Articles | Volume 14, issue 3
https://doi.org/10.5194/gmd-14-1267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-14-1267-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22° resolution over the CORDEX Central Asia domain
Department of Geography, Ghent University (UGent), 9000 Ghent,
Belgium
Department of Physics and Astronomy, Ghent University (UGent), 9000 Ghent, Belgium
Lola Kotova
Climate Service Center Germany (GERICS), Helmholtz Zentrum Geesthacht, 20095 Hamburg, Germany
Lesley De Cruz
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Svetlana Aniskevich
Latvian Environment, Geology and Meteorology Centre (LEGMC), LV – 1019 Riga, Latvia
Leonid Bobylev
Nansen International Environmental and Remote Sensing Centre (NIERSC), 199034 St. Petersburg, Russia
Rozemien De Troch
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Natalia Gnatiuk
Nansen International Environmental and Remote Sensing Centre (NIERSC), 199034 St. Petersburg, Russia
Anne Gobin
Remote Sensing Unit, Flemish Institute for Technological Research (VITO), 2400 Mol,
Belgium
Department of Earth and Environmental Sciences, Faculty of BioScience Engineering, 3001 Heverlee, Belgium
Rafiq Hamdi
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Arne Kriegsmann
Climate Service Center Germany (GERICS), Helmholtz Zentrum Geesthacht, 20095 Hamburg, Germany
Armelle Reca Remedio
Climate Service Center Germany (GERICS), Helmholtz Zentrum Geesthacht, 20095 Hamburg, Germany
Abdulla Sakalli
Climate Change Application and Research Center, Iskenderun Technical University, 31200 Iskenderun, Turkey
Hans Van De Vyver
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Bert Van Schaeybroeck
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Viesturs Zandersons
Latvian Environment, Geology and Meteorology Centre (LEGMC), LV – 1019 Riga, Latvia
Philippe De Maeyer
Department of Geography, Ghent University (UGent), 9000 Ghent,
Belgium
Piet Termonia
Department of Physics and Astronomy, Ghent University (UGent), 9000 Ghent, Belgium
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Steven Caluwaerts
Department of Physics and Astronomy, Ghent University (UGent), 9000 Ghent, Belgium
Royal Meteorological Institute of Belgium (RMIB), 1180 Brussels,
Belgium
Related authors
No articles found.
Anouk Dierickx, Wout Dewettinck, Bert Van Schaeybroeck, Lesley De Cruz, Steven Caluwaerts, Piet Termonia, and Hans Van de Vyver
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-30, https://doi.org/10.5194/essd-2025-30, 2025
Preprint under review for ESSD
Short summary
Short summary
This study introduces the EURO-SUPREME dataset consisting of extreme precipitation events selected from a large ensemble of climate models over Europe. The dataset contains information on extreme precipitation events with a precipitation duration of 1 hour to 72 hours that can lead to flooding, high mortality rates and infrastructure damage. We highlight the usefulness of the dataset as a benchmark for improving high-resolution climate models for risk assessment of future extreme floods.
Vera Melinda Galfi, Tommaso Alberti, Lesley De Cruz, Christian L. E. Franzke, and Valerio Lembo
Nonlin. Processes Geophys., 31, 185–193, https://doi.org/10.5194/npg-31-185-2024, https://doi.org/10.5194/npg-31-185-2024, 2024
Short summary
Short summary
In the online seminar series "Perspectives on climate sciences: from historical developments to future frontiers" (2020–2021), well-known and established scientists from several fields – including mathematics, physics, climate science and ecology – presented their perspectives on the evolution of climate science and on relevant scientific concepts. In this paper, we first give an overview of the content of the seminar series, and then we introduce the written contributions to this special issue.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
Jan De Pue, Sebastian Wieneke, Ana Bastos, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Maral Maleki, Fabienne Maignan, Françoise Gellens-Meulenberghs, Ivan Janssens, and Manuela Balzarolo
Biogeosciences, 20, 4795–4818, https://doi.org/10.5194/bg-20-4795-2023, https://doi.org/10.5194/bg-20-4795-2023, 2023
Short summary
Short summary
The gross primary production (GPP) of the terrestrial biosphere is a key source of variability in the global carbon cycle. To estimate this flux, models can rely on remote sensing data (RS-driven), meteorological data (meteo-driven) or a combination of both (hybrid). An intercomparison of 11 models demonstrated that RS-driven models lack the sensitivity to short-term anomalies. Conversely, the simulation of soil moisture dynamics and stress response remains a challenge in meteo-driven models.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 6, 49, https://doi.org/10.5194/ica-abs-6-49-2023, https://doi.org/10.5194/ica-abs-6-49-2023, 2023
Haiyang Shi, Geping Luo, Olaf Hellwich, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 20, 2727–2741, https://doi.org/10.5194/bg-20-2727-2023, https://doi.org/10.5194/bg-20-2727-2023, 2023
Short summary
Short summary
In studies on the relationship between ecosystem functions and climate and plant traits, previously used data-driven methods such as multiple regression and random forest may be inadequate for representing causality due to limitations such as covariance between variables. Based on FLUXNET site data, we used a causal graphical model to revisit the control of climate and vegetation traits over ecosystem functions.
