usually performed by highly op-
timized and compiled mathematical libraries. Furthermore,
because of its popularity in science and economics, Python
has a huge variety of freely available packages to use. Fur-
thermore, Python is currently the language of choice in the
ML community (Elliott, 2019) and has well-developed easy-
to-use frameworks like TensorFlow (Abadi et al., 2015) or
PyTorch (Paszke et al., 2019) which are state-of-the-art tools
to work on ML problems. Due to the presence of such com-
piled frameworks, there is for instance no performance loss
during the training, which is the biggest part of the ML work-
flow, by using Python.

https://doi.org/10.5194/gmd-14-1553-2021

1555

Concerning the ML framework, Keras (Chollet et al.,
2015, release 2.2.4) was chosen for the ML parts using Ten-
sorFlow (release 1.13.1) as back-end. Keras is a framework
that abstracts functionality out of its back-end by providing a
simpler syntax and implementation. For advanced model ar-
chitectures and features it is still possible to implement parts
or even the entire model in native TensorFlow and use the
Keras front-end for training. Furthermore, TensorFlow has
GPU support for training acceleration if a GPU device is
available on the running system.

For data handling, we chose a combination of xar-
ray (Hoyer and Hamman, 2017; Hoyer et al., 2020, re-
lease 0.15.0) and pandas (Wes McKinney, 2010; Reback
et al., 2020, release 1.0.1). pandas is an open-source tool
to analyse and manipulate data primarily designed for tab-
ular data. xarray was inspired by pandas and has been devel-
oped to work with multi-dimensional arrays as simply and
efficiently as possible. xarray is based on the off-the-shelf
Python package for scientific computing NumPy (van der
Walt et al., 2011, release 1.18.1) and introduces labels in the
form of dimensions, coordinates, and attributes on top of raw
NumPy-like arrays.

2.2 Design of the MLAir workflow

According to the goals outlined above, MLAir was designed
as an end-to-end workflow comprising all required steps of
the time series forecasting task. The workflow of MLAir is
controlled by a run environment, which provides a central
data store, performs logging, and ensures the orderly exe-
cution of a sequence of individual stages. Different work-
flows can be defined and executed under the umbrella of this
environment. The standard MLAir workflow (described in
Sect. 2.3) contains a sequence of typical steps for ML exper-
iments (Fig. 1), i.e. experiment setup, preprocessing, model
setup, training, and postprocessing.

Besides the run environment, the experiment setup plays
a very important role. During experiment setup, all cus-
tomization and configuration modules, like the model class
(Sect. 2.4), data handler (Sect. 2.5), or hyperparameters, are
collected and made available to MLAir. Later, during execu-
tion of the workflow, these modules are then queried. For ex-
ample, the hyperparameters are used in training whereas the
data handler is already used in the preprocessing. We want to
mention that apart from this default workflow, it is also pos-
sible to define completely new stages and integrate them into
a custom MLAir workflow (see Sect. 4.8).

2.3 Run modules

MLAir models the ML workflow as a sequence of self-
contained stages called run modules. Each module handles
distinct tasks whose calculations or results are usually re-
quired for all subsequent stages. At run time, all run modules
can interchange information through a temporary data store.

Geosci. Model Dev., 14, 1553-1574, 2021

1556

L. H. Leufen et al.: MLAIr (v1.0)

| run environment |

[experiment setup

preprocessing H model setup

training postprocessing

4

4 4

Figure 1. Visualization of the MLAir standard setup DefaultWorkflow including the stages ExperimentSetup, PreProcessing,
ModelSetup, Training, and PostProcessing (all highlighted in orange) embedded in the RunEnvironment (sky blue). Each
experiment customization (bluish green) like the data handler, model class, and hyperparameter shown as examples, is set during the initial

ExperimentSetup and affects various stages of the workflow.

The run modules are executed sequentially in predefined or-
der. A run module is only executed if the previous step was
completed without error. More advanced workflow concepts
such as conditional execution of run modules are not imple-
mented in this version of MLAir. Also, run modules cannot
be run in parallel, although a single run module can very well
execute parallel code. In the default setup (Fig. 1), the MLAir
workflow constitutes the following run modules:

— Run environment. The run module RunEnvironment
is the base class for all other run modules. By wrap-
ping the RunEnvironment class around all run mod-
ules, parameters are tracked, the workflow logging is
centralized, and the temporary data store is initialized.
After each run module and at the end of the experi-
ment, RunEnvironment guarantees a smooth (exper-
iment) closure by providing supplementary information
on stage execution and parameter access from the data
store.

— Experiment setup. The initial stage of MLAir
to set up the experiment workflow is called
ExperimentSetup. Parameters which are not
customized are filled with default settings and stored
for the experiment workflow. Furthermore, all local
paths for the experiment and data are created during
experiment setup.

— Preprocessing. During the run module
PreProcessing, MILAir loads all required
data and carries out typical ML preparation steps
to have the data ready to use for training. If the
DefaultDataHandler is used, this step includes
downloading or loading of (locally stored) data, data
transformation and interpolation. Finally, data are split
into the subsets for training, validation, and testing.

— Model setup. The ModelSetup run module builds
the raw ML model implemented as a model class (see
Sect. 2.4), sets Keras and TensorFlow callbacks and

Geosci. Model Dev., 14, 1553-1574, 2021

checkpoints for the training, and finally compiles the
model. Additionally, if using a pre-trained model, the
weights of this model are loaded during this stage.

— Training. During the course of the Training run mod-
ule, training and validation data are distributed accord-
ing to the parameter bat ch_size to properly feed the
ML model. The actual training starts subsequently. Af-
ter each epoch of training, the model performance is
evaluated on validation data. If performance improves
as compared to previous cycles, the model is stored as
best_model. This best_model is then used in the
final analysis and evaluation.

— Postprocessing. In the final stage, PostProcessing,
the trained model is statistically evaluated on the test
data set. For comparison, MLAir provides two ad-
ditional forecasts, first an ordinary multi-linear least
squared fit trained on the same data as the ML model
and second a persistence forecast, where observations of
the past represent the forecast for the next steps within
the prediction horizon. For daily data, the persistence
forecast refers to the last observation of each sample
to hold for all forecast steps. Skill scores based on the
model training and evaluation metric are calculated for
all forecasts and compared with climatological statis-
tics. The evaluation results are saved as publication-
ready graphics. Furthermore, a bootstrapping technique
can be used to evaluate the importance of each input fea-
ture. More details on the statistical analysis that is car-
ried out can be found in Sect. 3.3. Finally, a geograph-
ical overview map containing all stations is created for
convenience.

Ideally this predefined default workflow should meet the re-
quirements for an entire end-to-end ML workflow on station-
wise observational data. Nevertheless, MLAir provides op-
tions to customize the workflow according to the application
needs (see Sect. 4.8).

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

2.4 Model class

In order to ensure a proper functioning of ML models,
MILAir uses a model class, so that all models are cre-
ated according to the same scheme. Inheriting from the
AbstractModelClass guarantees correct handling dur-
ing the workflow. The model class is designed to follow
an easy plug-and-play behaviour so that within this security
mechanism, it is possible to create highly customized mod-
els with the frameworks Keras and TensorFlow. We know
that wrapping such a class around each ML model is slightly
more complicated compared to building models directly in
Keras, but by requiring the user to build their models in
the style of a model class, the model structure can be doc-
umented more easily. Thus, there is less potential for errors
when running through an ML workflow, in particular when
this is done many times to find out the best model setup, for
example. More details on the model class can be found in
Sect. 4.5.

2.5 Data handler

In analogy to the model class, the data handler organizes all
operations related to data retrieval, preparation and provision
of data samples. If a set of observation stations is being ex-
amined in the MLAir workflow, a new instance of the data
handler is created for each station automatically and MLAir
will take care of the iteration across all stations. As with the
creation of a model, it is not necessary to modify MLAir’s
source code. Instead, every data handler inherits from the
AbstractDataHandler class which provides guidance
on which methods need to be adapted to the actual workflow.

By default, MLAir uses the DefaultDataHandler. It
accesses data from Jiilich Open Web Interface (JOIN, Schultz
et al., 2017a, b) as demonstrated in Sect. 3.1. A detailed de-
scription of how to use this data handler can be found in
Sect. 4.4. However, if a different data source or structure
is used for an experiment, the DefaultDataHandler
must be replaced by a custom data handler based on the
AbstractDataHandler. Simply put, such a custom han-
dler requires methods for creating itself at runtime and meth-
ods that return the inputs and outputs. Partitioning according
to the batch size or suchlike is then handled by MLAir at the
appropriate moment and does not need to be integrated into
the custom data handler. Further information about custom
data handlers follows in Sect. 4.3, and we refer to the source
code documentation for additional details.

3 Conducting an experiment with MLAir

Before we dive deeper into available features and the ac-
tual implementation, we show three basic examples of the
MLAir usage to demonstrate the underlying ideas and con-
cepts and how first modifications can be made (Sect. 3.1). In
Sect. 3.2, we then explain how the output of an MLAir exper-

https://doi.org/10.5194/gmd-14-1553-2021

1557

iment is structured and which graphics are created. Finally,
we briefly touch on the statistical part of the model evaluation
(Sect. 3.3).

3.1 Running first experiments with MLAir

To install MLAir, the program can be downloaded as de-
scribed in the Code availability section, and the Python li-
brary dependencies should be installed from the require-
ments file. To test the installation, MLAir can be run in a
default configuration with no extra arguments (see Fig. 2).
These two commands will execute the workflow depicted
in Fig. 1. This will perform an ML forecasting experiment
of daily maximum ground-level ozone concentrations using
a simple feed-forward neural network based on seven input
variables consisting of preceding trace gas concentrations of
ozone and nitrogen dioxide, and the values of temperature,
humidity, wind speed, cloud cover, and the planetary bound-
ary layer height.

