Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-859-2020
https://doi.org/10.5194/gmd-13-859-2020
Model evaluation paper
 | 
04 Mar 2020
Model evaluation paper |  | 04 Mar 2020

Uncertainties in climate change projections covered by the ISIMIP and CORDEX model subsets from CMIP5

Rui Ito, Hideo Shiogama, Tosiyuki Nakaegawa, and Izuru Takayabu

Related authors

Carbon cycle and climate feedback under CO2 and non-CO2 overshoot pathways
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
EGUsphere, https://doi.org/10.5194/egusphere-2024-1553,https://doi.org/10.5194/egusphere-2024-1553, 2024
Short summary
Uncertainty in simulated streamflow using runoff driven by the outputs of a high-resolution regional climate model
Aulia Febianda Anwar Tinumbang, Kazuaki Yorozu, Yasuto Tachikawa, Yutaka Ichikawa, Hidetaka Sasaki, and Tosiyuki Nakaegawa
Proc. IAHS, 386, 75–79, https://doi.org/10.5194/piahs-386-75-2024,https://doi.org/10.5194/piahs-386-75-2024, 2024
Short summary
MIROC6 Large Ensemble (MIROC6-LE): experimental design and initial analyses
Hideo Shiogama, Hiroaki Tatebe, Michiya Hayashi, Manabu Abe, Miki Arai, Hiroshi Koyama, Yukiko Imada, Yu Kosaka, Tomoo Ogura, and Masahiro Watanabe
Earth Syst. Dynam., 14, 1107–1124, https://doi.org/10.5194/esd-14-1107-2023,https://doi.org/10.5194/esd-14-1107-2023, 2023
Short summary
The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022,https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Summertime Rossby waves in climate models: substantial biases in surface imprint associated with small biases in upper-level circulation
Fei Luo, Frank Selten, Kathrin Wehrli, Kai Kornhuber, Philippe Le Sager, Wilhelm May, Thomas Reerink, Sonia I. Seneviratne, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, and Dim Coumou
Weather Clim. Dynam., 3, 905–935, https://doi.org/10.5194/wcd-3-905-2022,https://doi.org/10.5194/wcd-3-905-2022, 2022
Short summary

Related subject area

Atmospheric sciences
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024,https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024,https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary

Cited articles

Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., and Imecs, Z.: Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe, Clim. Dynam., 49, 2665–2683, https://doi.org/10.1007/s00382-016-3471-2, 2017. 
Beck, H. E., Wood, E. F. Pan, M., Fisher, C. K., Miralles, D. G., van Dijk, A. I., McVicar, T. R., and Adler, R. F.: MSWEP V2 global 3-hourly 0.1 precipitation: methodology and quantitative assessment, B. Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1, 2019. 
Bracegirdle, T. J. and Stephenson, D. B.: On the robustness of emergent constraints used in multimodel climate change projections of Arctic warming, J. Climate, 26, 669–678, https://doi.org/10.1175/JCLI-D-12-00537.1, 2013. 
Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N, Phillips, T., and Wilcox, L. J.: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence, J. Geophys. Res.-Atmos., 118, 547–562, https://doi.org/10.1002/jgrd.50153, 2013. 
Cannon, A. J.: Selecting GCM scenarios that span the range of changes in a multimodel ensemble: application to CMIP5 climate extremes indices, J. Climate, 28, 1260–1267, https://doi.org/10.1175/JCLI-D-14-00636.1, 2015. 
Download
Short summary
The model performance and the coverage of the uncertainty in the climate changes were investigated for the ensembles of CMIP5 models used in ISIMIP2b and CORDEX programs. We found both programs selected models that acceptably reproduced the historical climate. Also, the global common ensemble (ISIMIP2b) has difficulty in capturing the uncertainty in two variables at the regional scale, whereas the region-specific ensemble (CORDEX) overcomes the difficulty by applying a properly large ensemble.