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Abstract. Two international projects, ISIMIP (Inter-Sectoral
Impact Model Intercomparison Project) and CORDEX (Co-
ordinated Regional Climate Downscaling Experiment), have
been established to assess the impacts of global climate
change and improve our understanding of regional climate
respectively. Model selection from the GCMs (general cir-
culation models) within CMIP5 (fifth phase of the Cou-
pled Model Intercomparison Project) was conducted using
the different approaches for each project: one is a globally
consistent model subset used in ISIMIP and the other is a
region-specific model subset for each region of interest used
in CORDEX. We evaluated the ability to reproduce the re-
gional climatological state by comparing the subsets with
the full set of CMIP5 multimodel ensemble. We also inves-
tigated how well the subsets captured the uncertainty in the
climate change projected by the full set, to increase credibil-
ity for the scientific outcomes from each project. The spreads
of the biases and Taylor’s skill scores from the ISIMIP and
CORDEX subsets are smaller than that from the full set for
the regional means of surface air temperature and precipita-
tion. However, the ISIMIP and CORDEX subsets show the
larger spread than high-performance models from the full
set, despite using a small number of models in ISIMIP and
CORDEX. It was shown that better subsets exist that would
have smaller biases and/or higher scores than the current sub-
set. The ISIMIP subset captures the uncertainty range of the
regional mean of temperature change projections by the full
set better than the CORDEX subsets in 10 of 14 terrestrial re-
gions worldwide. Compared with 10 000 randomly selected
subset samples, the CORDEX subset shows low coverage
of the uncertainty for the temperature change projections in

some regions, and the ISIMIP subset shows high coverage in
all regions. On the other hand, for the precipitation change
projections, the CORDEX subsets show lower coverage in
half of the regions than the randomly selected subsets, but
tend to cover the uncertainty wider than the ISIMIP subset.
In the regions where CORDEX used nine models or more,
good coverage (> 50 %) is evident for the projections of
both temperature and precipitation. The globally consistent
model subset used in ISIMIP could have difficulty in captur-
ing uncertainties in the regional precipitation change projec-
tions, whereas it widely covers uncertainties in the temper-
ature change projections. The region-specific model subset,
like CORDEX, can cover the uncertainties in both tempera-
ture and precipitation changes well compared to the global
common subset, but a large number of models is needed. By
changing the number of models from the current ensemble
members to at least nine members, high coverage for both
uncertainties can be also obtained in the other regions, and
this information would help model selection in the next gen-
erations.

1 Introduction

A global dataset of climate change projections has been
generated by the Coupled Model Intercomparison Project
(CMIP). Using this dataset, numerous climatological studies
have been in progress to advance our understanding of the in-
creasingly severe problems associated with climate change.
Regarding regional climate change, dynamical and statisti-
cal downscaling experiments have been conducted to cre-
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ate high-resolution climate products derived from the global
CMIP dataset via a regional climate model. In addition, im-
pact studies and examinations of adaptation planning have
progressed in close parallel with the climate studies, using
those climate products at both global and regional scales.

When we conduct an impact assessment of climate change
and consider possible adaptation or mitigation measures, the
information regarding the largest potential change in the cli-
mate is required to consider the most severe states of climate
change, in addition to information regarding how the climate
changes on average. Although the CMIP multiple general cir-
culation model (GCM) ensemble is the ensemble of oppor-
tunity, and does not necessarily represent the full uncertainty
in climate projections (Knutti, 2010), it is useful for investi-
gating uncertainty in future projections. By using the climate
projections from the CMIP ensemble, it is at least possible to
examine the maximum–minimum climate change scenarios
within the ensemble.

It is desirable to use GCMs as much as possible to address
the most severe problems but, due to limitations in computing
resources, relatively small subsets of the models are gener-
ally used in regional downscaling studies and impact assess-
ments. The present subset tends to be selected under the con-
ditions that the simulation accuracy is better for the climato-
logical state of interest or that the data required for the study
is readily available. Methods for specifying the best subset,
based on the accuracy of the historical climate simulations
and/or capturing the possible maximum range in the varia-
tion of projections among the models (hereafter uncertainty),
have been proposed (Reichler and Kim, 2008; Cannon, 2015;
Mendlik and Gobiet, 2016). The optimum method, however,
remains to be determined because the interest depends on
the requirements of the studies, for instance, how the model
performance is considered, which climatological or extreme
variables are used and which region is interested. When the
sample size of a subset is limited, appropriate strategies are
necessary to select subsets of GCMs that have smaller biases
in the historical climate simulations and cover the widest pos-
sible uncertainty range of future projections. Without such a
strategy, we might erroneously interpret the information re-
garding climate change and impact assessment obtained from
the subsets.

The Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP; https://www.isimip.org, last access: 23 January
2019) was designed as a framework to assess the impacts
of climate change in different sectors and at different scales
(Schellnhuber et al., 2014). This project used consistent cli-
mate and socio-economic input data to multiple impact mod-
els. Five GCMs were selected in the fast track of ISIMIP:
HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-
ESM-CHEM and NorESM1-M. The main selection condi-
tion was that the climate data generated by the models was
available at the relevant stage of the project, with the attempt
of broadly capturing the global change in surface air temper-
ature (hereafter referred to as “temperature” for simplicity)

and precipitation (Warszawski et al., 2014; ISIMIP protocol,
2018). After that, the five GCMs were changed to four GCMs
in the next round simulations (ISIMIP2b; Frieler et al., 2017)
because of a lack of wind data for NorESM1-M and a higher
horizontal resolution and the better representation of vari-
ous fields (e.g. El Niño–Southern Oscillation and the mon-
soon) in MIROC5 than in MIROC-ESM-CHEM. A feature
of the uncertainty range identified from the five GCMs in
the fast track was investigated in detail by McSweeney and
Jones (2016; hereafter MJ2016), who indicated that the sub-
set covers more of the uncertainty in the temperature and pre-
cipitation changes projected by 36 CMIP5 GCMs than other
randomly sampled five-GCM subsets. They also illuminated
that region-specific subsets generally cover more the uncer-
tainty than globally consistent subsets in 26 global regions.

One subset of GCMs was globally used in ISIMIP, but
in the coordinated regional climate downscaling experi-
ment (CORDEX; http://www.cordex.org, last access: 20 May
2019) project, a GCM subset was selected for each defined
region to generate a regional climate dataset for climate stud-
ies and impact assessments (Giorgi et al., 2009; Giorgi and
Gutowski, 2015). Fourteen regions of interest were defined
and subsets of between 3 and 15 GCMs were used for each
region. The conditions required here were that input data to
a regional climate model (RCM) were available and easily
acquired, and they also tended to select GCMs that were de-
veloped at the institute located in the region of interest. The
advantage of CORDEX is that it enables a regional climate
assessment using a dataset from “optimal” multi-GCMs and
multi-RCMs for the region of interest. However, Gutowski
et al. (2016) pointed out that one of the problems in the
first phase of CORDEX is that the different models, espe-
cially the number of models, among the regions make it dif-
ficult to provide a consistent climate scenario among their
regions. Therefore, in the next generation of CORDEX to be
included in the sixth phase of CMIP, there is a the intention
to downscale projections from a core set of GCMs as a min-
imum model set that is common across the regions, similar
to the approach in ISIMIP (CORDEX CORE; Gutowski et
al., 2016).

A globally consistent GCM subset will facilitate discus-
sion of climate change and its impacts beyond regional divi-
sions. However, it is unclear whether the globally consistent
subset adequately represents the phenomena that character-
ize the climate in the region of interest. In particular, the spa-
tial pattern of a projected change in precipitation is strongly
dependent on the GCMs selected (Giorgi and Gutowski,
2015; McSweeney et al., 2015). Therefore, the possibility of
insufficiently capturing the regional climate change and its
valid uncertainty could be increased, as noted by MJ2016.
In contrast, a region-specific GCM subset can include GCMs
which more precisely reproduce the target regional climate
(McSweeney et al., 2015). However, it does not enable dis-
cussions about the difference among regions and the inter-
action of impacts across the regions. Although there are ad-
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vantages to both approaches in selecting a subset, it is neces-
sary that we understand the characteristics of the current sub-
sets selected using the approaches of the ongoing projects if
we are to improve the process in the next generations of the
projects.

In this study, we assessed the current subsets of the CMIP5
multi-GCM ensemble being used in ISIMIP and CORDEX
by clarifying the climatological characteristics expressed by
each subset from two points of view: how high the ability to
reproduce the historical climate is (i.e. model performance)
and to what extent the uncertainty in the projections obtained
from the subsets covers the uncertainty from the full set. We
examined temperature and precipitation climatologies using
a simple method, but the clarification of characteristics is im-
portant for understanding the basic nature of dataset and in-
creasing the credibility of the scientific outcomes from each
project. In addition, with reference to MJ2016, we also ex-
plored whether the subset used was able to capture the un-
certainty from the full set more widely than the other model
subsets when using the same sample size.

Regarding the ISIMIP subset, there are two updated points
from MJ2016. One is the investigations of the ability to
represent historical climate for the ISIMIP subset, which
MJ2016 did not mention; another is that our target GCMs
are four GCMs selected in ISIMIP2b (unless specified oth-
erwise, this hereafter refers to as ISIMIP). Regarding the
CORDEX subset, previous studies have assessed the GCM
simulations in some regions, but are limited (e.g. Haensler
et al., 2013 for Africa; Bartók et al., 2017 for Europe; Kar-
malkar, 2018 for North America). Therefore, even a simple
assessment of GCM simulations is needed to understand their
downscaled simulations.

Uniform assessment across regions permits discussion of
the regional characteristics and the possibility of heteroge-
neous scenario among regions as mentioned above. Further-
more, by using both subsets from ISIMIP and CORDEX,
we can explore the difference between the original subset in
CORDEX and the subset assuming CORDEX CORE (global
common subset), which could be helpful information for the
model selection in CORDEX CORE.

2 Data and methods

2.1 Dataset

We analysed the historical runs of 50 atmosphere–ocean
GCMs (AOGCMs) and the Representative Concentration
Pathway (RCP) 8.5 scenario runs of 42 AOGCMs partici-
pating in CMIP5 (Taylor et al., 2012). A single ensemble
member, r1i1p1, was selected for each model, except for
CESM1-WACCM (r2i1p1), CSIRO-Mk3L-1-2 (r1i2p1) and
EC-EARTH (r8i1p1). This is because the member, r1i1p1, of
CESM1-WACCM and CSIRO-Mk3L-1-2 was not available
and the temperature change from r1i1p1 of EC-EARTH was

over 2 standard deviations of the averaged changes from the
42 models in more than 60 % of our target regions. In the
following, the full set of the multi-GCM ensemble indicates
the 50 historical runs when we assessed the ability to repro-
duce the historical climate (CMIPFull_Hist), while the full set
indicates the 42 future projections which are estimated from
both historical and rcp85 runs when we discussed the future
projections (CMIPFull_Future).