Jonathan Demaeyer, Jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data, 15, 2635–2653, https://doi.org/10.5194/essd-15-2635-2023, https://doi.org/10.5194/essd-15-2635-2023, 2023
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of central Europe and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2 m temperature forecasts is performed.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Jan De Pue, José Miguel Barrios, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, Fabienne Maignan, and Françoise Gellens-Meulenberghs
Biogeosciences, 19, 4361–4386, https://doi.org/10.5194/bg-19-4361-2022, https://doi.org/10.5194/bg-19-4361-2022, 2022
Short summary
Short summary
The functioning of ecosystems involves numerous biophysical processes which interact with each other. Land surface models (LSMs) are used to describe these processes and form an essential component of climate models. In this paper, we evaluate the performance of three LSMs and their interactions with soil moisture and vegetation. Though we found room for improvement in the simulation of soil moisture and drought stress, the main cause of errors was related to the simulated growth of vegetation.
Philippe De Maeyer
Abstr. Int. Cartogr. Assoc., 5, 3, https://doi.org/10.5194/ica-abs-5-3-2022, https://doi.org/10.5194/ica-abs-5-3-2022, 2022
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Biogeosciences, 19, 3739–3756, https://doi.org/10.5194/bg-19-3739-2022, https://doi.org/10.5194/bg-19-3739-2022, 2022
Short summary
Short summary
A number of studies have been conducted by using machine learning approaches to simulate carbon fluxes. We performed a meta-analysis of these net ecosystem exchange (NEE) simulations. Random forests and support vector machines performed better than other algorithms. Models with larger timescales had a lower accuracy. For different plant functional types (PFTs), there were significant differences in the predictors used and their effects on model accuracy.
Núria Pérez-Zanón, Louis-Philippe Caron, Silvia Terzago, Bert Van Schaeybroeck, Llorenç Lledó, Nicolau Manubens, Emmanuel Roulin, M. Carmen Alvarez-Castro, Lauriane Batté, Pierre-Antoine Bretonnière, Susana Corti, Carlos Delgado-Torres, Marta Domínguez, Federico Fabiano, Ignazio Giuntoli, Jost von Hardenberg, Eroteida Sánchez-García, Verónica Torralba, and Deborah Verfaillie
Geosci. Model Dev., 15, 6115–6142, https://doi.org/10.5194/gmd-15-6115-2022, https://doi.org/10.5194/gmd-15-6115-2022, 2022
Short summary
Short summary
CSTools (short for Climate Service Tools) is an R package that contains process-based methods for climate forecast calibration, bias correction, statistical and stochastic downscaling, optimal forecast combination, and multivariate verification, as well as basic and advanced tools to obtain tailored products. In addition to describing the structure and methods in the package, we also present three use cases to illustrate the seasonal climate forecast post-processing for specific purposes.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Jonathan Rizzi, Ana M. Tarquis, Anne Gobin, Mikhail Semenov, Wenwu Zhao, and Paolo Tarolli
Nat. Hazards Earth Syst. Sci., 21, 3873–3877, https://doi.org/10.5194/nhess-21-3873-2021, https://doi.org/10.5194/nhess-21-3873-2021, 2021
Jana Ameye, Philippe De Maeyer, Mario Hernandez, and Luc Zwartjes
Abstr. Int. Cartogr. Assoc., 3, 5, https://doi.org/10.5194/ica-abs-3-5-2021, https://doi.org/10.5194/ica-abs-3-5-2021, 2021
