Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-707-2020
https://doi.org/10.5194/gmd-13-707-2020
Model experiment description paper
 | Highlight paper
 | 
21 Feb 2020
Model experiment description paper | Highlight paper |  | 21 Feb 2020

TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0

Thomas J. Fauchez, Martin Turbet, Eric T. Wolf, Ian Boutle, Michael J. Way, Anthony D. Del Genio, Nathan J. Mayne, Konstantinos Tsigaridis, Ravi K. Kopparapu, Jun Yang, Francois Forget, Avi Mandell, and Shawn D. Domagal Goldman

Related authors

Scale dependence of cirrus heterogeneity effects. Part II: MODIS NIR and SWIR channels
Thomas Fauchez, Steven Platnick, Tamás Várnai, Kerry Meyer, Céline Cornet, and Frédéric Szczap
Atmos. Chem. Phys., 18, 12105–12121, https://doi.org/10.5194/acp-18-12105-2018,https://doi.org/10.5194/acp-18-12105-2018, 2018
Short summary
An A-train and MERRA view of cloud, thermodynamic, and dynamic variability within the subtropical marine boundary layer
Brian H. Kahn, Georgios Matheou, Qing Yue, Thomas Fauchez, Eric J. Fetzer, Matthew Lebsock, João Martins, Mathias M. Schreier, Kentaroh Suzuki, and João Teixeira
Atmos. Chem. Phys., 17, 9451–9468, https://doi.org/10.5194/acp-17-9451-2017,https://doi.org/10.5194/acp-17-9451-2017, 2017
Short summary
Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared
Thomas Fauchez, Steven Platnick, Kerry Meyer, Céline Cornet, Frédéric Szczap, and Tamás Várnai
Atmos. Chem. Phys., 17, 8489–8508, https://doi.org/10.5194/acp-17-8489-2017,https://doi.org/10.5194/acp-17-8489-2017, 2017
Short summary
Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry
T. Fauchez, P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer
Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015,https://doi.org/10.5194/amt-8-633-2015, 2015
A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework
F. Szczap, Y. Gour, T. Fauchez, C. Cornet, T. Faure, O. Jourdan, G. Penide, and P. Dubuisson
Geosci. Model Dev., 7, 1779–1801, https://doi.org/10.5194/gmd-7-1779-2014,https://doi.org/10.5194/gmd-7-1779-2014, 2014

Related subject area

Atmospheric sciences
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary

Cited articles

Barstow, J. K. and Irwin, P. G. J.: Habitable worlds with JWST: transit spectroscopy of the TRAPPIST-1 system?, Mon. Not. R. Astron. Soc., 461, L92–L96, https://doi.org/10.1093/mnrasl/slw109, 2016. a, b
Bolmont, E., Selsis, F., Owen, J. E., Ribas, I., Raymond, S. N., Leconte, J., and Gillon, M.: Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1, Mon. Not. R. Astron. Soc., 464, 3728–3741, https://doi.org/10.1093/mnras/stw2578, 2017. a
Bourrier, V., de Wit, J., Bolmont, E., Stamenkovic, V., Wheatley, P. J., Burgasser, A. J., Delrez, L., Demory, B.-O., Ehrenreich, D., Gillon, M., Jehin, E., Leconte, J., Lederer, S. M., Lewis, N., Triaud, A. H. M. J., and Grootel, V. V.: Temporal Evolution of the High-energy Irradiation and Water Content of TRAPPIST-1 Exoplanets, Astron. J., 154, 121, https://doi.org/10.3847/1538-3881/aa859c, 2017. a
Boutle, I. A., Mayne, N. J., Drummond, B., Manners, J., Goyal, J., Hugo Lambert, F., Acreman, D. M., and Earnshaw, P. D.: Exploring the climate of Proxima B with the Met Office Unified Model, Astron. Astrophys., 601, A120, https://doi.org/10.1051/0004-6361/201630020, 2017. a
Cantrell, J. R., Henry, T. J., and White, R. J.: The Solar Neighborhood XXIX: The Habitable Real Estate of Our Nearest Stellar Neighbors, Astron. J., 146, 99, https://doi.org/10.1088/0004-6256/146/4/99, 2013. a
Download
Short summary
Atmospheric characterization of rocky exoplanets orbiting within the habitable zone of nearby M dwarf stars is around the corner with the James Webb Space Telescope (JWST), expected to be launch in 2021. Global climate models (GCMs) are powerful tools to model exoplanet atmospheres and to predict their habitability. However, intrinsic differences between the models can lead to various predictions. This paper presents an experiment protocol to evaluate these differences.