MILAir uses the DefaultDataHandler class (see
Sect. 4.4) if not explicitly stated and automatically starts
downloading all required air quality and meteorological data
from JOIN the first time it is executed after a fresh instal-
lation. This web interface provides access to a database of
measurements of over 10 000 air quality monitoring stations
worldwide, assembled in the context of the Tropospheric
Ozone Assessment Report (TOAR, 2014-2021). In the de-
fault configuration, 21-year time series of nine variables from
five stations are retrieved with a daily aggregated resolution
(see Table 3 for details on aggregation). The retrieved data
are stored locally to save time on the next execution (the
data extraction can of course be configured as described in
Sect. 4.4).

After preprocessing of the data, splitting them into train-
ing, validation, and test data, and converting them to a xar-
ray and NumPy format (details in Sect. 2.1), MLAir creates
a new vanilla feed-forward neural network and starts to train
it. The training is finished after a fixed number of epochs.
In the default settings, the epochs parameter is preset to
20. Finally, the results are evaluated according to meteoro-
logical standards and a default set of plots is created. The
trained model, all results and forecasts, the experiment pa-
rameters and log files, and the default plots are pooled in a
folder in the current working directory. Thus, in its default
configuration, MLAir performs a meaningful meteorological
ML experiment, which can serve as a benchmark for further
developments and baseline for more sophisticated ML archi-
tectures.

In the second example (Fig. 3), we enlarged the
window_history_size (number of previous time steps)
of the input data to provide more contextual informa-
tion to the vanilla model. Furthermore, we use a differ-
ent set of observational stations as indicated in the pa-
rameter stations. From a first glance, the output of
the experiment run is quite similar to the earlier exam-

Geosci. Model Dev., 14, 1553-1574, 2021

1558

L. H. Leufen et al.: MLAIr (v1.0)

Experiment path is: /home/<usr>/mlair/testrun_network

1 import mlair

2

3 # just give it a dry run withoul any modification

4 mlair.run()
INFO: DefaultWorkflow started
INFO: ExperimentSetup started
INFO:
INFO: load data for DEBW107 from JOIN
INFO: load data for DEBY081 from JOIN
INFO: load data for DEBWO13 from JOIN
INFO: load data for DEBWO76 from JOIN
INFO: load data for DEBWO87 from JOIN
INFO: Training started

INFO: DefaultWorkflow finished after 0:03:04 (hh:mm:ss)

Figure 2. A very simple Python script (e.g. written in a Jupyter Notebook (Kluyver et al., 2016) or Python file) calling the MLAir package
without any modification. Selected parts of the corresponding logging of the running code are shown underneath. Results of this and following
code snippets have to be seen as a pure demonstration, because the default neural network is very simple.

1 import mlair
2
3 # our new stations to use
4 stations = ['DEBWO30', 'DEBWO37',
5
6
sampling="daily")
7 window_history_size = 14
8
9

10 mlair.run(stations=stations,

'DEBWO31', 'DEBWO15', 'DEBW107']

expanded temporal context to 14 (days, because of default

restart the experiment with little customisation

11 window_history_size=window_history_size)

INFO: DefaultWorkflow started

INFO: ExperimentSetup started
INFO: load data for DEBWO30 from
INFO: load data for DEBWO37 from
INFO: load data for DEBWO31 from
INFO: load data for DEBWO15 from
INFO: Training started

INFO:

JOIN
JOIN
JOIN
JOIN

DefaultWorkflow finished after 00:02:03 (hh:mm:ss)

Figure 3. The MLAir experiment has now minor adjustments for the parameters stations and window_history_size.

ple. However, there are a couple of aspects in this sec-
ond experiment which we would like to point out. Firstly,
the DefaultDataHandler keeps track of data avail-
able locally and thus reduces the overhead of reloading
data from the web if this is not necessary. Therefore, no
new data were downloaded for station DEBW107, which

Geosci. Model Dev., 14, 1553-1574, 2021

is part of the default configuration, as its data have al-
ready been stored locally in our first experiment. Of course
the DefaultDataHandler can be forced to reload all
data from their source if needed (see Sect. 4.1). The sec-
ond key aspect to highlight here is that the parameter
window_history_size could be changed, and the net-

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

work was trained anew without any problem even though this
change affects the shape of the input data and thus the neu-
ral network architecture. This is possible because the model
class in MLAir queries the shape of the input variables and
adapts the architecture of the input layer accordingly. Natu-
rally, this procedure does not make perfect sense for every
model, as it only affects the first layer of the model. In case
the shape of the input data changes drastically, it is advisable
to adapt the entire model as well. Concerning the network
output, the second experiment overwrites all results from
the first run, because without an explicit setting of the file
path, MLAir always uses the same sandbox directory called
testrun_network. In a real-world sequence of experi-
ments, we recommend always specifying a new experiment
path with a reasonably descriptive name (details on the ex-
periment path in Sect. 4.1).

The third example in this section demonstrates the activa-
tion of a partial workflow, namely a re-evaluation of a pre-
viously trained neural network. We want to rerun the evalu-
ation part with a different set of stations to perform an inde-
pendent validation. This partial workflow is also employed
if the model is run in production. As we replace the sta-
tions for the new evaluation, we need to create a new test-
ing set, but we want to skip the model creation and train-
ing steps. Hence, the parameters create_new_model and
train_model are set to False (see Fig. 4). With this
setup, the model is loaded from the local file path and the
evaluation is performed on the newly provided stations. By
combining the stations from the second and third experiment
in the stations parameter the model could be evaluated at
all selected stations together. In this setting, MLAir will abort
to execute the evaluation if parameters pertinent for prepro-
cessing or model compilation changed compared to the train-
ing run.

It is also possible to continue training of an already trained
model. If the train_model parameter is set to True,
training will be resumed at the last epoch reached previously,
if this epoch number is lower than the epochs parame-
ter. Specific uses for this are either an experiment interrup-
tion (for example due to wall clock time limit exceedance on
batch systems) or the desire to extend the training if the opti-
mal network weights have not been found yet. Further details
on training resumption can be found in Sect. 4.9.

3.2 Results of an experiment

All results of an experiment are stored in the directory, which
is defined during the experiment setup stage (see Sect. 4.1).
The sub-directory structure is created at the beginning of the
experiment. There is no automatic deletion of temporary files
in case of aborted runs so that the information that is gener-
ated up to the program termination can be inspected to find
potential errors or to check on a successful initialization of
the model, etc. Figure 5 shows the output file structure. The
content of each directory is as follows:

https://doi.org/10.5194/gmd-14-1553-2021

1559

— All samples used for training and validation are stored
in the batch_data folder.

— forecasts contains the actual predictions of the
trained model and the persistence and linear refer-
ences. All forecasts (model and references) are pro-
vided in normalized and original value ranges. Addi-
tionally, the optional bootstrap forecasts are stored here
(see Sect. 3.3).

— In latex_report, there are publication-ready tables
in Markdown (Gruber, 2004) or LaTeX (LaTeX Project,
2005) format, which give a summary about the stations
used, the number of samples, and the hyperparameters
and experiment settings.

— The logging folder contains information about the
execution of the experiment. In addition to the console
output, MLAir also stores messages on the debugging
level, which give a better understanding of the internal
program sequence. MLAir has a tracking functionality,
which can be used to trace which data have been stored
and pulled from the central data store. In combination
with the corresponding tracking plot that is created at
the very end of each experiment automatically, it allows
visual tracking of which parameters have an effect on
which stage. This functionality is most interesting for
developers who make modifications to the source code
and want to ensure that their changes do not break the
data flow.

— The folder model contains everything that is related to
the trained model. Besides the file, which contains the
model itself (stored in the binary hierarchical data for-
mat HDF5; Koranne, 2011), there is also an overview
graphic of the model architecture and all Keras call-
backs, for example from the learning rate. If a training
is not started from the beginning but is either continued
or applied to a pre-trained model, all necessary informa-
tion like the model or required callbacks must be stored
in this subfolder.

— The plots directory contains all graphics that are cre-
ated during an experiment. Which graphics are to be
created in postprocessing can be determined using the
plot_1list parameter in the experiment setup. In ad-
dition, MLAir automatically generates monitoring plots,
for instance of the evolution of the loss during training.

As described in the last bullet point, all plots which are cre-
ated during an MLAir experiment can be found in the sub-
folder plots. By default, all available plot types are created.
By explicitly naming individual graphics inthe plot_1list
parameter, it is possible to override this behaviour and spec-
ify which graphics are created during postprocessing. Ad-
ditional plots are created to monitor the training behaviour.
These graphics are always created when a training session is

Geosci. Model Dev., 14, 1553-1574, 2021

1560

L. H. Leufen et al.: MLAIr (v1.0)

1 import mlair

2

3 # our new stations to use

4 stations = ['DEBY002', 'DEBY079']

5

6 # same setting for window_history_size
7 window_history_size = 14

8

9 # run experiment without training

10 mlair.run(stations=stations,

11 window_history_size=window_history_size,
12 create_new_model=False,

13 train_model=False)

INFO: DefaultWorkflow started

INFO: No training has started, because train_model parameter was false.

INFO: DefaultWorkflow finished after 0:01:27 (hh:mm:ss)

Figure 4. Experiment run without training. For this, it is required to have an already trained model in the experiment path.

carried out. Most of the plots which are created in the course
of postprocessing are publication-ready graphics with com-
plete legend and resolution of 500 dpi. Custom graphics can
be added to MLAir by attaching an additional run module
(see Sect. 4.8) which contains the graphic creation methods.

A general overview of the underlying data can be
obtained with the graphics PlotStationMap and
PlotAvailability. PlotStationMap (Fig. 6)
marks the geographical position of the stations used on a
plain map with a land—sea mask, country boundaries, and
major water bodies. The data availability chart created by
PlotAvailability (Fig. 7) indicates the time periods
for which preprocessed data for each measuring station
are available. The lowest bar shows whether a station with
measurements is available at all for a certain point in time.
The three subsets of training, validation, and testing data are
highlighted in different colours.