Gerard van der Schrier, Richard P. Allan, Albert Ossó, Pedro M. Sousa, Hans Van de Vyver, Bert Van Schaeybroeck, Roberto Coscarelli, Angela A. Pasqua, Olga Petrucci, Mary Curley, Mirosław Mietus, Janusz Filipiak, Petr Štěpánek, Pavel Zahradníček, Rudolf Brázdil, Ladislava Řezníčková, Else J. M. van den Besselaar, Ricardo Trigo, and Enric Aguilar
Clim. Past, 17, 2201–2221, https://doi.org/10.5194/cp-17-2201-2021, https://doi.org/10.5194/cp-17-2201-2021, 2021
Short summary
Short summary
The 1921 drought was the most severe drought to hit Europe since the start of the 20th century. Here the climatological description of the drought is coupled to an overview of its impacts, sourced from newspapers, and an analysis of its drivers. The area from Ireland to the Ukraine was affected but hardest hit was the triangle between Brussels, Paris and Lyon. The drought impacts lingered on until well into autumn and winter, affecting water supply and agriculture and livestock farming.
Anne Gobin, Nicoletta Addimando, Christoph Ramshorn, and Karl Gutbrod
Adv. Sci. Res., 18, 21–25, https://doi.org/10.5194/asr-18-21-2021, https://doi.org/10.5194/asr-18-21-2021, 2021
Short summary
Short summary
Agricultural production is largely determined by weather conditions during the crop growing season. Weather events such as frosts, droughts or heat stress during crop growth and development helps explain yield variability of common arable crops. We developed a methodology and visualisation tool for risk assessment, and tested the workflow for drought and frost risk. The methodology can be extended to other extreme weather events and their impacts on crop growth in different regions of the world.
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Cited articles
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu,
M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., and
Fettweis, X.: Cyclone activity in the Arctic from an ensemble of regional
climate models (Arctic CORDEX), J. Geophys. Res.-Atmos., 123, 2537–2554, https://doi.org/10.1002/2017JD027703, 2018.
ALADIN International Team: The ALADIN project: Mesoscale modelling seen as a
basic tool for weather forecasting and atmospheric research, WMO bull., 46,
317–324, 1997.
Almazroui, M., Islam, M. N., Alkhalaf, A. K., Saeed, F., Dambul, R., and
Rahman, M. A.: Simulation of temperature and precipitation climatology for
the CORDEX-MENA/Arab domain using RegCM4, Arab. J. Geosci., 9, 13,
https://doi.org/10.1007/s12517-015-2045-7, 2016.
Bucchignani, E., Mercogliano, P., Panitz, H. J., and Montesarchio, M.:
Climate change projections for the Middle East–North Africa domain with
COSMO-CLM at different spatial resolutions, Advances in Climate Change
Research, 9, 66–80, https://doi.org/10.1016/j.accre.2018.01.004, 2018.
Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. V.,
Martínez-López, B., Alvarez, F., Sieck, K., Limareva, N., and Pinto,
J.G.: Dynamical downscaling of historical climate over CORDEX Central
America domain with a regionally coupled atmosphere–ocean model, Clim.
Dynam., 52, 4305–4328, https://doi.org/10.1007/s00382-018-4381-2, 2019.
Collins, M., AchutaRao, K., Ashok, K., Bhandari, S., Mitra, A. K., Prakash,
S., Srivastava, R., and Turner, A.: Observational challenges in evaluating
climate models, Nat. Clim. Change, 3, 940–941,
https://doi.org/10.1038/nclimate2012, 2013.
CORDEX Scientific Advisory Team: The WCRP CORDEX Coordinated Output for
Regional Evaluations (CORE) Experiment Guidelines, available at:
http://www.cordex.org/experiment-guidelines/cordex-core, last access: 1 March 2019.