We compared the simulations of the subsets of GCMs
used in ISIMIP and CORDEX with the full ensemble.
ISIMIP used four GCMs for their various impact as-
sessments: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-
LR and MIROC5 (Frieler et al., 2017). On the other hand,
CORDEX used the subset in which the combination of
GCMs were altered for each defined region. The number of
GCMs used in each of the defined regions is listed in Table 1,
and each GCM is listed in Table S1 in the Supplement. The
regional classification used to investigate the regional perfor-
mance and the projection was based on the classification in
CORDEX shown in Fig. S1 in the Supplement. In this study,
we focused on global land area, considering the importance
for both programs because of the relevance to human activi-
ties.

The analysis periods were the years 1986–2005 (but 1985–
2004 for HadGEM2-CC and HadGEM2-ES) for the his-
torical runs and the years 2081–2100 (but 2080–2099 for
MRI-AGCM60 and CESM1-WACCM) for the RCP8.5 runs.
Monthly mean temperature and precipitation data over these
periods were interpolated onto a 2.5× 2.5◦ grid for each
model. The grid cells with the temporal mean precipitation
of< 0.1 mm d−1 were defined as “too dry” grid cells and the
precipitation values for these cells were not considered. This
is because we expressed the precipitation change in a ratio
and thus the ratio tends to be large at too dry cells even when
the change is quantitatively extreme small. It is difficult to
explain the meanings of such a large ratio physically. By ap-
plying the threshold, grid cells indicating an extremely large
ratio, for instance, 100 %, were excluded. The total number
of the excluded grid cells is approximately 5 % of all target
cells as an average over the used members.

To validate the model representations, we compared the
simulated estimates with the observed datasets. With respect
to precipitation, Sun et al. (2018) highlighted differences
among the observational datasets. Consequently, to avoid a
misreading of the model performance due to such discrep-
ancies, we used seven different precipitation products that
covered the global land area over the period of interest. The
observation products were the Climatic Research Unit Time-
series (CRU) v.4.01 (Harris et al., 2014) for temperature and
precipitation, and the following for precipitation only: the
global unified gauge-based analysis by NOAA Climate Pre-
diction Center (CPC) v.1.0 (Xie et al., 2010), the Global
Precipitation Climatology Centre (GPCC) full data reanal-
ysis v.7.0 (Schneider et al., 2016), NOAA’s Precipitation re-
construction over Land (PRECL) v.1.0 (Chen et al., 2002),
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Table 1. Number of CMIP5 models used in the CORDEX regions.

Region Region

Europe 13 Southeast Asia (SEA) 12
Mediterranean (MED) 5 Australasia 13
Middle East and North Africa (MENA) 5 North America 6
Africa 15 Central America 10
Central Asia 3 South America 9
South Asia 15 Arctic 5
East Asia 7 Antarctica 9

the CPC Merged Analysis of Precipitation (CMAP; Xie and
Arkin, 1997), the Global Precipitation Climatology Project
(GPCP) v.2.2 (Huffman et al., 2015) and the Multi-Source
Weighted-Ensemble Precipitation (MSWEP) v2.1 (Beck et
al., 2019). The difference among the observations was cal-
culated as the deviation from GPCC as the reference. To
quantify the ability to reproduce spatial patterns of the ob-
servations, we used the skill score proposed by Taylor (2001;
hereafter referred to as skill score) as follows:

S = 4(1+R)/
(
σ + σ−1

)2
(1+R0), (1)

where R is the spatial correlation coefficient between refer-
ence observation and simulation, σ is the standard deviation
of simulation normalized by the reference spatial pattern and
R0 is the maximum correlation attainable. The value of R0
was assumed to be 1 here. In addition to the skill score, we
also evaluated the magnitude of the model bias. Using both
metrics enables the assessment of both the spatial pattern and
the bias magnitude.

2.2 Coverage of uncertainty and random selection

Coverage was estimated from a comparison between the full
uncertainty range of the projections made by two model sets,
which was defined by McSweeney et al. (2015) as a frac-
tional range coverage, FRC. In this study, we computed the
regionally averaged projections for each model, and then the
FRCs were estimated using the regional averages. The FRC
from the regional averages (FRA) was defined as the fraction
of the maximum–minimum range of the uncertainty in the re-
gional averaged projections from a subset of CMIPFull_Future
(RSub) to the range from CMIPFull_Future (RFull), as follows:

FRA=
RSub

RFull
. (2)

The range of RSub was computed from the ISIMIP and
CORDEX subsets and also from arbitrary subset samples
we generated. From the comparison with the arbitrary sam-
ples, we can investigate how well the ISIMIP and CORDEX
subsets captured the uncertainty range of projections. With
reference to MJ2016, our arbitrary samples were gener-
ated by randomly selected n models without repetition from

CMIPFull_Future 10 000 times, where n is the sample size
of subsets in ISIMIP (n= 4) or CORDEX (n depends on
the regions; see Table 1). Then, the variance of the FRA
was estimated from the 10 000 random subset samples of
CMIPFull_Future and compared with the FRA from the ISIMIP
and CORDEX subsets.