The monitoring graphics show the course of the loss func-
tion as well as the error depending on the epoch for the train-
ing and validation data (see Fig. 8). In addition, the error of
the best model state with respect to the validation data is
shown in the plot title. If the learning rate is modified dur-
ing the course of the experiment, another plot is created to
show its development. These monitoring graphics are kept
as simple as possible and are meant to provide insight into
the training process. The underlying data are always stored
in the JavaScript Object Notation format (.json, ISO Central
Secretary, 2017) in the subfolder model and can therefore
be used for case-specific analyses and plots.

Through the graphs PlotMonthlySummary and
PlotTimeSeries it is possible to quickly as-
sess the forecast quality of the ML model. The
PlotMonthlySummary (see Fig. 9) summarizes all

Geosci. Model Dev., 14, 1553-1574, 2021

predictions of the model covering all stations but consider-
ing each month separately as a box-and-whisker diagram.
With this graph it is possible to get a general overview
of the distribution of the predicted values compared to
the distribution of the observed values for each month.
Besides, the exact course of the time series compared to the
observation can be viewed in the P1otTimeSeries (not
included as a figure in this article). However, since this plot
has to scale according to the length of the time series, it
should be noted that this last-mentioned graph is kept very
simple and is generally not suitable for publication.

3.3 Statistical analysis of results

A central element of MLAir is the statistical evaluation of
the results according to state-of-the-art methods used in me-
teorology. To obtain specific information on the forecasting
model, we treat forecasts and observations as random vari-
ables. Therefore, the joint distribution p(m,o0) of a model
m and an observation o contains information on p(m), p(0)
(marginal distribution), and the relations p(o|m) and p(m|o)
(conditional distribution) between both of them (Murphy and
Winkler, 1987). Following Murphy et al. (1989), marginal
distribution is shown as a histogram (light grey), while the
conditional distribution is shown as percentiles in differ-
ent line styles. By usingPlotConditionalQuantiles,
MLAir automatically creates plots for the entire test period
(Fig. 10) that are, as is common in meteorology, separated
by seasons.

In order to access the genuine added value of a new fore-
casting model, it is essential to take other existing forecasting
models into account instead of reporting only metrics related
to the observation. In MLAir we implemented three types of
basic reference forecasts: (i) a persistence forecast, (ii) an or-

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

<exp_dir>
u batch_data
H.| test
5 0.pickle
N 1.pickle

NG

1] forecasts

{Eibootstraps_*.nc

{L‘forecasts_*.nc

H] latex_report

U™ model_settings.{md, tex}

U™ station_sample_size.{md, tex}
{I‘station_sample_size_short.tex

UY training_settings.{md, tex}

1] logging

{L:logging_*.log

UY tracking_*.{json, pdf}

Hl mode1

U™ history. json

UY <exp_dir>_model-{best, callbacks—*}.{h5, pickle}
U™ <exp_dir>_<model_name>.{h5, pdf}
U™ test_scores.txt

[plots

{E conditional_quantiles_x.pdf

{['station_map.pdf

)

Figure 5. Default structure of each MLAir experiment with the sub-
folders forecasts, latex_report, logging, model, and
plots. <exp_dir> is a placeholder for the actual name of the
experiment.

https://doi.org/10.5194/gmd-14-1553-2021

1561

56°N 56°N
54°N 54°N
52°N 52°N
50°N 50°N
48°N 48°N
46°N 46°N

5°E 10°E 15°E

Figure 6. Map of central Europe showing the locations of
some sample measurement stations as blue squares created by
PlotStationMap.

dinary multi-linear least square model, and (iii) four climato-
logical forecasts.

The persistence forecast is based on the last observed time
step, which is then used as a prediction for all lead times.
The ordinary multi-linear least square model serves as a lin-
ear competitor and is derived from the same data the model
was trained with. For the climatological references, we fol-
low Murphy (1988) who defined single and multiple valued
climatological references based on different timescales. We
refer the reader to Murphy (1988) for an in-depth discussion
of the climatological reference. Note that this kind of persis-
tence and also the climatological forecast might not be appli-
cable for all temporal resolutions and may therefore need ad-
justment in different experiment settings. We think here, for
example, of a clear diurnal pattern in temperature, for which
a persistence of successive observations would not provide a
good forecast. In this context, a reference forecast based on
the observation of the previous day at the same time might
be more suitable.

For the comparison, we use a skill score S, which is natu-
rally defined as the performance of a new forecast compared
to a competitive reference with respect to a statistical metric
(Murphy and Daan, 1985). Applying the mean squared error
as the statistical metric, such a skill score S reduces to unity
minus the ratio of the error of the forecast to the reference.
A positive skill score can be interpreted as the percentage of
improvement of the new model forecast in comparison to the
reference. On the other hand, a negative skill score denotes
that the forecast of interest is less accurate than the referenc-

Geosci. Model Dev., 14, 1553-1574, 2021

1562

L. H. Leufen et al.: MLAIr (v1.0)

train B val [test
DEBWO013 A
DEBWO76 -
DEBWO087 -
DEBW107 A
DEBY081 A 1 (1T
data availability A |
1998 2000 2002 2004 2006 2008 2010 2012

Figure 7. PlotAvailability diagram showing the available data for five measurement stations. The different colours denote which
period of the time series is used for the training (orange), validation (green), and test (blue) data set. “Data availability” denotes if any of the

above-mentioned stations has a data record for a given time.

Model loss: best = [0.27039214]

— loss
val_loss
0.8
0.6
@
o
0.4 1
0.2 1
0.04
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
epoch

Figure 8. Monitoring plots showing the evolution of train and vali-
dation loss as a function of the number of epochs. This plot type is
kept very simplistic by choice. The underlying data are saved during
the experiment so that it would be easy to create a more advanced
plot using the same data.

ing forecast. Consequently, a value of zero denotes that both
forecasts perform equally (Murphy, 1988).

The PlotCompetitiveSkillScore (Fig. 11) in-
cludes the comparison between the trained model, the persis-
tence, and the ordinary multi-linear least squared regression.
The climatological skill scores are calculated separately for
each forecast step (lead time) and summarized as a box-and-
whiskers plot over all stations and forecasts (Fig. 12), and as
a simplified version showing the skill score only (not shown)
using PlotClimatologicalSkillScore.

In addition to the statistical model evaluation, MLAir also
allows the importance of individual input variables to be as-
sessed through bootstrapping of individual input variables.
For this, the time series of each individual input variable is
resampled n times (with replacement) and then fed to the
trained network. By resampling a single input variable, its
temporal information is disturbed, but the general frequency
distribution is preserved. The latter is important because it

Geosci. Model Dev., 14, 1553-1574, 2021

ahead

. I obs
1001 | mm 1d
. H e 2d

! , = 3d
80 A

o3

month

Figure 9. Graph of PlotMonthlySummary showing the obser-
vations (green) and the predictions for all forecast steps (dark to
light blue) separated for each month.

ensures that the model is provided only with values from
a known range and does not extrapolate out-of-sample. Af-
terwards, the skill scores of the bootstrapped predictions are
calculated using the original forecast as reference. Input vari-
ables that show an overly negative skill score during boot-
strapping have a stronger influence on the prediction than in-
put variables with a small negative skill score. In case the
bootstrapped skill score even reaches the positive value do-
main, this could be an indication that the examined vari-
able has no influence on the prediction at all. The result
of this approach applied to all input variables is presented
in PlotBootstrapSkillScore (Fig. 13). A more de-
tailed description of this approach is given in Kleinert et al.
(2021).

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

1 time step(s) ahead

------- .10th and .90th quantile

81001 —-— .25th and .75th quantile
? --=-.50th quantile .
if g0l — reference 1:1 ing
]
‘E)
£ 601
9]
O
S
O 401
°
9]
c
@ 20+)
38 1
[S)

0 — - - - ;

0 20 40 60 80 100

forecast concentration (in ppb)

Figure 10. Conditional quantiles in terms of calibration-refinement
factorization for the first lead time and the full test period. The
marginal forecasting distribution is shown as a log histogram in
light grey (counting on right axis). The conditional distribution (cal-
ibration) is shown as percentiles in different line styles. Calcula-
tions are done with a bin size of 1 ppb. Moreover, the percentiles
are smoothed by a rolling mean of window size three. This kind of
plot was originally proposed by Murphy et al. (1989) and can be
created using PlotConditionalQuantiles.

summary of all stations

0.4 l 1d
. 2d
=3 3d

0.3 i ===
. =

0.24 .

.| |

0.0 4

skill score

—0.1

-0.2 1

ols-persi cnn-ols
competing models

cnn-persi

Figure 11. Skill scores of different reference models like
persistence (persi) and ordinary multi-linear least square
(ols). Skill scores are shown separately for all forecast steps
(dark to light blue). This graph is generated by invoking
PlotCompetitiveSkillScore.

4 Configuration of experiment, data handler, and
model class in the MLAir workflow

As well as the already described workflow adjustments,
MILAir offers a large number of configuration options. In-
stead of defining parameters at different locations inside the
code, all parameters are centrally set in the experiment setup.
In this section, we describe all parameters that can be modi-

https://doi.org/10.5194/gmd-14-1553-2021

1563

fied and the authors’ choices for default settings when using
the default workflow of MLAir.

4.1 Host system and processing units

The MLAir workflow can be adjusted to the hosting sys-
tem. For that, the local paths for experiment and data are
adjustable (see Table 1 for all options). Both paths are sep-
arated by choice. This has the advantage that the same data
can be used multiple times for different experiment setups
if stored outside the experiment path. Contrary to the data
path placement, all created plots and forecasts are saved in
the experiment_path by default, but this can be adjusted
through the plot_path and forecast_path parameter.
Concerning the processing units, MLAir supports both
central processing units (CPUs) and GPUs. Due to their
bandwidth optimization and efficiency on matrix opera-
tions, GPUs have become popular for ML applications (see
Krizhevsky et al., 2012). Currently, the sample models im-
plemented in MLAir are based on TensorFlow v1.13.1, which
has distinct branches: the tensorflow-1.13.1 package for CPU
computation and the tensorflow-gpu-1.13.1 package for GPU
devices. Depending on the operating system, the user needs
to install the appropriate library if using TensorFlow releases
1.15 and older (TensorFlow, 2020). Apart from this installa-
tion issue, MLAir is able to detect and handle both Tensor-
Flow versions during run time. An MLAir version to support
TensorFlow v2 is planned for the future (see Sect. 5).