Davies, H. C.: A lateral boundary formulation for multi-level prediction
models, Q. J. Roy. Meteor. Soc., 102, 405–418,
https://doi.org/10.1002/qj.49710243210, 1976.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach,
H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Denis, B., Laprise, R., Caya, D., and Côté, J.: Downscaling ability
of one-way nested regional climate models: the Big-Brother Experiment,
Clim. Dynam., 18, 627–646, https://doi.org/10.1007/s00382-001-0201-0, 2002.
De Troch, R., Hamdi, R., Van de Vyver, H., Geleyn, J. F., and Termonia, P.:
Multiscale performance of the ALARO-0 model for simulating extreme summer
precipitation climatology in Belgium, J. Climate, 26, 8895–8915,
https://doi.org/10.1175/JCLI-D-12-00844.1, 2013.
Diaconescu, E. P., Gachon, P., Laprise, R., and Scinocca, J. F.: Evaluation
of precipitation indices over North America from various configurations of
regional climate models, Atmos.-Ocean, 54, 418–439,
https://doi.org/10.1080/07055900.2016.1185005, 2016.
Di Virgilio, G., Evans, J. P., Di Luca, A., Olson, R., Argüeso, D.,
Kala, J., Andrys, J., Hoffmann, P., Katzfey, J. J., and Rockel, B.:
Evaluating reanalysis-driven CORDEX regional climate models over Australia:
model performance and errors, Clim. Dynam., 53, 2985–3005,
https://doi.org/10.1007/s00382-019-04672-w, 2019.
Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization
for the Meteo-France climate model, Clim. Dynam., 12, 21–35, 1995.
ECMWF: Atmospheric physics, available at:
https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics,
last access: 7 July 2020.
Fuentes-Franco, R., Coppola, E., Giorgi, F., Pavia, E. G., Diro, G. T., and
Graef, F.: Inter-annual variability of precipitation over Southern Mexico
and Central America and its relationship to sea surface temperature from a
set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations,
Clim. Dynam., 45, 425–440, https://doi.org/10.1007/s00382-014-2258-6, 2015.
Gerard, L., Piriou, J. M., Brožková, R., Geleyn, J. F., and Banciu,
D.: Cloud and precipitation parameterization in a meso-gamma-scale
operational weather prediction model, Mon. Weather Rev., 137,
3960–3977, https://doi.org/10.1175/2009MWR2750.1, 2009.
Ghimire, S., Choudhary, A., and Dimri, A. P.: Assessment of the performance
of CORDEX-South Asia experiments for monsoonal precipitation over the
Himalayan region during present climate: part I, Clim. Dynam., 50,
2311–2334, https://doi.org/10.1007/s00382-015-2747-2, 2018.
Gibson, P. B., Waliser, D. E., Lee, H., Tian, B., and Massoud, E.: Climate
model evaluation in the presence of observational uncertainty: precipitation
indices over the Contiguous United States, J. Hydrometeorol.,
20, 1339–1357, 2019.
Giorgi, F. and Gutowski Jr, W. J.: Regional dynamical downscaling and the
CORDEX initiative, Annu. Rev. Env. Resour., 40, 467–490,
2015.
Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional
climate modeling revisited, J. Geophys. Res., 104, 6335–6352,
https://doi.org/10.1029/98JD02072, 1999.
Giorgi, F., Jones, C., and Asrar, G. R.: Addressing climate information needs
at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175–183,
2009.
Giot, O., Termonia, P., Degrauwe, D., De Troch, R., Caluwaerts, S., Smet, G., Berckmans, J., Deckmyn, A., De Cruz, L., De Meutter, P., Duerinckx, A., Gerard, L., Hamdi, R., Van den Bergh, J., Van Ginderachter, M., and Van Schaeybroeck, B.: Validation of the ALARO-0 model within the EURO-CORDEX framework, Geosci. Model Dev., 9, 1143–1152, https://doi.org/10.5194/gmd-9-1143-2016, 2016.
Gómez-Navarro, J., Montávez, J., Jerez, S., Jiménez-Guerrero,
P., and Zorita, E.: What is the role of the observational dataset in the
evaluation and scoring of climate models?, Geophys. Res. Lett., 39, L24701,
https://doi.org/10.1029/2012GL054206, 2012.
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hagemann, S.: An improved land surface parameter data set for global and
regional climate models, Max Planck Institute for Meteorology report series, Report No. 336, Hamburg, Germany, 2002.