3 Results

3.1 Performance in reproducing the historical climate

Using model biases and skill scores, we evaluated the his-
torical climate reproduced by the GCM subsets used in
ISIMIP and CORDEX. The GCM subsets used in ISIMIP
and CORDEX are hereafter referred to as the ISIMIP sub-
sets and CORDEX subsets respectively. For the evaluations,
we also used two high-performance subsets: one is com-
posed of models with lower bias than the 50th percentile
(median) of the CMIPFull_Hist biases; the other is composed
of models with a higher skill score than the median of the
CMIPFull_Hist scores (referred to as CMIPlowB and CMIPhighS
respectively). The models included in the high-performance
subset are shown in Fig. S2. B(v(E)) and S(v(E)) indicate
the regional mean biases and skill scores for variable v and
ensemble subset E respectively.

Figure 1 shows the model bias associated with the an-
nual mean precipitation in the 14 CORDEX regions over
a 20-year period. Compared with the maximum values of
B(P (CMIPFull_Hist)) for the precipitation (v = P ), the max-
imum values of B(P (ISIMIP)) and B(P (CORDEX)) are
clearly small, especially in the Mediterranean (MED), South-
east Asia (SEA), and the polar regions. The spreads of
B(P (ISIMIP)) and B(P (CORDEX)) in MED are within the
spread of the discrepancy among the observations, which
suggests that the model selection works effectively to se-
lect models with high ability to reproduce the observed
regional mean precipitation quantitatively. However, com-
pared with the high-performance subsets, some models in
the ISIMIP and CORDEX subsets have a bias exceeding the
maximum values of B(P (CMIPlowB)), or B(P (CMIPhighS))

in some regions, despite the small number of models used
in ISIMIP and CORDEX. Therefore, our results indicate that
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less-biased models could be selected than those currently be-
ing used. The difference in the spread between the ISIMIP
and CORDEX subsets has different characteristics region
to region, and this is partially related to the overlapping of
model members used across ISIMIP and CORDEX. For ex-
ample, in five regions of Central and South America, Europe,
Africa and South Asia, the CORDEX subsets include more
than three of four ISIMIP models and the ensemble is large
(Table S1). As a result, the variance of biases estimated from
the CORDEX subset covers that from the ISIMIP subset. Es-
pecially in Europe, the difference of the variance between the
CORDEX and ISIMIP subsets is large, and it is found that the
models used in the CORDEX subset but not included in the
ISIMIP subset make the variance increase. Focusing on the
regions where the CORDEX subsets include only two mod-
els in the ISIMIP subset, the variance from the CORDEX
subset tends to be larger than that from the ISIMIP subset, es-
pecially in the regions with large ensemble of the CORDEX
subsets, like North America, SEA and Australasia. By con-
trast, the variance from the CORDEX subsets is relatively
small in the regions with a small ensemble of the CORDEX
subsets, like MENA and Central Asia. In East Asia, the vari-
ance is small in CORDEX despite using seven models in con-
trast to four models in ISIMIP, indicating that the biases from
the seven models are almost the same.

With respect to the spatial pattern of the annual mean
precipitation, ISIMIP and CORDEX incorporate some mod-
els with a worse score than the minimum value of
S(P (CMIPhighS)) (Fig. S3). That is to say, ISIMIP and
CORDEX subsets include members showing a spatial pattern
of low similarity to that of observations. S(P (ISIMIP)) and
S(P (CORDEX)) fall within the observational spread only in
the Arctic.

We also assessed model performance for the annual mean
temperature (v = T ). The maximum values ofB(T (ISIMIP))
and B(T (CORDEX)) are smaller or equal to the maximum
value of B(T (CMIPhighS)) (except for the CORDEX sub-
sets in East Asia and North America), but are larger than the
maximum value of B(T (CMIPlowB)) (Fig. S4). The spread
of B(T (ISIMIP)) is covered by that of B(T (CORDEX)) in
the same four regions as the bias in the precipitation except
for Europe because of the overlapping of model members
used. The spreads of B(T (ISIMIP)) and B(T (CORDEX)),
however, resemble each other compared with the precipi-
tation bias in most regions, indicating that CORDEX used
models with a quantitatively similar performance to ISIMIP,
despite using more models than ISIMIP except for Central
Asia. Both subsets included models with a worse score than
the minimum value of S(T (CMIPhighS)) in 85 % of the re-
gions (Fig. S5). Therefore, relative to CMIPhighS, the sub-
sets can quantitatively represent the observed temperature as
a regional average well, but the spatial pattern represented by
some members in the subsets does not resemble that of the
observations.

Even though the model selections conducted in ISIMIP
and CORDEX narrow the spreads of model bias and the
score from CMIPFull_Hist, the largest bias and the worst score
from the ISIMIP and CORDEX subsets are distributed be-
yond the biases and the scores from high-performance mod-
els in the full set.

3.2 Uncertainty range of the projected changes in
annual mean temperature and precipitation

Future projections obtained from the ISIMIP and CORDEX
subsets were compared with those from the full set, and also
from high-performance models, as with the evaluations in
Sect. 3.1. Because the small bias or high skill score mod-
els used in this section are composed of the models in-
cluded in CMIPFull_Future, we refer to these as CMIP′lowB and
CMIP′highS instead of CMIPlowB and CMIPhighS. Projected
changes in annual mean temperature and precipitation are
designated by 1T (E) and 1P(E) respectively.