4.2 Preprocessing

In the course of preprocessing, the data are prepared to al-
low immediate use in training and evaluation without further
preparation. In addition to the general data acquisition and
formatting, which will be discussed in Sect. 4.3 and 4.4, pre-
processing also handles the split into training, validation, and
test data. All parameters discussed in this section are listed in
Table 2.

Data are split into subsets along the temporal axis
and station between a hold-out data set (called test
data) and the data that are used for training (train-
ing data) and model tuning (validation data). For
each subset, a {train,val,test}_start and
{train,val, test}_end date not exceeding the overall
time span (see Sect. 4.4) can be set. Additionally, for
each subset it is possible to define a minimal number of
samples per station {train,val,test}_min_length
to remove very short time series that potentially cause
misleading results especially in the validation and test phase.
A spatial split of the data is achieved by assigning each
station to one of the three subsets of data. The parameter
fraction_of_training determines the ratio between
hold-out data and data for training and validation, where
the latter two are always split with a ratio of 80 % to 20 %,
which is a typical choice for these subsets.

Geosci. Model Dev., 14, 1553-1574, 2021

1564

L. H. Leufen et al.: MLAIr (v1.0)

summary of all stations

0.8

| e

IN
IS

terms and skill score

0.2

0.0 ES o

. 1d
. 2d
3 3d

Al All Alll AlV BI BIl

BIV Cl Cliv CASE | CASE Il CASE Il

CASE IV

Figure 12. Climatological skill scores (cases I to IV) and related terms of the decomposition as proposed in Murphy (1988) created by
PlotClimatologicalSkillScore. Skill scores and terms are shown separately for all forecast steps (dark to light blue). In brief,
cases I to IV describe a comparison with climatological reference values evaluated on the test data. Case I is the comparison of the forecast
with a single mean value formed on the training and validation data and case II with the (multi-value) monthly mean. The climatological
references for cases III and IV are, analogous to cases I and II, the single and the multi-value mean, but on the test data. Cases I to IV are
calculated from the terms Al to CIV. For more detailed explanations of the cases, we refer to Murphy (1988).

Table 1. Summary of all parameters related to the host system that are required, recommended, or optional to adjust for a custom experiment

workflow.

Host system

Parameter Default Adjustment
experiment_date testrun recommended
experiment_name {experiment_date}_network -2
experiment_path (deb)/{experimentiname} optional
data_path (cwdb)/dat a optional
bootstrap_path (data_path)/bootstraps optional
forecast_path (experiment_path)/forecasts optional
plot_path (experiment_path)/plots optional

@ Only adjustable via the experiment_date parameter.
b Refers to the Linux command to get the path name of the current working directory.

To achieve absolute statistical data subset independence,
data should ideally be split along both temporal and spatial
dimensions. Since the spatial dependency of two distinct sta-
tions may vary due to weather regimes, season, and time of
day (Wilks, 2011), a spatial and temporal division of the data
might be useful, as otherwise a trained model can presum-
ably lead to over-confident results. On the other hand, by
applying a spatial split in combination with a temporal di-

Geosci. Model Dev., 14, 1553-1574, 2021

vision, the amount of utilizable data can drop massively. In
MLAir, it is therefore up to the user to split data either in the
temporal dimension or along both dimensions by using the
use_all_stations_on_all_data_sets parameter.

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

1565

summary of all stations

0.0-_. i ﬁ A el gt i_'i- e it
0.5
—1.0 1 °
L —1.5 ?
[]
2 [
% —2.0 1 .
-2.5 °
3.0
Il 1d
I 2d
-3.51 4 3d
cloudcover no no2 03 pblheightrelhum temp u \Y%

Figure 13. Skill score of bootstrapped model input predictions separated for each input variable (x axis) and forecast steps (dark to light
blue) with the original (non-bootstrapped) predictions as reference. PlotBoot strapSkillScore is only executed if bootstrap analysis

is enabled.

Table 2. Summary of all parameters related to the preprocessing that are required, recommended, or optional to adjust for a custom experiment

workflow.
Preprocessing
Parameter Default Adjustment
stations default stations® recommended
data_handler DefaultDataHandler optional
fraction_of_training 0.8 optionalb
use_all stations_on_all_data_sets True optional

2 Default stations: DEBW107, DEBY081, DEBW013, DEBW076, DEBW087.
b Not used in the default setup because use_all_stations_on_all_data_sets is True.

4.3 Custom data handler

The integration of a custom data handler into the
MLAir workflow is done by inheritance from the
AbstractDataHandler class and implementation
of at least the constructor __init__ (), and the accessors
get_X (), and get_Y (). The custom data handler is
added to the MLAir workflow as a parameter without ini-
tialization. At runtime, MLAir then queries all the required
parameters of this custom data handler from its arguments
and keyword arguments, loads them from the data store and
finally calls the constructor. If data need to be downloaded or
preprocessed, this should be executed inside the constructor.
It is sufficient to load the data in the accessor methods if
the data can be used without conversion. Note that a data
handler is only responsible for preparing data from a single

https://doi.org/10.5194/gmd-14-1553-2021

origin, while the iteration and distribution into batches is
taken care of while MLAir is running.

The accessor methods for input and target data form a
clearly defined interface between MLAir’s run modules and
the custom data handler. During training the data are needed
as a NumPy array; for preprocessing and evaluation the data
are partly used as xarray. Therefore the accessor methods
have the parameter as_numpy and should be able to return
both formats. Furthermore it is possible to use a custom up-
sampling technique for training. To activate this feature the
parameter upsampling can be enabled. If such a technique
is not used and therefore not implemented, the parameter has
no further effect.

The abstract data handler provides two additional place-
holder methods that can support data preparation, training,
and validation. Depending on the case, it may be helpful to

Geosci. Model Dev., 14, 1553-1574, 2021

1566

Table 3. Summary of all parameters related to the default data han-
dler that are required, recommended, or optional to adjust for a cus-

tom experiment workflow.

Default data handler

Parameter Default Adjustment
data_path see Table 1 optional
stations default stations® recommended
network - optional
station_type - optional
variables default variables® recommended
statistics_per_var default statistics® recommended
target_var 03 recommended
start 1997-01-01 recommended
end 2017-12-31 recommended
sampling daily optional
window_history_size 13 recommended
interpolation_method linear optional
limit_nan_fill 1 optional
min_length® 0 optional
window_lead_time 3 recommended
overwrite_local_data False optional

a Default stations: DEBW107, DEBY081, DEBWO013, DEBW076, DEBWO087.

b Default variables (statistics): 03 (dma8eu), relhum (average_values), temp (maximum), u

(average_values), v (average_values), no (dma8eu), no2 (dma8eu), cloudcover
(average_values), pblheight (maximum).
¢ Indicates the required minimum number of samples per station.

define these methods within a custom data handler. With the
method t ransformation itis possible to either define or
calculate the transformation properties of the data handler be-
fore initialization. The returned properties are then applied to
all subdata sets, namely training, validation, and testing. An-
other supporting class method is get _coordinates. This
method is currently used only for the map plot for geograph-
ical overview (see Sect. 3.2). To feed the overview map, this
method must return a dictionary with the geographical coor-
dinates indicated by the keys 1at and lon.

4.4 Default data handler

In this section we describe a concrete implementation of a
data handler, namely the DefaultDataHandler, using
data from the JOIN interface.

Regarding the data handling and preprocessing, several pa-
rameters can be set to control the choice of inputs, size of
data, etc. in the data handler (see Table 3). First, the under-
lying raw data must be downloaded from the web. The cur-
rent version of the DefaultDataHandler is configured
for use with the REST API of the JOIN interface (Schultz
and Schroder, 2017). Alternatively, data could be already
available on the local machine in the directory data_path,
e.g. from a previous experiment run. Additionally, a user
can force MLAir to load fresh data from the web by en-
abling the overwrite_local_data parameter. Accord-
ing to the design structure of a data handler, data are han-
dled separately for each observational station indicated by its

Geosci. Model Dev., 14, 1553-1574, 2021

L. H. Leufen et al.: MLAIr (v1.0)

ID. By default, the DefaultDataHandler uses all Ger-
man air quality stations provided by the German Environ-
ment Agency (Umweltbundesamt, UBA) that are indicated
as “background” stations according to the European Envi-
ronmental Agency (EEA) AirBase classification (European
Parliament and Council of the European Union, 2008). Using
the stations parameter, a user-defined data collection can
be created. To filter the stations, the parameters network
and station_type can be used as described in Schultz
et al. (2017a) and the documentation of JOIN (Schultz and
Schroder, 2017).

For the DefaultDataHandler, it is recommended to
specify at least

— the number of preceding time steps to use for a single
input sample (window_history_size),

— if and which interpolation should be used

(interpolation_method),

— if and how many missing values are allowed to be filled
by interpolation (limit_nan_£il1),

— and how many time steps the forecast model should pre-
dict (window_lead_time).

Regarding the data content itself, each requested variable
must be added to the variables list and be part of the
statistics_per_var dictionary together with a proper
statistic abbreviation (see documentation of Schultz and
Schroder, 2017). If not provided, both parameters are cho-
sen from a standard set of variables and statistics. Similar
actions are required for the target variable. Firstly, target vari-
ables are defined in target_var, and secondly, the target
variable must also be part of the statistics_per_var
parameter. Note that the JOIN REST API calculates these
statistics online from hourly values, thereby taking into ac-
count a minimum data coverage criterion. Finally, the over-
all time span the data shall cover can be defined via start
and end, and the temporal resolution of the data is set by
a string like "daily" passed to the sampling parameter.
At this point, we want to refer to Sect. 5, where we discuss
the temporal resolution currently available.

4.5 Defining a model class

The motivation behind using model classes was already ex-
plained in Sect. 2.4. Here, we show more details on the im-
plementation and customization.