Hamdi, R., Van de Vyver, H., and Termonia, P.: New cloud and microphysics
parameterisation for use in high-resolution dynamical downscaling:
application for summer extreme temperature over Belgium, Int. J. Climatol.,
32, 2051–2065, https://doi.org/10.1002/joc.2409, 2012.
Harris, I., Osborn, T. J., Jones, P. D., and Lister, D. H.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Scientific Data, 7, 1–18,
https://doi.org/10.1038/s41597-020-0453-3, 2020.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res.-Atmos., 114, D21101,
https://doi.org/10.1029/2009JD011799, 2009.
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and
station network density on the distributions and trends of climate variables
in gridded daily data, Clim. Dynam., 35, 841–858,
https://doi.org/10.1007/s00382-009-0698-1, 2010.
Hu, Z., Zhou, Q., Chen, X., Li, J., Li, Q., Chen, D., Liu, W., and Yin, G.:
Evaluation of three global gridded precipitation data sets in central Asia
based on rain gauge observations, Int. J. Climatol., 38,
3475–3493, https://doi.org/10.1002/joc.5510, 2018.
Iturbide, M., Gutiérrez, J. M., Alves, L. M., Bedia, J., Cerezo-Mota, R., Cimadevilla, E., Cofiño, A. S., Di Luca, A., Faria, S. H., Gorodetskaya, I. V., Hauser, M., Herrera, S., Hennessy, K., Hewitt, H. T., Jones, R. G., Krakovska, S., Manzanas, R., Martínez-Castro, D., Narisma, G. T., Nurhati, I. S., Pinto, I., Seneviratne, S. I., van den Hurk, B., and Vera, C. S.: An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-258, 2020.
Jacob, D.: A note to the simulation of the annual and inter-annual
variability of the water budget over the Baltic Sea drainage basin,
Meteorol. Atmos. Phys., 77, 61–73, https://doi.org/10.1007/s007030170017, 2001.
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., De
Castro, M., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones,
R., Kjellström, E. Lenderink, G., Rockel, F., Sánchez, E.,
Schär, C., Seneviratne, S. I., Somot, S., van Ulden, A., and van den
Hurk, B.: An inter-comparison of regional climate models for Europe: model
performance in present-day climate, Climatic Change, 81, 31–52,
https://doi.org/10.1007/s10584-006-9213-4, 2007.
Jacob, D., Elizalde, A., Haensler, A., Hagemann, S., Kumar, P., Podzun, R.,
Rechid, D., Remedio, A. R., Saeed, F., Sieck, K., Teichmann, C., and Wilhelm,
C.: Assessing the transferability of the regional climate model REMO to
different coordinated regional climate downscaling experiment (CORDEX)
regions, Atmosphere, 3, 181–199, https://doi.org/10.3390/atmos3010181, 2012.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research,
Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2,
2014.
Jones, R. G., Noguer, M., Hassell, D. C., Hudson, D., Wilson, S. S.,
Jenkins, G. J., and Mitchell, J. F. B.: Generating high resolution
climate change scenarios using PRECIS, Met Office Hadley Centre, Exeter, UK, 40, 2004.
Koenigk, T., Berg, P., and Döscher, R.: Arctic climate change in an
ensemble of regional CORDEX simulations, Polar Res., 34, 24603,
https://doi.org/10.3402/polar.v34.24603, 2015.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kotova, L., Aniskevich, S., Bobylev, L., Caluwaerts, S., De Cruz, L., De Troch, R., Gnatiuk, N., Gobin, A., Hamdi, R., Sakalli, A., Sirin, A., Termonia, P., Top, S., Van Schaeybroeck, B., and Viksna, A.: A new project AFTER investigates the
impacts of climate change in the Europe-Russia-Turkey region, Climate
Services, 12, 64–66, https://doi.org/10.1016/j.cliser.2018.11.003, 2018.
Kyselý, J. and Plavcová, E.: Biases in the diurnal temperature
range in Central Europe in an ensemble of regional climate models and their
possible causes, Clim. Dynam., 39, 1275–1286,
https://doi.org/10.1007/s00382-011-1200-4, 2012.