Figure 2 shows the uncertainty range of the pro-
jected temperature increments, calculated from the aver-
age over the 20-year period for each model. Although
ISIMIP used fewer models than CORDEX, the uncertainty
range of 1T (ISIMIP) is greater than or equal to that
of 1T (CORDEX) except for Central and South Amer-
ica, South Asia and Australasia. The uncertainty ranges of
1T (CMIP′lowB) and1T (CMIP′highS) broadly cover the range
of 1T (CMIPFull_Future), suggesting that the bias and skill
score are not good emergent constraints for reducing the
uncertainty of 1T in this study, though previous studies
have showed the reduction of their projection uncertainties
(e.g. Smith and Chandler, 2010; Bracegirdle and Stephenson,
2013; Bracegirdle et al., 2013; Simpson et al., 2016). This is
because the spatial pattern for the temperature is quite sim-
ilar among the models, and then the model selection using
the score hardly has an impact on the reduction of uncer-
tainty. On the other hand, the difference in the bias between
the full set and the subset is large. The previous studies have
suggested that the performance of the present climate simu-
lations is not necessarily related to the uncertainties of future
projections (e.g. Knutti, 2010; Shiogama et al., 2011). We ex-
pected such a relation between the quantitative performance
and the future change in this study.

The uncertainty range associated with the projected
change in annual precipitation is shown in Fig. 3. Com-
pared with 1T in Fig. 2, model selection has a large im-
pact on the reduction of the uncertainty in 1P , as was also
found by MJ2016 using five GCMs used in the fast track of
ISIMIP. The subsets of1P (CMIP′lowB) and1P (CMIP′highS)

cover 70 % and 60 % of the full range of uncertainty from
CMIPFull_Future as the average over 14 regions respectively,
and cover the full range in Australasia (yellow and orange
plots in Fig. 3). The largest difference between the coverages
from 1P(CMIP′lowB) and 1P (CMIP′highS) appears in East
Asia. Therefore, we need to note that, when a model’s per-
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Figure 1. Normalized annual mean model precipitation bias over land from the GPCC reference data (in percent). The bias was normalized
by the regional average of GPCC data. The whiskers of the box plots show the range between the maximum and the minimum biases. The
boxes and the lines within the boxes indicate the 25th to 75th percentile range and the median respectively. Green plots indicate the deviations
of six observation data from the reference data: CRU, GPCC, PRECL, CMAP, GPCP and MSWEP. The other plots indicate the model bias
in the full set of 50 CMIP5 model set (black), the model sets with a smaller bias than the median of biases of the full set (yellow), the model
sets with higher Taylor’s skill score than the median of the scores of the full set (orange) and the model sets selected for ISIMIP (blue) and
CORDEX (red).

Figure 2. Annual mean temperature increments in the future climate projection (K). The whiskers of the box plots show the range between
the maximum and the minimum increments. The boxes and the lines within the boxes show the 25th to 75th percentile range and the median
respectively. Box plots indicate the increment in the full set of 42 CMIP5 models (black), the model sets with the top 50 % of the CMIP5
models for the bias (yellow) or Taylor’s skill score (orange) and the model sets selected for ISIMIP (blue) and CORDEX (red). The top 50 %
of the CMIP5 models cannot be plotted over Antarctica because of the lack of CRU reference data.
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formance is the condition used to select subsets, the uncer-
tainty changes depending on which evaluation index is used,
for example whether we use the bias or the skill score. The
CORDEX subsets capture more than 50 % of the full range in
eight regions (Europe, MED, Africa, SEA, Australasia, Cen-
tral America, South America and Antarctica). On the other
hand, the ISIMIP subsets capture less than 60 % of the full
range in all regions. In 11 regions, the CORDEX subsets cap-
ture a wider range than the ISIMIP subsets, a result markedly
different than for 1T , where both CORDEX and ISIMIP
have relatively large coverage as seen in Fig. 2. Therefore,
the subset of four models used in ISIMIP2b has difficulty
capturing the uncertainties in regional precipitation change.
This result is the same as stated using the subset of five mod-
els used in the fast track of ISIMIP discussed by MJ2016,
despite two of the five models being changed.

The uncertainty range (maximum–minimum) is nar-
rowed by using the subsets, but the interquartile range
of 1P (CORDEX), IQR(1P (CORDEX)), shows a high
coincidence with IQR(1P (CMIPFull_Future)), as well as
with IQR(1P (CMIP′lowB)) and IQR(1P (CMIP′highS)). The
maximum–minimum range of 1P (ISIMIP) also cap-
tures IQR(1P (CMIPFull_Future)). Therefore, the CORDEX
and ISIMIP subsets can capture the average tendency
of the change projected by the 25th to 75th per-
centile of CMIPFull_Future. In addition, the median of
the uncertainty range is similar between the CORDEX
subset and CMIPFull_Future. In Central Asia, the full
range of 1P (CORDEX) remains below the 25th per-
centile of 1P (CMIPFull_Future), while the maximum–
minimum range of 1P (ISIMIP) adequately covers the
IQR(1P (CMIPFull_Future)). Thus the three models of the
CORDEX subset in Central Asia underestimate the average
tendency of the change projected by CMIPFull_Future, despite
that, differing from ISIMIP, CORDEX can select suitable
models for examination of climate change in Central Asia.

