Articles | Volume 13, issue 12
Geosci. Model Dev., 13, 5917–5934, 2020
https://doi.org/10.5194/gmd-13-5917-2020
Geosci. Model Dev., 13, 5917–5934, 2020
https://doi.org/10.5194/gmd-13-5917-2020

Development and technical paper 01 Dec 2020

Development and technical paper | 01 Dec 2020

On the tuning of atmospheric inverse methods: comparisons with the European Tracer Experiment (ETEX) and Chernobyl datasets using the atmospheric transport model FLEXPART

Ondřej Tichý et al.

Related authors

Real-time measurement of radionuclide concentrations and its impact on inverse modeling of 106Ru release in the fall of 2017
Ondřej Tichý, Miroslav Hýža, Nikolaos Evangeliou, and Václav Šmídl
Atmos. Meas. Tech., 14, 803–818, https://doi.org/10.5194/amt-14-803-2021,https://doi.org/10.5194/amt-14-803-2021, 2021
Short summary
Bayesian inverse modeling and source location of an unintended 131I release in Europe in the fall of 2011
Ondřej Tichý, Václav Šmídl, Radek Hofman, Kateřina Šindelářová, Miroslav Hýža, and Andreas Stohl
Atmos. Chem. Phys., 17, 12677–12696, https://doi.org/10.5194/acp-17-12677-2017,https://doi.org/10.5194/acp-17-12677-2017, 2017
Short summary
LS-APC v1.0: a tuning-free method for the linear inverse problem and its application to source-term determination
Ondřej Tichý, Václav Šmídl, Radek Hofman, and Andreas Stohl
Geosci. Model Dev., 9, 4297–4311, https://doi.org/10.5194/gmd-9-4297-2016,https://doi.org/10.5194/gmd-9-4297-2016, 2016
Short summary

Related subject area

Atmospheric sciences
Interpol-IAGOS: a new method for assessing long-term chemistry–climate simulations in the UTLS based on IAGOS data, and its application to the MOCAGE CCMI REF-C1SD simulation
Yann Cohen, Virginie Marécal, Béatrice Josse, and Valérie Thouret
Geosci. Model Dev., 14, 2659–2689, https://doi.org/10.5194/gmd-14-2659-2021,https://doi.org/10.5194/gmd-14-2659-2021, 2021
Short summary
The Environment and Climate Change Canada Carbon Assimilation System (EC-CAS v1.0): demonstration with simulated CO observations
Vikram Khade, Saroja M. Polavarapu, Michael Neish, Pieter L. Houtekamer, Dylan B. A. Jones, Seung-Jong Baek, Tai-Long He, and Sylvie Gravel
Geosci. Model Dev., 14, 2525–2544, https://doi.org/10.5194/gmd-14-2525-2021,https://doi.org/10.5194/gmd-14-2525-2021, 2021
Short summary
WRF4PALM v1.0: a mesoscale dynamical driver for the microscale PALM model system 6.0
Dongqi Lin, Basit Khan, Marwan Katurji, Leroy Bird, Ricardo Faria, and Laura E. Revell
Geosci. Model Dev., 14, 2503–2524, https://doi.org/10.5194/gmd-14-2503-2021,https://doi.org/10.5194/gmd-14-2503-2021, 2021
Short summary
pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python
Daniel M. Gilford
Geosci. Model Dev., 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021,https://doi.org/10.5194/gmd-14-2351-2021, 2021
Short summary
Comparison of three aerosol representations of NHM-Chem (v1.0) for the simulations of air quality and climate-relevant variables
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021,https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary

Cited articles

Abagyan, A., Ilyin, L., Izrael, Y., Legasov, V., and Petrov, V.: The information on the Chernobyl accident and its consequences, prepared for IAEA, Sov. At. Energy, 61, 301–320, https://doi.org/10.1007/BF01122262, 1986. a
Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M., Laurila, T., Lavrič, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M., Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013. a
Bocquet, M.: Reconstruction of an atmospheric tracer source using the principle of maximum entropy. II: Applications, Q. J. Roy. Meteor. Soc., 131, 2209–2223, 2005. a
Bocquet, M.: High-resolution reconstruction of a tracer dispersion event: application to ETEX, Q. J. Roy. Meteor. Soc., 133, 1013–1026, 2007. a, b
Bossew, P., Gering, F., Petermann, E., Hamburger, T., Katzlberger, C., Hernandez-Ceballos, M., De Cort, M., Gorzkiewicz, K., Kierepko, R., and Mietelski, J.: An episode of Ru-106 in air over Europe, September–October 2017–Geographical distribution of inhalation dose over Europe, J. Environ. Radioactiv., 205, 79–92, 2019. a
Download
Short summary
We study the estimation of the temporal profile of an atmospheric release using formalization as a linear inverse problem. The problem is typically ill-posed, so all state-of-the-art methods need some form of regularization using additional information. We provide a sensitivity study on the prior source term and regularization parameters for the shape of the source term with a demonstration on the ETEX experimental release and the Cs-134 and Cs-137 dataset from the Chernobyl accident.