To achieve the goal of an easy plug-and-play behaviour,
each ML model implemented in MLAir must inherit from the
AbstractModelClass, and the methods set_model
and set_compile_options are required to be over-
written for the custom model. Inside set_model, the
entire model from inputs to outputs is created. Thereby
it has to be ensured that the model is compatible with
Keras to be compiled. MLAir supports both the functional

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

and sequential Keras application programming interfaces.
For details on how to create a model with Keras, we
refer to the official Keras documentation (Chollet et al.,
2015). All options for the model compilation should be
set in the set__compile_options method. This method
should at least include information on the training al-
gorithm (optimizer), and the loss to measure perfor-
mance during training and optimize the model for (1oss).
Users can add other compile options like the learning rate
(learning_rate), metrics to report additional in-
formative performance metrics, or options regarding the
weighting as loss_weights, sample_weight_mode,
or weighted_metrics. Finally, methods that are not part
of Keras or TensorFlow like customized loss functions or
self-made model extensions are required to be added as so-
called custom_objects to the model so that Keras can
properly use these custom objects. For that, it is necessary to
call the set_custom_objects method with all custom
objects as key value pairs. See also the official Keras docu-
mentation for further information on custom objects.

An example implementation of a small model using a sin-
gle convolution and three fully connected layers is shown in
Fig. 14. By inheriting from the AbstractModelClass
(1. 9), invoking its constructor (1. 15), defining the methods
set_model (I. 25-35) and set_compile_options
(1. 37-41), and calling these two methods (1. 21-22), the cus-
tom model is immediately usable for MLAir. Additionally,
the loss is added to the custom objects (1. 23). This last step
would not be necessary in this case, because an error func-
tion incorporated in Keras is used (l. 2/40). For the purpose
of demonstrating how to use a customized loss, it is added
nevertheless.

A more elaborate example is described in Kleinert et al.
(2021), who used extensions to the standard Keras library in
their workflow. So-called inception blocks (Szegedy et al.,
2015) and a modification of the two-dimensional padding
layers were implemented as Keras layers and could be used
in the model afterwards.

4.6 Training

The parameter create_new_model instructs MLAir to
create a new model and use it in the training. This is nec-
essary, for example, for the very first training run in a new
experiment. However, it must be noted that already existing
training progress within the experiment will be overwritten
by activating create_new_model. Independent of using
a new or already existing model, train_model can be
used to set whether the model is to be trained or not. Fur-
ther notes on the continuation of an already started training
or the use of a pre-trained model can be found in Sect. 4.9.
Most parameters to set for the training stage are re-
lated to hyperparameter tuning (see Table 4). Firstly, the
batch_size can be set. Furthermore, the number of
epochs to train needs to be adjusted. Last but not least,

https://doi.org/10.5194/gmd-14-1553-2021

1567

the model used itself must be provided to MLAir including
additional hyperparameters like the learning_rate, the
algorithm to train the model (optimizer), and the loss
function to measure model performance. For more details
on how to implement an ML model properly we refer to
Sect. 4.5.

Due to its application focus on meteorological time series
and therefore on solving a regression problem, MLAir offers
a particular handling of training data. A popular technique
in ML, especially in the image recognition field, is to aug-
ment and randomly shuffle data to produce a larger number
of input samples with a broader variety. This method requires
independent and identically distributed data. For meteoro-
logical applications, these techniques cannot be applied out
of the box, because of the lack of statistical independence
of most data and autocorrelation (see also Schultz et al.,
2021). To avoid generating over-confident forecasts, training
and test data are split into blocks so that little or no over-
lap remains between the data sets. Another common problem
in ML, not only in the meteorological context, is the natu-
ral under-representation of extreme values, i.e. an imbalance
problem. To address this issue, MLAir allows more empha-
sis to be placed on such data points. The weighting of data
samples is conducted by an over-representation of values that
can be considered as extreme regarding the deviation from a
mean state in the output space. This can be applied during
training by using the ext reme_values parameter, which
defines a threshold value at which a value is considered ex-
treme. Training samples with target values that exceed this
limit are then used a second time in each epoch. It is also pos-
sible to enter more than one value for the parameter. In this
case, samples with values that exceed several limits are du-
plicated according to the number of limits exceeded. For pos-
itively skewed distributions, it could be helpful to apply this
over-representation only on the right tail of the distribution
(extremes_on_right_tail_only). Furthermore, itis
possible to shuffle data within, and only within, the training
subset randomly by enabling permute_data.

4.7 Validation

The configuration of the ML model validation is related to
the postprocessing stage. As mentioned in Sect. 2.3, in the
default configuration there are three major validation steps
undertaken after each run besides the creation of graph-
ics: first, the trained model is opposed to the two reference
models, a simple linear regression and a persistence predic-
tion. Second, these models are compared with climatological
statistics. Lastly, the influence of each input variable is esti-
mated by a bootstrap procedure.

Due to the computational burden the calculation of the in-
put variable sensitivity can be skipped and the graphics cre-
ation part can be shortened. To perform the sensitivity study,
the parameter evaluate_bootstraps must be enabled
and the number_of_bootstraps defines how many

Geosci. Model Dev., 14, 1553-1574, 2021

L. H. Leufen et al.: MLAIr (v1.0)

1568

1 import keras

2 from keras.losses import mean_squared_error as mse

3 from keras.optimizers import SGD

4

5 from mlair.model_modules import AbstractModelClass

6

7 from mlair.workflows import DefaultWorkflow

8

9 class MyCustomisedModel (AbstractModelClass):

10

11 e

12 A customised model with a 1zl Conv, and 2 Dense layers (16,
13 output shape). Dropout is used after Conv layer.

14 e

15 def __init__(self, input_shape: list, output_shape: list):
16

17 # set attridbutes _input_shape and _output_shape

18 super () .__init__(input_shape[0], output_shape[0])

19
20 # apply to model
21 self.set_model()
22 self.set_compile_options()
23 self.set_custom_objects(loss=self.compile_options['loss'])
24
25 def set_model(self):
26 x_input = keras.layers.Input(shape=self._input_shape)
27 x_in = keras.layers.Conv2D(32, (1, 1)) (x_input)
28 x_in = keras.layers.PReLU() (x_in)
29 x_in = keras.layers.Flatten() (x_in)
30 x_in = keras.layers.Dropout(0.1) (x_in)
31 x_in = keras.layers.Dense(16) (x_in)
32 x_in = keras.layers.PReLU() (x_in)
33 x_in = keras.layers.Dense(self._output_shape) (x_in)
34 out = keras.layers.PReLU() (x_in)
35 self .model = keras.Model (inputs=x_input, outputs=[out])
36
37 def set_compile_options(self):
38 self.initial_1lr = le-2
39 self.optimizer = SGD(lr=self.initial_lr, momentum=0.9)
40 self.loss = mse
41 self.compile_options = {"metrics": ["mse", "mae"]l}
42

43 # Make use of MyCustomisedModel within the DefaultWorkflow
44 workflow = DefaultWorkflow(model=MyCustomisedModel, epochs=2)

45 workflow.run()

Figure 14. Example how to create a custom ML model implemented as a model class. MyCustomisedModel has a single 1 x 1 convolution
layer followed by two fully connected layers with a neuron size of 16, and the number of forecast steps. The model itself is defined in the
set_model method, whereas compile options such as the optimizer, loss, and error metrics are defined in set_compile_options.
Additionally, for demonstration, the loss is added as custom object which is not required because a Keras built-in function is used as loss.

samples shall be drawn for the evaluation (see Table 5). If
such a sensitivity study was already performed and the train-
ing stage was skipped, the create_new_bootstraps
parameter should be set to False to reuse already prepro-
cessed samples if possible. To control the creation of graph-
ics, the parameter plot_ 11 st can be adjusted. If not speci-
fied, a default selection of graphics is generated. When using

Geosci. Model Dev., 14, 1553-1574, 2021

plot_list, each graphic to be drawn must be specified
individually. More details about all possible graphics have
already been provided in Sect. 3.2 and 3.3. In the current
version, extending the validation as part of MLAir’s default
postprocessing stage is somewhat complicated, but it is pos-
sible to append another run module to the workflow to per-
form additional validations.

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

1569

Table 4. Summary of all parameters related to the training that are required, recommended, or optional to adjust for a custom experiment

workflow.
Training
Parameter Default Adjustment
train_model False recommended?®
create_new_model False recommended?
batch_size 512 optional
epochs 20 optional
lossP - required
metricsP - optional
model vanilla model® required
learning_rateb — required
optimizerP? - required
extreme_values - optional
extremes_on_right_tail_only False optional
permute_data False optional

4 Note: both parameters are disabled per default to prevent unintended overwriting of a model. If, upon
reversion, these parameters are not enabled on the first execution of a new experiment without
providing a suitable and trained ML model, the MLAir workflow is going to fail.

b These parameters are set in the model class.

¢ As default, a vanilla feed-forward neural network architecture will be loaded for workflow testing.
The usage of such a simple network for a real application is at least questionable.

Table 5. Summary of all parameters related to the evaluation that
are required, recommended, or optional to adjust for a custom ex-
periment workflow.

Evaluation

Parameter Default Adjustment
plot_list default plots? optional
evaluate_bootstraps True optional
number_of_bootstraps 20 optional
create_new_bootstraps False? optional

4 Default plots are PlotMonthlySummary, PlotStationMap,
PlotClimatologicalSkillScore,PlotTimeSeries,
PlotCompetitiveSkillScore,PlotBootstrapSkillScore,
PlotConditionalQuantiles,and PlotAvailability.

b g automatically enabled if parameter t rain_model (see Table 4) is enabled.