3.3 Comparison of uncertainty of the projected
changes using randomly sampled models

We investigated whether the ISIMIP or CORDEX subsets
were more suitable for capturing the uncertainty range ob-
tained from CMIPFull_Future by comparing the fractional cov-
erage of uncertainty, FRA, of each subset with those of
10 000 randomly sampled subsets of CMIPFull_Future. As a
result, the ISIMIP subset (four models) shows high cover-
age for the temperature change in all regions compared with
the random samples and low coverage for the precipitation
change in more than 60 % of all regions. By contrast, the
CORDEX subset yields relatively wide coverage for the tem-
perature and precipitation changes, but this depends on the
number of models used.

Figure 4 illustrates FRA of the ISIMIP and CORDEX sub-
sets (referred to as FRAISIMIP and FRACORDEX respectively)
in each region. Along the x axis, the name of regions is ar-

ranged in ascending order of the number of models used in
CORDEX. The number of models used in CORDEX is indi-
cated in each set of parentheses after the name, and by con-
trast, the number in ISIMIP is four in all regions. The y axis
indicates FRA of the uncertainty from each subset relative to
that from the full set. The bar represents the distribution of
the FRA values obtained from the possible 10 000 random
samples (FRARandom). The blue bar represents the distribu-
tion using the subsets with four models as large as the ISIMIP
subset (FRARandom_I), and the red bar represents that with the
same number of models used in CORDEX (FRARandom_C).
The ends of the bar indicate the lowest and highest values of
FRA, and the ends of the bar with a dark colour and horizon-
tal line in the bar denote the 25th and 75th percentiles and
the median respectively.

For the temperature change, 1T , FRAISIMIP and
FRACORDEX (blue and red dots respectively) exceed 60 %
in 13 and 10 regions respectively (Fig. 4a). However,
FRACORDEX is located around the 25th percentile or less
of FRARandom_C (the bottom of dark red bar) in MED, East
Asia, SEA, Europe and the polar regions where FRACORDEX
is lower than FRAISIMIP. In the region with larger model en-
semble in CORDEX, FRACORDEX tends to be less than the
median of FRARandom_C (horizontal red line). On the other
hand, FRAISIMIP is typically around the 75th percentile (the
top of dark blue bar) or higher than the median (horizontal
blue line) of FRARandom_I for all regions.

A relatively high coverage, above ∼ 50 %, is shown on
FRACORDEX for both changes of temperature and precipi-
tation in eight regions when using nine models or more, ex-
cept for temperature in Antarctica (Fig. 4a, b); that is to say,
the CORDEX subset captures more than half of the range
from CMIPFull_Future. The value of FRACORDEX for 1P is
lower than that for 1T . A high coverage of more than 70 %,
however, can be gained by the CORDEX subset for 1P in
MED, South America, Europe, Australasia and Africa, which
also indicates a high coverage compared with the median of
FRARandom_C (except for Europe; Fig. 4b). In half of the re-
gions, FRACORDEX are in the range of the 25th percentile
or less of FRARandom_C (the four regions of Asia, MENA,
the Arctic and North America). In Central and East Asia
and North America, FRACORDEX is smaller than FRAISIMIP,
even though CORDEX has the advantage of selecting suit-
able models for the region and also more models can be
used, especially in East Asia and North America. The ISIMIP
subsets in Antarctica and Australasia show a larger coverage
than the 75th percentile of FRARandom_I, but the FRAISIMIP
of 60 % is less than that for 1T . In more than 60 % of all
regions, FRAISIMIP is less than the median of FRARandom_I;
the averaged FRAISIMIP over all regions is 33 %.

From the FRA distributions estimated from the possible
random samples regarding both changes, 1T and 1P , the
IQR of FRARandom_C itself rises toward a FRA of 100 % as
larger model ensembles are used. When random samples are
composed of a subset with 15 models, as large as subsets in
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Figure 3. As for Fig. 2, but for the projected change in annual mean precipitation scaled to the regional mean temperature increment over
land (% K−1).

CORDEX-Africa and CORDEX-South Asia, the 75th per-
centile of FRARandom_C is more than 90 % in 1T (Fig. 4a).
In addition, the width of the IQR for 1T is narrowed with
increasing the number of models. The relationship between
the number of models and FRA is clearly evident in 1T
because there is a small difference in RFull among regions
for 1T compared with 1P (Fig. 2), and thus the larger
model ensemble results in an increase in FRACORDEX and
FRARandom_C. And also, we found that the probability of se-
lecting model subsets with a low coverage was higher for pre-
cipitation than for temperature, even if the number of models
selected increases.

From Fig. 4, the subsets with nine models or more can
capture the uncertainty of projections in both temperature
and precipitation widely, implying that there is a heterogene-
ity in the dataset in a different number of models (Gutowski
et al., 2016). We explored whether a similar tendency can
be obtained in the other regions when the number of mod-
els changed. The same approach was performed by MJ2016.
They estimated the coverage of the uncertainty in each of
the grid cells for each number of models to investigate the
change of the widest coverage performance in the global or
regional average depending on the number of models. On the
other hand, in this study, to consider making better use of the
current subsets, we investigated how the coverage changes
with changing the number of models from the current model
members.