Laprise, R., Caya, D., Frigon, A., and Paquin, D.: Current and perturbed
climate as simulated by the second-generation Canadian Regional Climate
Model (CRCM-II) over northwestern North America, Clim. Dynam., 21,
405–421, https://doi.org/10.1007/s00382-003-0342-4, 2003.
Mašek, J.: Problem with screen level temperatures above snow in ISBA
scheme, report RC LACE, available at: https://www.rclace.eu/?page=12
(last access: 7 July 2020), 2017.
Matsuura, K. and Willmott, C. J.: Terrestrial Air Temperature and Precipitation: 1900–2017 Gridded Monthly Time Series (V 5.01), available at: http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsT2017.html (Last access: 3 March 2021), 2018.
New, M., Hulme, M., and Jones, P.: Representing twentieth-century space–time
climate variability. Part I: Development of a 1961–90 mean monthly
terrestrial climatology, J. Climate, 12, 829–856,
https://doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2,
1999.
Nikulin, G., Jones, C., Giorgi, F., Asrar, G., Büchner, M., Cerezo-Mota,
R., Christensen, O. B., Déqué, M., Fernandez, J., Hänsler, A.,
van Meijgaard, E., Samuelsson, P., Sylla, M. B., and Sushama, L.:
Precipitation climatology in an ensemble of CORDEX-Africa regional climate
simulations, J. Climate, 25, 6057–6078,
https://doi.org/10.1175/JCLI-D-11-00375.1, 2012.
Nikulin, G., Lennard, C., Dosio, A., Kjellström, E., Chen, Y.,
Hänsler, A., Kupiainen, M., Laprise, R., Mariotti, L., Fox Maule, C.,
van Meijgaard, E., Panitz, H.-J., Scinocca, J. F., and Somot, S.: The effects
of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble,
Environ. Res. Lett., 13, 065003, https://doi.org/10.1088/1748-9326/aab1b1, 2018.
Ozturk, T., Altinsoy, H., Türkeş, M., and Kurnaz, M. L.: Simulation of
temperature and precipitation climatology for the Central Asia CORDEX domain
using RegCM 4.0, Clim. Res., 52, 63–76, https://doi.org/10.3354/cr01082, 2012.
Ozturk, T., Turp, M. T., Türkeş, M., and Kurnaz, M. L.: Projected
changes in temperature and precipitation climatology of Central Asia CORDEX
Region 8 by using RegCM4. 3.5, Atmos. Res., 183, 296–307,
https://doi.org/10.1016/j.atmosres.2016.09.008, 2016.
Pfeifer, S.: Modeling cold cloud processes with the regional climate model
REMO, PhD thesis, Reports on Earth System Science, Max Planck Institute for
Meteorology, Hamburg, Germany, 2006.
Pietikäinen, J.-P., O'Donnell, D., Teichmann, C., Karstens, U., Pfeifer, S., Kazil, J., Podzun, R., Fiedler, S., Kokkola, H., Birmili, W., O'Dowd, C., Baltensperger, U., Weingartner, E., Gehrig, R., Spindler, G., Kulmala, M., Feichter, J., Jacob, D., and Laaksonen, A.: The regional aerosol-climate model REMO-HAM, Geosci. Model Dev., 5, 1323–1339, https://doi.org/10.5194/gmd-5-1323-2012, 2012.
Pietikäinen, J.-P., Markkanen, T., Sieck, K., Jacob, D., Korhonen, J., Räisänen, P., Gao, Y., Ahola, J., Korhonen, H., Laaksonen, A., and Kaurola, J.: The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes, Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, 2018.
Remedio, A. R., Teichmann, C., Buntemeyer, L., Sieck, K., Weber, T., Rechid,
D., Hoffmann, P., Nam, C., Kotova, L., and Jacob, D.: Evaluation of New
CORDEX Simulations Using an Updated Köppen–Trewartha Climate
Classification, Atmosphere, 10, 726, https://doi.org/10.3390/atmos10110726, 2019.
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M.,
Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.:
The Atmospheric General Circulation Model Echam-4: Model Description and
Simulation of the Present Day Climate, Report No. 218, Max-Planck-Institute
for Meteorology, Hamburg, Germany, 1996.
