Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-5917-2020
https://doi.org/10.5194/gmd-13-5917-2020
Development and technical paper
 | 
01 Dec 2020
Development and technical paper |  | 01 Dec 2020

On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART

Ondřej Tichý, Lukáš Ulrych, Václav Šmídl, Nikolaos Evangeliou, and Andreas Stohl

Related authors

Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
EGUsphere, https://doi.org/10.5194/egusphere-2023-641,https://doi.org/10.5194/egusphere-2023-641, 2023
Short summary
Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021,https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Bayesian inverse modeling and source location of an unintended 131I release in Europe in the fall of 2011
Ondřej Tichý, Václav Šmídl, Radek Hofman, Kateřina Šindelářová, Miroslav Hýža, and Andreas Stohl
Atmos. Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-12677-2017,https://doi.org/10.5194/acp-17-12677-2017, 2017
Short summary
LS-APC v1.0: a tuning-free method for the linear inverse problem and its application to source-term determination
Ondřej Tichý, Václav Šmídl, Radek Hofman, and Andreas Stohl
Geosci. Model Dev., 9, 4297–4311, https://doi.org/10.5194/gmd-9-4297-2016,https://doi.org/10.5194/gmd-9-4297-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023,https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023,https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Use of threshold parameter variation for tropical cyclone tracking
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112, https://doi.org/10.5194/gmd-16-5093-2023,https://doi.org/10.5194/gmd-16-5093-2023, 2023
Short summary
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023,https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023,https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary

Cited articles

Abagyan, A., Ilyin, L., Izrael, Y., Legasov, V., and Petrov, V.: The information on the Chernobyl accident and its consequences, prepared for IAEA, Sov. At. Energy, 61, 301–320, https://doi.org/10.1007/BF01122262, 1986. a
Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M., Laurila, T., Lavrič, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M., Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013. a
Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications, Q. J. Roy. Meteor. Soc., 131, 2209–2223, 2005. a
Bocquet, M.: High-resolution reconstruction of a tracer dispersion event: application to ETEX, Q. J. Roy. Meteor. Soc., 133, 1013–1026, 2007. a, b
Bossew, P., Gering, F., Petermann, E., Hamburger, T., Katzlberger, C., Hernandez-Ceballos, M., De Cort, M., Gorzkiewicz, K., Kierepko, R., and Mietelski, J.: An episode of Ru-106 in air over Europe, September–October 2017–Geographical distribution of inhalation dose over Europe, J. Environ. Radioactiv., 205, 79–92, 2019. a
Download
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.