Figure 5 shows the change of coverage performance with
the number of models changing in each region. When the
number of models is larger than the current number, we
added models randomly selected to the current members. By

contrast, when the number of models is less, we removed
models randomly selected from the current members. Here
we focused on the median of the FRA values obtained from
the possible 10 000 random samples, meaning the FRA value
obtained with a possibility of 50 % when selecting subsets
randomly. For the temperature change, the median exceeds
60 % in all regions when changing the number of models
from the current four ISIMIP members to seven members
(Fig. 5a). The median above 60 % is also obtained in 13
regions (except for Antarctica) when changing the number
from the current CORDEX members to nine members. For
the precipitation change, the coverage in nine members is
above 50 % in 10 regions and in 12 regions by changing
the number of models from the current members in ISIMIP
and CORDEX respectively (Fig. 5b). Even when using nine
members, the median is less than 50 % in the four regions
of MENA, Africa and South and East Asia for the change
of number from the ISIMIP subset and in the two regions of
MENA and North America for that from the CORDEX sub-
set.

The IQR for 1T shifts to a high FRA smoothly with the
number of models in all regions. By contrast, the IQR for
1P sometimes gets large suddenly and/or shifts sharply, for
instance, MENA and Africa. The discontinuous change is
caused by a large variance of 1P from each model mem-
ber. That is to say, when there are model members indicating
a large change ratio relative to the other members, the cover-
age largely differs depending on the inclusion of the member
with the large ratio or not. The change amounts, 1T , are
similar among the model members and the variance is small.
Thus, the FRA increases with the number of models and the
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Figure 4. Coverage performance of the ISIMIP and CORDEX sub-
sets compared with the range of the full set of CMIP5 models for
(a) annual mean temperature increment and (b) precipitation change
scaled to the regional mean temperature increment. Blue and red
dots indicate the coverage (FRA) in ISIMIP and CORDEX respec-
tively for each region. Blue bars indicate the spread of FRA when
four models, as in ISIMIP, are selected randomly in 10 000 times.
Red bars indicate the spread when randomly selecting the same
number of models as in CORDEX, e.g. 10 models in Central Amer-
ica. The full range of the coloured bars indicates the minimum-to-
maximum coverage of the FRA spread. Dark blue and red bars in-
dicate the 25th to 75th percentile range. Horizontal lines in the dark
blue and red parts indicate the median. Numbers in parentheses are
the number of models used in CORDEX.

IQR also increases smoothly. To prevent selecting the subset
with a large change of coverage dependant on a model with
an extremely large or small change amount, investigating the
variance of the projections in each region is needed when the
number of models is decided.

4 Discussion

From the evaluation of the ability to reproduce the regional
temperature and precipitation, it is found that the ISIMIP and
CORDEX subsets include the models indicating a larger bias
and a worse score than high-performance models in the full

set. Therefore, a much better model subset, with regard to
biases and skill scores, can be selected with making use of
the advantage of the small number of models. However, note
that such a selection can be conducted when there are no con-
straints of data availability, which was the main constraint to
selecting the current subsets in ISIMIP and CORDEX and
when we use one variable of either temperature or precipita-
tion. Focusing on one variable of either temperature or pre-
cipitation, 13 high-performance models (out of 25) are in-
cluded in both subsets of high-performance models for the
bias and skill score (Fig. S2). In addition to the two indices
of bias and skill score for one variable, the number of models
indicating high performance for both the variables of tem-
perature and precipitation is zero at the minimum in South-
east Asia and the Arctic and nine at the maximum in Africa.
The averaged number over the regions is approximately four.
Therefore, for one variable, there is a possibility of 50 % that
a model with a small bias shows a high skill score, but it is
difficult to select such models for the variables of tempera-
ture and precipitation.

In this study, we assessed the current ISIMIP and
CORDEX subsets to investigate whether their model ensem-
ble indicates small biases in the historical climatology and
covers the uncertainty in the future projections widely using
temperature and precipitation. Both variables are most fre-
quently used in future projections and also weather forecasts.
The evaluation for such a principal variable is important for
the studies of ISIMIP and CORDEX. It should be noted,
however, that ISIMIP needs a dataset with reasonable values
for multiple variables used in their impact assessment and
with enough coverage of projection uncertainties. CORDEX
requires the dataset to have values based on a plausible mech-
anism of the climatology as the input data for RCMs. Thus,
it is possible that a good subset which we presented based on
model performance for temperature and precipitation will be
an option of their future subsets.

Although ISIMIP and CORDEX have tight constraints for
model selection at the present, both programs will select the
subset showing a reasonable climate based on a plausible
mechanism in the future. Two variables of temperature and
precipitation are not possibly sufficient for the model selec-
tion. At least for the regional climatological studies and the
assessment of its impact, it is important to reproduce large-
scale atmospheric circulation patterns which characterize the
regional climate. In particular, the spatial pattern of precip-
itation depends on the accuracy of the circulation. Indeed,
model change in ISIMIP from the fast track to ISIMIP2b
has already been performed with a consideration of the abil-
ity to reproduce El Niño–Southern Oscillation and monsoon
(Frieler et al., 2017). The evaluation method used in this
study can be applied to the other variables when one has
access to reference data. For instance, Taylor’s skill score,
which we used to evaluate the pattern of temperature and
precipitation, can also apply to the pattern of circulation, in-
dicated by sea level pressure (SLP) and geopotential height.
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Figure 5.