4.8 Custom run modules and workflow adaptions

MLAir offers the possibility to define and execute a custom
workflow for situations in which special calculations or data
evaluation procedures not available in the standard version
are needed. For this purpose it is not necessary to modify the
program code of MLAir, but instead user-defined run mod-
ules can be included in a new workflow. This is done in
analogy to the procedure of defining new model classes by
inheritance from the base class RunEnvironment. Com-
pared to the very simple examples from Sect. 3, such a use
of MLAir requires a slightly increased effort. The implemen-
tation of the run module is done straightforwardly by a con-
structor method, which initializes the module and executes
all desired calculation steps when called. To execute the cus-

https://doi.org/10.5194/gmd-14-1553-2021

tom workflow, the MLAir Work f1low class must be loaded
and then each run module must be registered. The order in
which the individual stages are added determines the execu-
tion sequence.

As custom workflows will generally be necessary if a cus-
tom run module is to be defined, we briefly describe how the
central data store mentioned in Sect. 2.3 interacts with the
workflow module. With the data store it is possible to share
any kind of information from previous or subsequent stages.
By invoking the constructor of the super class during the ini-
tialization of a custom run module, the data store is automat-
ically connected with this module. Information can then be
set or queried using the accessor methods get and set. For
each saved information object a separate namespace called
scope can be assigned. If not specified, the object is always
stored in the general scope. If the scope is specified, a sep-
arate sub-scope is created. Information stored in this scope
memory cannot be accessed from the general scope mem-
ory, but conversely all sub-scopes have access to the gen-
eral scope. For example, more general objects can be set in
the general scope and objects specific to a sub-data set, such
as test data, can be stored under the scope test. If some
objects for the keyword test are retrieved from the data
store, then for non-existent objects in the test namespace
attributes from the general scope are used if available.

An example for the implementation of a custom run mod-
ule embedded in a custom workflow can be found in Fig. 15.
The custom run module named CustomStage inherits
from the base class RunEnvironment (l. 4) and calls
its constructor (I. 8) on initialization. The CustomStage
expects a single parameter (test_string, l. 7), which

Geosci. Model Dev., 14, 1553-1574, 2021

1570

L. H. Leufen et al.: MLAIr (v1.0)

1 import mlair

2 import logging

3

4 class CustomStage(mlair.RunEnvironment) :

5 "4 custom MLAir stage for demonstration."""

6

7 def __init__(self, test_string):

8 super().__init__() # always call super init method
9 self._run(test_string) # call a class method
10

11 def _run(self, test_string):

12 logging.info("Just running a custom stage.")
13 logging.info("test_string = " + test_string)
14 epochs = self.data_store.get("epochs")

15 logging.info("epochs = " + str(epochs))

16

17

18 # create your custom MLAZr workflow

19 CustomWorkflow = mlair.Workflow()
20 # provide stages without initialisation
21 CustomWorkflow.add(mlair.ExperimentSetup, epochs=128)
22 # add also keyword arguments for a specific stage
23 CustomWorkflow.add(CustomStage, test_string="Hello World")
24 # finally execute custom workflow in order of adding

25 CustomWorkflow.run()

INFO: Workflow started

INFO:

INFO: CustomStage started

INFO: Just running a custom stage.
INFO: test_string = Hello World
INFO: epochs = 128

INFO:

INFO:

ExperimentSetup finished after 00:00:12 (hh:mm:ss)

CustomStage finished after 00:00:01 (hh:mm:ss)
Workflow finished after 00:00:13 (hh:mm:ss)

Figure 15. Embedding of a custom run module in a modified MLAir workflow. In comparison to Figs. 2, 3, and 4, this code example works on
a single step deeper regarding the level of abstraction. Instead of calling the run method of MLAir, the user needs to add all stages individually
and is responsible for all dependencies between the stages. By using the Work f1low class as context manager, all stages are automatically

connected with the result that all stages can easily be plugged in.

is used during the run method (I. 11-15). The run
method first logs two information messages by using the
test_string parameter (I. 12-13). Then it extracts the
value of the parameter epochs (I. 14) that has been set in the
ExperimentSetup (l. 21) from the data store and logs the
value of this parameter too. To run this custom run module
is has to be included in a workflow. First an empty work-
flow is created (1. 19) and then individual run modules are
attached (1. 21-23). As last step, this new defined workflow
is executed by calling the run method (1. 25).

4.9 How to continue an experiment?

There can be different reasons for the continuation of an ex-
periment. First of all, by looking at the monitoring graphs,
it could be discovered that training has not yet converged

Geosci. Model Dev., 14, 1553-1574, 2021

and the number of epochs should be increased. Instead of
training a new network from scratch, the training can be
resumed from the latest epoch to save time. To do so,
the parameter epochs must be increased accordingly and
create_new_model mustbe setto False. If the model
output folder has not been touched, the intermediate results
and the history of the previous training are usually avail-
able in full, so that MLAir can continue the training as if it
had never been interrupted. Another reason for a continua-
tion would be the interruption of the training for unexpected
reasons such as runtime exceedance on batch systems. By
keeping the same number of epochs and switching off the
creation of a new model, the training continues at the last
checkpoint (see model setup in Sect. 2.3). Finally, MLAir can
also be used in the context of transfer learning. By providing
a pre-trained model and having t rain_model enabled and

https://doi.org/10.5194/gmd-14-1553-2021

L. H. Leufen et al.: MLAir (v1.0)

create_new_model disabled, a transfer learning task can
be performed.

5 Limitations

Even though MLAir addresses a wide range of ML-related
problems and allows many different ML architectures and
customized workflows to be embedded, it is still no universal
Swiss Army knife but rather focuses on the application of
neural networks for the task of station time series forecasting.
In this section we will explain the limitations of MLAir and
why MLAir ends at these points.

Due to the scientifically oriented development of MLAir
starting from a specific research question (Kleinert et al.,
2021), MLAir could initially only use data from the REST
API of JOIN. This binding has already been revoked in the
current version, however, the DefaultDataHandler still
uses this data source. Furthermore, MLAir always expects a
particular structure in the data and especially considers the
data as a collection of time series data from various stations.
We are currently investigating the possibility of integrating
grid data, which could be taken from a weather model, and
time-constant data such as topography into the MLAir work-
flow, but we cannot yet present any results on how easy such
an integration would be.

While MLAir can technically handle data in different time
resolutions, it has been tested primarily on daily aggregated
data due to the specific science case which served as the seed
for its development. The use of different temporal resolutions
was spot-checked and could be successfully confirmed with-
out obvious errors, but we cannot guarantee that the results
will be meaningful if data in other temporal resolutions are
used as inputs. In particular, most of the evaluation routines
may not make sense for data in less than hourly or greater
than daily resolution. Note also that MLAir does not per-
form explicit error checking or missing value handling. Such
functionality must be implemented within the data handler.
MLAir expects a ready-to-use data set without missing val-
ues provided by the data handler during training.

Another limitation is the choice of the underlying libraries
and their versions. Due to the selection of TensorFlow as
back-end, it is not possible to use PyZorch or other frame-
works in combination with MLAir. Specifically, MLAir was
developed and tested with TensorFlow version 1.13.1, as the
HPC systems on which our experiments are performed sup-
ported this version at the time of writing. We have already
tested MLAir occasionally with the TensorFlow version 1.15
and could not find any errors. Please check the code reposi-
tory for updates concerning the support of newer TensorFlow
versions, which we hope to make available in the coming
months.

https://doi.org/10.5194/gmd-14-1553-2021

1571

6 Summary

MLAir is an innovative software package intended to facili-
tate high-quality meteorological studies using ML. By pro-
viding an end-to-end solution based on a specific scientific
workflow of time series prediction, MLAir enables a transpar-
ent and reproducible conduction of ML experiments in this
domain. Due to the plug-and-play behaviour it is straightfor-
ward to explore different model architectures and change var-
ious aspects of the workflow or model evaluation. Although
MLAir is focusing on neural networks, it should be possi-
ble to include other ML techniques. Since MLAir is based
on a pure Python environment, and it is highly portable. It
has been tested on various computing systems from desktop
workstations to high-end supercomputers.

MLAir is under continuous development. Further enhance-
ments of the program are already planned and can be found
in the issue tracker (see Code availability). Ongoing devel-
opments concern the extension of the statistical evaluation
methods, the graphical presentation of the results, and the
flawless support of temporal resolutions other than daily ag-
gregated data. Through further code refactoring, MLAir will
become even more versatile as the decoupling of individ-
ual components is being pushed forward. In particular, it is
planned to structure the data handling in a more modular way
so that varying structured data sources can be connected and
used without much effort. We invite the community of mete-
orological ML scientists to participate in the further develop-
ment of MLAir through comments and contributions to code
and documentation. A good starting point for contributions
is the issue tracker of MLAir.

We hope that MLAir can serve as a blueprint for the devel-
opment of reusable ML applications in the fields of meteorol-
ogy and air quality, as it seeks to combine the best practices
from ML with the best practices of meteorological model
evaluation and data preprocessing. MLAir is thus a contri-
bution to strengthen cooperation between the communities
of ML and meteorology or air quality researchers.

Code availability. The current version of MLAir is available from
the project website https://gitlab.version.fz-juelich.de/toar/mlair
(last access: 10 March 2021) under the MIT licence. The exact ver-
sion v1.0.0 of MLAir described in this paper and used to produce the
code examples shown is archived on B2SHARE (Leufen et al., 2020,
https://doi.org/10.34730/5a6¢3533512541a79¢5¢41061743t5¢3).
Detailed installation instructions are provided in the project page
readme file. There is also a Jupyter notebook with all code snippets
to reproduce the examples highlighted in this paper.

Data availability. MLAir is not directly linked to any specific data.
Data used in the examples are extracted from the corresponding
databases at runtime, as described and cited in the text.

Geosci. Model Dev., 14, 1553-1574, 2021

https://gitlab.version.fz-juelich.de/toar/mlair
https://doi.org/10.34730/5a6c3533512541a79c5c41061743f5e3

1572

Author contributions. The concept of MLAir was developed by
LHL. Detailed investigations on methodological approaches were
carried out by LHL and FK. FK contributed the first use case. The
actual implementation of the software and its validation and visu-
alization were done by LHL and FK. LHL was responsible for the
code structure and test developments. MGS contributed to the con-
cept discussions and provided supervision and funding. LHL wrote
the original draft, all authors reviewed the manuscript and helped in
the preparation of the final paper as well as drafting the responses
to the reviewers’ comments.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. The authors gratefully acknowledge the Jiilich
Supercomputing Centre for providing the infrastructure and re-
sources to develop this software.

