Articles | Volume 13, issue 3
Geosci. Model Dev., 13, 859–872, 2020
https://doi.org/10.5194/gmd-13-859-2020
Geosci. Model Dev., 13, 859–872, 2020
https://doi.org/10.5194/gmd-13-859-2020

Model evaluation paper 04 Mar 2020

Model evaluation paper | 04 Mar 2020

Uncertainties in climate change projections covered by the ISIMIP and CORDEX model subsets from CMIP5

Rui Ito et al.

Related authors

Impact of bioenergy crops expansion on climate-carbon cycle feedbacks in overshoot scenarios
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-72,https://doi.org/10.5194/esd-2021-72, 2021
Preprint under review for ESD
Short summary
Summertime circumglobal Rossby waves in climate models: Small biases in upper-level circulation create substantial biases in surface imprint
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-48,https://doi.org/10.5194/wcd-2021-48, 2021
Revised manuscript under review for WCD
Short summary
The ExtremeX global climate model experiment: Investigating thermodynamic and dynamic processes contributing to weather and climate extremes
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-58,https://doi.org/10.5194/esd-2021-58, 2021
Preprint under review for ESD
Short summary
Effective radiative forcing and adjustments in CMIP6 models
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020,https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO2 and PM2.5 in equatorial Asia when 2015-like El Niño events occur
Hideo Shiogama, Ryuichi Hirata, Tomoko Hasegawa, Shinichiro Fujimori, Noriko N. Ishizaki, Satoru Chatani, Masahiro Watanabe, Daniel Mitchell, and Y. T. Eunice Lo
Earth Syst. Dynam., 11, 435–445, https://doi.org/10.5194/esd-11-435-2020,https://doi.org/10.5194/esd-11-435-2020, 2020
Short summary

Related subject area

Atmospheric sciences
WOMBAT v1.0: a fully Bayesian global flux-inversion framework
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022,https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Analysis of the MODIS above-cloud aerosol retrieval algorithm using MCARS
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022,https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
How well can inverse analyses of high-resolution satellite data resolve heterogeneous methane fluxes? Observing system simulation experiments with the GEOS-Chem adjoint model (v35)
Xueying Yu, Dylan B. Millet, and Daven K. Henze
Geosci. Model Dev., 14, 7775–7793, https://doi.org/10.5194/gmd-14-7775-2021,https://doi.org/10.5194/gmd-14-7775-2021, 2021
Short summary
Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021,https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM)
Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang
Geosci. Model Dev., 14, 7573–7604, https://doi.org/10.5194/gmd-14-7573-2021,https://doi.org/10.5194/gmd-14-7573-2021, 2021
Short summary

Cited articles

Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017. 
Beck, H. E., Wood, E. F. Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019. 
Bracegirdle, T. J. and Stephenson, D. B.: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming, J. Climate, 26, 669–678, https://doi.org/10.1175/JCLI-D-12-00537.1, 2013. 
Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N, Phillips, T., and Wilcox, L. J.: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence, J. Geophys. Res.-Atmos., 118, 547–562, https://doi.org/10.1002/jgrd.50153, 2013. 
Cannon, A. J.: Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices, J. Climate, 28, 1260–1267, https://doi.org/10.1175/JCLI-D-14-00636.1, 2015. 
Download
Short summary
The model performance and the coverage of the uncertainty in the climate changes were investigated for the ensembles of CMIP5 models used in ISIMIP2b and CORDEX programs. We found both programs selected models that acceptably reproduced the historical climate. Also, the global common ensemble (ISIMIP2b) has difficulty in capturing the uncertainty in two variables at the regional scale, whereas the region-specific ensemble (CORDEX) overcomes the difficulty by applying a properly large ensemble.