It is also preferable to select subsets in the next generations
based on a combined approach that can consider the ability to
reproduce multiple variables, although, as described above, it
is more difficult to obtain enough models as more variables
and evaluation indices are employed. As the first step of the
combined approach, it could be good that the evaluation of
SLP indicates the large-scale circulation, which has an influ-
ence on the precipitation pattern, instead of precipitation it-
self. This combination might provide an adequate number of
members, which is found to be difficult using the combina-
tion of temperature and precipitation here. Regarding com-
bined approaches for future changes, Fig. 5 shows that the
coverage of FRARandom_C is relatively high on both variables
when the number of members is large. Thus, there is a possi-
bility to cover the projection uncertainties for both variables
widely by applying a region-specific ensemble and an ade-
quate number of its ensemble members, while paying atten-

tion to the variance of the projections. The method above is
one suggestion regarding the approaches, and the construc-
tion of such an approach is an important task for both pro-
grams in the future.

5 Summary and conclusions

We explored the ability of the subsets of the CMIP5 multi-
model ensemble used in ISIMIP2b and CORDEX to repro-
duce the observed temperature and precipitation, and how
the subsets capture the uncertainty in projected change of
temperature and precipitation obtained from the full set of
the ensemble. In addition, we discussed whether each subset
shows a high coverage of the uncertainty in projected climate
change compared with the possible subsets generated using
10 000 random samples.
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Figure 5. Change of coverage performance of the ISIMIP and CORDEX subsets depending on the number of selected models in each region
for (a) annual mean temperature increment and (b) precipitation change scaled to the regional mean temperature increment. As Fig. 4, but
the x axis denotes the number of selected models.

The spreads of the bias and Taylor’s skill score from the
subsets used in ISIMIP and CORDEX are smaller than those
obtained from the full set of CMIP5 ensemble for the an-
nual mean temperature and precipitation. However, despite
the smaller model ensemble in ISIMIP and CORDEX, the
largest bias and the worst skill score are distributed beyond
the biases and the scores obtained from half of the member
subsets with less bias or high score of the full set. Therefore,
although the ISIMIP and CORDEX approaches were able to
select models that acceptably represented the historical state,
our results suggest that better subsets can be selected by fo-
cusing on smaller biases and/or higher scores for represent-
ing the historical climate. Note that such a selection can be
performed when there are no constraints for the selection and
when we use one variable of either temperature or precipita-

tion as the evaluation index. A combined evaluation for both
temperature and precipitation remains difficult for obtaining
an adequate number of models.

For the projected change in annual mean temperature, the
subsets capture more than 60 % of the uncertainty for the full
set in the 13 terrestrial regions in ISIMIP and the 10 regions
in CORDEX, from the total of 14 regions. The coverage of
the uncertainty range by the ISIMIP subset is larger and equal
to the coverage by the CORDEX subset in 10 regions by us-
ing only four models that are common to all regions. The
FRA of the current CORDEX subset tends to be lower than
the 50th percentile of the FRAs obtained from the possible
10 000 random samples in the regions where a large model
ensemble is used. ISIMIP selected the subset of models with
relatively high coverage of the uncertainty from the full set
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in all regions, compared with the 50th percentile from the
random samples.

On the other hand, for the projected change in annual mean
precipitation, the FRAs for the CORDEX subset are around
the 25th percentile or less of the FRAs from the random sam-
ples with the same number of models in half of all regions.
However, CORDEX broadly captures the uncertainty range
more than ISIMIP, differing from the temperature change.
Additionally, a relatively high coverage (> 50 %) was ob-
tained for the projections of both temperature and precipi-
tation in eight regions when using nine models or more.

Compared with the random samples, the ISIMIP subset
shows high coverage for the temperature change in all re-
gions and, by contrast, low coverage for the precipitation
change in more than 60 % of the regions. The CORDEX sub-
set does not perform well compared to the randomly selected
samples but is marginally better than ISIMIP at covering un-
certainties in the projected change in precipitation when a
large model ensemble is used. Therefore, the global common
model set used in ISIMIP could have difficulty in capturing
the uncertainty in regional precipitation change projections
while capturing most of the uncertainty in the temperature
change projections. The region-specific model subset, like
CORDEX, captures coverage of both uncertainties compared
to the global common (ISIMIP) subset, but performs better
when a large number of models are used.

The current CORDEX subsets can capture both uncertain-
ties for temperature and precipitation in the regions with a
relatively large ensemble. However, it is found that changing
the number of models from the current CORDEX members
to nine members can capture more than half of the full un-
certainty in both projections of temperature and precipitation
in more than 85 % of all regions, with a possibility of 50 %.
Furthermore, the same is also shown for the ISIMIP subset,
but for 70 % of all regions. Focusing on the uncertainty in fu-
ture projections, this result suggests that the current number
of models needs to be increased to seven, or nine if possible,
to obtain a similar uncertainty range among the regions.

In this study, we have assessed the subsets using the prin-
cipal variables of temperature and precipitation. This is not
sufficient for selecting subsets in the next generations. We
suggest that it is preferable to have a combined approach that
can consider the ability not only for temperature and precipi-
tation but also for other variables important in characterizing
the regional climate (e.g. the circulation patterns shown by
sea level pressure and geopotential height). Construction of
such an approach is urgently demanded for both programs.
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