Financial support. This research has been supported by the Euro-
pean Research Council, H2020 Research Infrastructures (IntelliAQ
(grant no. 787576).

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Review statement. This paper was edited by Christoph Knote and
reviewed by two anonymous referees.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems, available at:
https://www.tensorflow.org/ (last access: 10 March 2021), 2015.

Bentayeb, M., Wagner, V., Stempfelet, M., Zins, M., Goldberg,
M., Pascal, M., Larrieu, S., Beaudeau, P., Cassadou, S., Eil-
stein, D., Filleul, L., Le Tertre, A., Medina, S., Pascal, L., Prou-
vost, H., Quénel, P., Zeghnoun, A., and Lefranc, A.: Associa-
tion between long-term exposure to air pollution and mortality
in France: a 25-year follow-up study, Environ. Int., 85, 5-14,
https://doi.org/10.1016/j.envint.2015.08.006, 2015.

Bishop, C. M.: Pattern recognition and machine learning, Springer,
New York, 2006.

Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia,
A., Balzarini, A., Bard, R., Bianconi, R., Chemel, C., Curci, G.,
Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak,

Geosci. Model Dev., 14, 1553-1574, 2021

L. H. Leufen et al.: MLAIr (v1.0)

L., Im, U., Knote, C., Makar, P., Manders-Groot, A., van Mei-
jgaard, E., Neal, L., Pérez, J. L., Pirovano, G., San Jose, R.,
Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella,
P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Hogrefe, C., and Galmarini, S.: Comparative analysis of mete-
orological performance of coupled chemistry-meteorology mod-
els in the context of AQMEII phase 2, Atmos. Environ., 115,
470-498, https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y.: Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation, arXiv: 1406.1078, available at: http://arxiv.
org/abs/1406.1078 (last access: 10 March 2021), 2014.

Chollet, F.,, et al.: Keras, available at: https://keras.io (last access:
10 March 2021), 2015.

Cohen, A. J, Anderson, H. R., Ostro, B., Pandey, K. D.,
Krzyzanowski, M., Kiinzli, N., Gutschmidt, K., Pope, A.,
Romieu, 1., Samet, J. M., and Smith, K.: The Global Burden
of Disease Due to Outdoor Air Pollution, J. Toxicol. Env. Hea.
A, 68, 1301-1307, https://doi.org/10.1080/15287390590936166,
2005.

Elliott, T.. The State of the Octoverse: machine learn-
ing, The GitHub Blog, available at: https://github.blog/
2019-01-24-the-state-of-the-octoverse-machine-learning/, (last
access: 23 June 2020), 2019.

European Parliament and Council of the European Union: Directive
2008/50/EC of the European Parliament and of the Council of
21 May 2008 on ambient air quality and cleaner air for Europe,
Official Journal of the European Union, available at: http://data.
europa.eu/eli/dir/2008/50/0j (last access: 10 March 2021), 2008.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Gener-
ative Adversarial Nets, in: Advances in Neural Information
Processing Systems 27, edited by: Ghahramani, Z., Welling,
M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., pp.
2672-2680, Curran Associates, Inc., available at: http://papers.
nips.cc/paper/5423- generative-adversarial-nets.pdf (last access:
10 March 2021), 2014.

Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learn-
ing, MIT Press, http://www.deeplearningbook.org (last access:
10 March 2021), 2016.

Gruber, J.: Markdown, available at: https://daringfireball.net/
projects/markdown/license, (last access: 7 January 2021), 2004.

Hochreiter, S. and Schmidhuber, J.: Long Short-
Term Memory, Neural Computation, 9, 1735-1780,
https://doi.org/10.1162/neco.1997.9.8.1735, 1997.

Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays
and datasets in Python, J. Open Res. Softw., 5, 10,
https://doi.org/10.5334/jors. 148, 2017.

Hoyer, S., Hamman, J., Roos, M., Fitzgerald, C., Cherian, D.,
Fujii, K., Maussion, F., crusaderky, Kleeman, A., Kluyver, T.,
Clark, S., Munroe, J., keewis, Hatfield-Dodds, Z., Nicholas,
T., Abernathey, R., Wolfram, P. J., MaximilianR, Hauser,
M., Markel, Gundersen, G., Signell, J., Helmus, J. J,
Sinai, Y. B., Cable, P, Amici, A., lumbric, Rocklin, M.,
Rivera, G., and Barna, A.: pydata/xarray v0.15.0, Zenodo,
https://doi.org/10.5281/zenodo.3631851, 2020.

ISO Central Secretary: Information technology — The JSON data in-
terchange syntax, Standard ISO/IEC 21778:2017, International

https://doi.org/10.5194/gmd-14-1553-2021

https://www.tensorflow.org/
https://doi.org/10.1016/j.envint.2015.08.006
https://doi.org/10.1016/j.atmosenv.2014.12.032
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://keras.io
https://doi.org/10.1080/15287390590936166
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/
http://data.europa.eu/eli/dir/2008/50/oj
http://data.europa.eu/eli/dir/2008/50/oj
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://www.deeplearningbook.org
https://daringfireball.net/projects/markdown/license
https://daringfireball.net/projects/markdown/license
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5334/jors.148
https://doi.org/10.5281/zenodo.3631851

L. H. Leufen et al.: MLAir (v1.0)

Organization for Standardization, Geneva, Switzerland, avail-
able at: https://www.iso.org/standard/71616.html (last access:
10 March 2021), 2017.

Kingma, D. P. and Welling, M.: Auto-Encoding Variational Bayes,
arXiv: 1312.6114, available at: https://arxiv.org/abs/1312.6114
(last access: 10 March 2021), 2014.

Kleinert, F., Leufen, L. H., and Schultz, M. G.: IntelliO3-ts
v1.0: a neural network approach to predict near-surface ozone
concentrations in Germany, Geosci. Model Dev., 14, 1-25,
https://doi.org/10.5194/gmd-14-1-2021, 2021.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S.,
Ivanov, P., Avila, D., Abdalla, S., Willing, C., and development
team, J.: Jupyter Notebooks — a publishing format for repro-
ducible computational workflows, in: Positioning and Power in
Academic Publishing: Players, Agents and Agendas, edited by:
Loizides, F. and Scmidt, B., IOS Press, the Netherlands, 87—
90, available at: https://eprints.soton.ac.uk/403913/ (last access:
10 March 2021), 2016.

Koranne, S.: Hierarchical data format 5: HDFS5, in: Handbook of
Open Source Tools, 191-200, Springer, Boston, MA, HDF? is
maintained by The HDF Group, http://www.hdfgroup.org/HDF5
(last access: 10 March 2021), 2011.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E.: ImageNet Clas-
sification with Deep Convolutional Neural Networks, in: Ad-
vances in Neural Information Processing Systems 25, edited
by: Bartlett, P. L., Pereira, F. C. N., Burges, C. J. C., Bot-
tou, L., and Weinberger, K. Q., Curran Associates, Inc., 1106—
1114, available at: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks (last ac-
cess: 10 March 2021), 2012.

LaTeX Project: LaTeX, available at: https://www.latex-project.org/,
(last access: 7 January 2021), 2005.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based
learning applied to document recognition, Proceedings of the
IEEE, 86, 2278-2324, https://doi.org/10.1109/5.726791, 1998.

Lefohn, A. S., Malley, C. S., Smith, L., Wells, B., Hazucha,
M., Simon, H., Naik, V., Mills, G., Schultz, M. G., Pao-
letti, E., De Marco, A., Xu, X., Zhang, L., Wang, T,
Neufeld, H. S., Musselman, R. C., Tarasick, D., Brauer,
M., Feng, Z., Tang, H., Kobayashi, K., Sicard, P.,, Solberg,
S., and Gerosa, G.: Tropospheric ozone assessment report:
Global ozone metrics for climate change, human health, and
crop/ecosystem research, Elementa: Science of the Anthro-
pocene, 1, 1, https://doi.org/10.1525/elementa.279, 2018.

Leufen, L. H., Kleinert, F., and Schultz, M. G.: MLAir (v1.0.0) —a
tool to enable fast and flexible machine learning on air data time
series — Source Code, EUDAT Collaborative Data Infrastructure,
https://doi.org/10.34730/fcc6b509d5394dad8cfdfc6eftf2bec,
2020.

Mills, G., Pleijel, H., Malley, C., Sinha, B., Cooper, O., Schultz,
M., Neufeld, H., Simpson, D., Sharps, K., Feng, Z., Gerosa,
G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E.,
Sinha, V., and Xu, X.: Tropospheric Ozone Assessment Report:
Present-day tropospheric ozone distribution and trends relevant
to vegetation, Elementa: Science of the Anthropocene, 6, 47,
https://doi.org/10.1525/elementa.302, 2018.

Murphy, A. H.: Skill Scores Based on the Mean Square Error
and Their Relationships to the Correlation Coefficient, Mon.

https://doi.org/10.5194/gmd-14-1553-2021

1573

Weather Rev., 116, 2417-2424, https://doi.org/10.1175/1520-
0493(1988)116<2417:SSBOTM>2.0.CO;2, 1988.

Murphy, A. H. and Daan, H.: Forecast evaluation, in: Probabil-
ity, statistics, and decision making in the atmospheric sciences,
edited by: Murphy, A. H. and Katz, R. W., Westview Press, Boul-
der, USA, 379437, 1985.

Murphy, A. H. and Winkler, R. L.: A General Frame-
work for Forecast Verification, Mon. Weather
Rev., 115, 1330-1338, https://doi.org/10.1175/1520-
0493(1987)115<1330:AGFFFV>2.0.CO;2, 1987.