Russo, E., Kirchner, I., Pfahl, S., Schaap, M., and Cubasch, U.: Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain, Geosci. Model Dev., 12, 5229–5249, https://doi.org/10.5194/gmd-12-5229-2019, 2019.
Russo, E., Sørland, S. L., Kirchner, I., Schaap, M., Raible, C. C., and Cubasch, U.: Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain, Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, 2020.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: MED-CORDEX initiative for Mediterranean climate studies,
B. Am. Meteorol. Soc., 97, 1187–1208,
https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Schneider, U., Becker, A. Finger, P. Meyer-Christoffer, A., and Ziese, M.:
GPCC Full Data Monthly Product Version 2018 at 0.25∘ : Monthly
Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historical Data, Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst, https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_025, 2018.
Semmler, T., Jacob, D., Schlünzen, K. H., and Podzun, R.:
Influence of sea ice treatment in a regional climate model on boundary layer
values in the Fram Strait region, Mon. Weather Rev., 132, 985–999,
https://doi.org/10.1175/1520-0493(2004)132<0985:IOSITI>2.0.CO;2,
2004.
Solman, S. A., Sanchez, E., Samuelsson, P., da Rocha, R. P., Li, L.,
Marengo, J., Pessacg, N. L., Remedio, A. R. C., Chou, S. C., Berbery, H., Le
Treut, H., de Castro, M., and Jacob, D.: Evaluation of an ensemble of
regional climate model simulations over South America driven by the
ERA-Interim reanalysis: model performance and uncertainties, Clim. Dynam., 41, 1139–1157, https://doi.org/10.1007/s00382-013-1667-2, 2013.
Souverijns, N., Gossart, A., Demuzere, M., Lenaerts, J. T. M., Medley, B.,
Gorodetskaya, I. V., Vanden Broucke, S., and van Lipzig, N. P. M.: A New
Regional Climate Model for POLAR-CORDEX: Evaluation of a 30-Year Hindcast
with COSMO-CLM2 Over Antarctica, J. Geophys. Res.-Atmos., 124, 1405–1427, https://doi.org/10.1029/2018JD028862, 2019.
Sun, Q., Miao, C., Duan, Q., Ashouri, H.,Sorooshian, S., and Hsu, K.-L.: A
review of global precipitation data sets: Data sources, estimation, and
inter-comparisons, Rev. Geophys., 56, 79–107,
https://doi.org/10.1002/2017RG000574, 2018.
Tangang, F., Supari, S., Chung, J. X., Cruz, F., Salimun, E., Ngai, S. T.,
Juneng, L., Santisirisomboon, J., Santisirisomboon, J., Ngo-Duc, T.,
Phan-Van, T., Narisma, G., Singhruck, P., Gunawan, D., Aldrian, E.,
Sopaheluwakan, A., Nikulin, G., Yang, H., Remedio, A. R. C., Sein, D., and
Hein-Griggs, D.: Future changes in annual precipitation extremes over
Southeast Asia under global warming of 2 C, APN Science Bulletin, 8, 3–8,
https://doi.org/10.30852/sb.2018.436, 2018.
Tangang, F., Santisirisomboon, J., Juneng, L., Salimun, E., Chung, J., Cruz,
F., Ngai, S. T., Ngo-Duc, T., Singhruck, P., Narisma, G., Santisirisomboon,
J., Wongsaree, W., Promjirapawat, K., Sukamongkol, Y., Srisawadwong, R.,
Setsirichok, D., Phan-Van, T., Gunawan, D., Aldrian, E., Nikulin, G., and
Yang, H.: Projected future changes in mean precipitation over Thailand based
on multi-model regional climate simulations of CORDEX Southeast Asia, Int.
J. Climatol., 39, 5413–5436, https://doi.org/10.1002/joc.6163, 2019.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, 2018a.
Termonia, P., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Caluwaerts,
S., Giot, O., Hamdi, R., Vannitsem, S., Duchêne, F., Willems, P.,
Tabari, H., Van Uytven, E., Hosseinzadehtalaei, P., Van Lipzig, N., Wouters,
H., Vanden Broucke, S., van Ypersele, J.-P., Marbaix, P.,
Villanueva-Birriel, C., Fettweis, X., Wyard, C., Scholzen, C., Doutreloup,
S., De Ridder, K., Gobin, G., Lauwaet, D., Stavrakou, T., Bauwens, M.,
Müller, J.-F., Luyten, P., Ponsar, S., Van den Eynde, D., and Pottiaux,
E.: The CORDEX.be initiative as a foundation for climate services in
Belgium, Climate Services, 11, 49–61, https://doi.org/10.1016/j.cliser.2018.05.001,
2018b.
Tiedtke, M.: A comprehensive mass flux scheme for cumulus
parameterization in large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989.
Top, S., Kotova, L., De Cruz, L., Aniskevich, S., Bobylev, L., De Troch, R.,
Gnatiuk, N., Gobin, A., Hamdi, R., Kriegsmann, A., Remedio, A. R., Sakalli,
A., Van De Vyver, H., Van Schaeybroeck, B., Zandersons, V., De Maeyer, P.,
Termonia, P., and Caluwaerts, S.: R code validation analysis ALARO-0 and
REMO2015 climate data Central Asia, Zenodo,
https://doi.org/10.5281/zenodo.3659717, 2020.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain – Precipitation over
the Alps, J. Geophys. Res.-Atmos., 120, 3957–3972,
https://doi.org/10.1002/2014JD022781, 2015.
Tustison, B., Harris, D., and Foufoula-Georgiou, E.: Scale issues in
verification of precipitation forecasts, J. Geophys. Res.-Atmos., 106, 11775–11784, https://doi.org/10.1029/2001JD900066, 2001.
Tuyet, N. T., Thanh, N. D., and van Tan, P.: Performance of
SEACLID/CORDEX-SEA multi-model experiments in simulating temperature and
rainfall in Vietnam, Vietnam Journal of Earth Sciences, 41, 374–387,
https://doi.org/10.15625/0866-7187/41/4/14259, 2019.
Wang, Y., Feng, J., Luo, M., Wang, J., and Yuan, Q.: Uncertainties in
simulating Central Asia: sensitivity to physical parameterizations using
WRF, Int. J. Climatol., 40, 5813–5828, https://doi.org/10.1002/joc.6567, 2020.
Whan, K. and Zwiers, F.: The impact of ENSO and the NAO on extreme winter
precipitation in North America in observations and regional climate models,
Clim. Dynam., 48, 1401–1411, https://doi.org/10.1007/s00382-016-3148-x, 2017.
Wilhelm, C., Rechid, D., and Jacob, D.: Interactive coupling of regional atmosphere with biosphere in the new generation regional climate system model REMO-iMOVE, Geosci. Model Dev., 7, 1093–1114, https://doi.org/10.5194/gmd-7-1093-2014, 2014.
Willmott, C. J. and Matsuura, K.: Smart interpolation of annually averaged
air temperature in the United States, J. Appl. Meteorol., 34,
2577–2586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2, 1995.
Zhu, X., Zhang, M., Wang, S., Qiang, F., Zeng, T., Ren, Z., and Dong, L.:
Comparison of monthly precipitation derived from high-resolution gridded
datasets in arid Xinjian, central Asia, Quatern. Int., 358,
160–170, https://doi.org/10.1016/j.quaint.2014.12.027, 2015.
Zhu, X., Wei, Z., Dong, W., Ji, Z., Wen, X., Zheng, Z., Yan, D., and Chen,
D.: Dynamical downscaling simulation and projection for mean and extreme
temperature and precipitation over central Asia, Clim. Dynam., 54,
3279–3306, https://doi.org/10.1007/s00382-020-05170-0, 2020.
Zou, L., Zhou, T., and Peng, D.: Dynamical downscaling of historical climate
over CORDEX East Asia domain: A comparison of regional ocean-atmosphere
coupled model to stand-alone RCM simulations, J. Geophys. Res.-Atmos., 121, 1442–1458, https://doi.org/10.1002/2015JD023912, 2016.
Short summary
Detailed climate data are needed to assess the impact of climate change on human and natural systems. The performance of two high-resolution regional climate models, ALARO-0 and REMO2015, was investigated over central Asia, a vulnerable region where detailed climate information is scarce. In certain subregions the produced climate data are suitable for impact studies, but bias adjustment is required for subregions where significant biases have been identified.
Detailed climate data are needed to assess the impact of climate change on human and natural...
Special issue