Murphy, A. H., Brown, B. G., and Chen, Y.-S.: Diag-
nostic Verification of Temperature Forecasts, Weather
Forecast., 4, 485-501, https://doi.org/10.1175/1520-
0434(1989)004<0485:DVOTF>2.0.CO;2, 1989.

Musgrave, K., Belongie, S., and Lim, S.-N.: A Metric Learning
Reality Check, arXiv: 2003.08505, available at: https://arxiv.org/
abs/2003.08505 (last access: 10 March 2021), 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S.: PyTorch: An Imperative Style, High-Performance Deep
Learning Library, in: Advances in Neural Information Pro-
cessing Systems 32, edited by: Wallach, H., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E., and Garnett, R., Cur-
ran Associates, Inc., Vancouver, Canada, 8024-8035, available
at: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf (last access:
10 March 2021), 2019.

Python Software Foundation: Python Language Reference, release
3.6.8, PEP 494, available at: https://www.python.org/dev/peps/
pep-0494/ (last access: 10 March 2021), 2018.

Reback, J., McKinney, W., jbrockmendel, Van den Bossche,
J., Augspurger, T., Cloud, P, gfyoung, Sinhrks, Klein, A,
Roeschke, M., Tratner, J., She, C., Hawkins, S., Ayd, W., Pe-
tersen, T., Schendel, J., Hayden, A., Garcia, M., MomlIsBest-
Friend, Jancauskas, V., Battiston, P., Seabold, S., chris-bl, h-
vetinari, Hoyer, S., Overmeire, W., alimcmaster1l, Mehyar, M.,
Dong, K., and Whelan, C.: pandas-dev/pandas: Pandas v1.0.1,
Zenodo, https://doi.org/10.5281/zenodo.3644238, 2020.

Rezende, D. J., Mohamed, S., and Wierstra, D.: Stochastic Back-
propagation and Approximate Inference in Deep Generative
Models, arXiv: 1401.4082, available at: https://arxiv.org/abs/
1401.4082 (last access: 10 March 2021), 2014.

Schultz, M. G. and Schréder, S.: Documentation of the JOIN REST
interface, Juelich, Germany, available at: https://join.fz-juelich.
de/services/rest/surfacedata/, (last access: 18 September 2020),
2017.

Schultz, M. G., Schroder, S., Lyapina, O., Cooper, O. R., Galbally,
L., Petropavlovskikh, 1., von Schneidemesser, E., Tanimoto, H.,
Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt,
P., Feigenspan, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D.,
Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wal-
lasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M.,
Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., An-
cellet, G., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka, M.,
Bonasoni, P.,, Chang, L., Colomb, A., Cuevas-Agulld, E., Cu-
peiro, M., Degorska, A., Ding, A., Frohlich, M., Frolova, M.,
Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V.,

Geosci. Model Dev., 14, 1553-1574, 2021

https://www.iso.org/standard/71616.html
https://arxiv.org/abs/1312.6114
https://doi.org/10.5194/gmd-14-1-2021
https://eprints.soton.ac.uk/403913/
http://www.hdfgroup.org/HDF5
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://www.latex-project.org/
https://doi.org/10.1109/5.726791
https://doi.org/10.1525/elementa.279
https://doi.org/10.34730/fcc6b509d5394dad8cfdfc6e9fff2bec
https://doi.org/10.1525/elementa.302
https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2
https://doi.org/10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1989)004<0485:DVOTF>2.0.CO;2
https://arxiv.org/abs/2003.08505
https://arxiv.org/abs/2003.08505
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.python.org/dev/peps/pep-0494/
https://www.python.org/dev/peps/pep-0494/
https://doi.org/10.5281/zenodo.3644238
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1401.4082
https://join.fz-juelich.de/services/rest/surfacedata/
https://join.fz-juelich.de/services/rest/surfacedata/

1574

Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla,
R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D.,
Lam, K.-S., Laurila, T., Lee, H., Levy, L., Mazzoleni, C., Maz-
zoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M.,
Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid,
N., Ries, L., Saxena, P., Schwab, J. J., Scorgie, Y., Senik, 1., Sim-
monds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W.,
Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suhar-
guniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xi-
aobin, X., Xue, L., and Zhigiang, M.: Tropospheric Ozone As-
sessment Report: Database and metrics data of global surface
ozone observations, Elementa: Science of the Anthropocene, 5,
58, https://doi.org/10.1525/elementa.244, 2017a.

Schultz, M. G., Schroder, S.,Lyapina, O., Cooper, O. R., Galbally,
L., Petropavlovskikh, 1., von Schneidemesser, E., Tanimoto, H.,
Elshorbany, Y., Naja, M., Seguel, R. J., Dauert, U., Eckhardt,
P, Feigenspan, S., Fiebig, M., Hjellbrekke, A.-G., Hong, Y.-D.,
Kjeld, P. C., Koide, H., Lear, G., Tarasick, D., Ueno, M., Wal-
lasch, M., Baumgardner, D., Chuang, M.-T., Gillett, R., Lee, M.,
Molloy, S., Moolla, R., Wang, T., Sharps, K., Adame, J. A., An-
cellet, G.., Apadula, F., Artaxo, P., Barlasina, M. E., Bogucka,
M., Bonasoni, P., Chang, L., Colomb, A., Cuevas-Agulld, E.,
Cupeiro, M., Degorska, A., Ding, A., Frohlich, M., Frolova, M.,
Gadhavi, H., Gheusi, F., Gilge, S., Gonzalez, M. Y., Gros, V.,
Hamad, S. H., Helmig, D., Henriques, D., Hermansen, O., Holla,
R., Hueber, J., Im, U., Jaffe, D. A., Komala, N., Kubistin, D.,
Lam, K.-S., Laurila, T., Lee, H.,Levy, 1., Mazzoleni, C., Maz-
zoleni, L. R., McClure-Begley, A., Mohamad, M., Murovec, M.,
Navarro-Comas, M., Nicodim, F., Parrish, D., Read, K. A., Reid,
N., Ries, L., Saxena, P., Schwab, J. J.,Scorgie, Y., Senik, L., Sim-
monds, P., Sinha, V., Skorokhod, A. I., Spain, G., Spangl, W.,
Spoor, R., Springston, S. R., Steer, K., Steinbacher, M., Suhar-
guniyawan, E., Torre, P., Trickl, T., Weili, L., Weller, R., Xu,
X., Xue, L., and Zhigiang, M.: Tropospheric Ozone Assess-
ment Report, links to Global surface ozone datasets, PANGAEA,
https://doi.org/10.1594/PANGAEA.876108, 2017b.

Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth,
M., Leufen, L. H., Mozaffari, A., and Stadtler, S.: Can deep learn-
ing beat numerical weather prediction?, Philos. T. Roy. Soc. A,
379, 2194, https://doi.org/10.1098/rsta.2020.0097, 2021.

Geosci. Model Dev., 14, 1553-1574, 2021

L. H. Leufen et al.: MLAIr (v1.0)

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A.: Going deeper with convolutions, in: 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Boston, MA, USA, 1-9,
https://doi.org/10.1109/CVPR.2015.7298594, 2015.

TensorFlow: GPU support, available at: https://www.tensorflow.
org/install/gpu, last access: 6 June 2020.

TOAR: Tropospheric Ozone Assessment Report (TOAR): Global
metrics for climate change, human health and crop/ecosystem
research, International Global Atmospheric Chemistry (IGAC),
available at: https://igacproject.org/activities/TOAR (last access:
29 January 2021), 2014-2021.

US Environmental Protection Agency: Integrated science assess-
ment for ozone and related photochemical oxidants, US Envi-
ronmental Protection Agency, Washington, D.C., ePA-HQ-ORD-
2018-0274, 2020.

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Ar-
ray: A Structure for Efficient Numerical Computation, Comput.
Sci. Eng., 13, 22-30, https://doi.org/10.1109/MCSE.2011.37,
2011.

Vautard, R.: Evaluation of the meteorological forcing used
for the Air Quality Model Evaluation International Initiative
(AQMEII) air quality simulations, Atmos. Environ., 53, 15-37,
https://doi.org/10.1016/j.atmosenv.2011.10.065, 2012.

Wes McKinney: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference,
edited by: Stéfan van der Walt and Jarrod Millman, SciPy Or-
ganizers, Austin, Texas, 56-61, https://doi.org/10.25080/Majora-
92bf1922-00a, 2010.

Wilks, D. S. (Ed.): Statistical methods in the atmospheric sci-
ences, pp. 178-186, International Geophysics Series, Elsevier
Academic Press, Amsterdam, 3rd edn., 2011.

World Health Organization: Health risks of air pollution in Europe
— HRAPIE project recommendations for concentration—response
functions for cost—benefit analysis of particulate matter, ozone
and nitrogen dioxide, Ozone and Nitrogen Dioxide, available at:
https://www.euro.who.int/__data/assets/pdf_file/0006/238956/
Health_risks_air_pollution_ HRAPIE_project.pdf (last access:
10 March 2021), 2013.

https://doi.org/10.5194/gmd-14-1553-2021

https://doi.org/10.1525/elementa.244
https://doi.org/10.1594/PANGAEA.876108
https://doi.org/10.1098/rsta.2020.0097
https://doi.org/10.1109/CVPR.2015.7298594
https://www.tensorflow.org/install/gpu
https://www.tensorflow.org/install/gpu
https://igacproject.org/activities/TOAR
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1016/j.atmosenv.2011.10.065
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf
https://www.euro.who.int/__data/assets/pdf_file/0006/238956/Health_risks_air_pollution_HRAPIE_project.pdf

	Abstract
	Introduction
	MLAir workflow and design
	Coding language
	Design of the MLAir workflow
	Run modules
	Model class
	Data handler

	Conducting an experiment with MLAir
	Running first experiments with MLAir
	Results of an experiment
	Statistical analysis of results

	Configuration of experiment, data handler, and model class in the MLAir workflow
	Host system and processing units
	Preprocessing
	Custom data handler
	Default data handler
	Defining a model class
	Training
	Validation
	Custom run modules and workflow adaptions
	How to continue an experiment?

	Limitations
	Summary
	Code availability
	Data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

