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Abstract. Estimation of the temporal profile of an atmo-
spheric release, also called the source term, is an important
problem in environmental sciences. The problem can be for-
malized as a linear inverse problem wherein the unknown
source term is optimized to minimize the difference between
the measurements and the corresponding model predictions.
The problem is typically ill-posed due to low sensor cover-
age of a release and due to uncertainties, e.g., in measure-
ments or atmospheric transport modeling; hence, all state-of-
the-art methods are based on some form of regularization of
the problem using additional information. We consider two
kinds of additional information: the prior source term, also
known as the first guess, and regularization parameters for
the shape of the source term. While the first guess is based
on information independent of the measurements, such as the
physics of the potential release or previous estimations, the
regularization parameters are often selected by the design-
ers of the optimization procedure. In this paper, we provide a
sensitivity study of two inverse methodologies on the choice
of the prior source term and regularization parameters of the
methods. The sensitivity is studied in two cases: data from
the European Tracer Experiment (ETEX) using FLEXPART
v8.1 and the caesium-134 and caesium-137 dataset from the
Chernobyl accident using FLEXPART v10.3.

1 Introduction

The source term describes the spatiotemporal distribution of
an atmospheric release, and it is of great interest in the case of
an accidental atmospheric release. The aim of inverse mod-
eling is to reconstruct the source term by maximization of
agreement between the ambient measurements and predic-
tion of an atmospheric transport model in a so-called top-
down approach (Nisbet and Weiss, 2010). Since information
provided by the measurements is often insufficient in both
spatial and temporal domains (Mekhaimr and Wahab, 2019),
additional information and regularization of the problem are
crucial for a reasonable estimation of the source term (Seib-
ert et al., 2011). Otherwise, the top-down determination of
the source term can produce artifacts, often resulting in some
completely implausible values of the source term. One com-
mon regularization is the knowledge of the prior source term,
also known as the first guess, considered within the optimiza-
tion procedure (Eckhardt et al., 2008; Liu et al., 2017; Chai
et al., 2018). However, this knowledge could dominate the
resulting estimate and even outweigh the information present
in the measured data. The aim of this study is to discuss draw-
backs that may arise in setting the prior source term and to
study the sensitivity of inversion methods to the choice of
the prior source term. We utilize the ETEX (European Tracer
Experiment) and Chernobyl datasets for demonstration.

We assume that the measurements can be explained by a
linear model using the concept of the source—receptor sensi-
tivity (SRS) matrix calculated from an atmospheric transport
model (e.g., Seibert and Frank, 2004). The problem can be
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approached by a constrained optimization with selected pe-
nalization term on the source term (Davoine and Bocquet,
2007; Ray et al., 2015; Henne et al., 2016) and further with
an additional smoothness constraint (Eckhardt et al., 2008)
used for both spatial (Stohl et al., 2011) and temporal (Seibert
etal.,2011; Stohl et al., 2012; Evangeliou et al., 2017) profile
smoothing. The optimization terms are typically weighted by
covariance matrices whose forms and estimation have been
studied in the literature. Diagonal covariance matrices have
been considered by Michalak et al. (2005) and its entries es-
timated using the maximum likelihood method. Since the es-
timation of full covariance matrices tends to diverge (Berchet
et al., 2013), approaches using a fixed common autocorrela-
tion timescale parameter for non-diagonal entries has been
introduced (Ganesan et al., 2014; Henne et al., 2016) for at-
mospheric gas inversion. Uncertainties can be also reduced
with the use of ensemble techniques (see, e.g., Evensen,
2018; Carrassi et al., 2018, and references therein) when such
an ensemble is available in the form of several meteorologi-
cal input datasets and/or variations in atmospheric model pa-
rameters. Even with only one SRS matrix, the problem can
be formulated as a probabilistic hierarchical model with un-
known parameters estimated together with the source term
with constraints such as positivity, sparsity, and smoothness
(Tichy et al., 2016). The drawback of these methods is the ne-
cessity of selection and tuning of various model parameters,
with the selection of the prior source term and its uncertainty
being the most important.

There are various assumptions on the level of knowledge
of the prior source term used in the inversion procedure. As-
sumption of the zero prior source term (Bocquet, 2007; Tichy
et al., 2016) is common in the literature with a preference
for a zero solution on elements whereby no sufficient infor-
mation from data is available. This assumption is typically
formalized as the Tikhonov (Golub et al., 1999) or LASSO
(Tibshirani, 1996) regularizations or their variants. Soft as-
sumptions in the form of the scale of the prior source term
(Davoine and Bocquet, 2007), bounds on emissions (Miller
et al., 2014), or even knowledge of total released amount as
discussed, e.g., in Bocquet (2005) can be considered. One
can also assume the ratios between species in multispecies
source term scenarios (Saunier et al., 2013; Tichy et al.,
2018). However, the majority of inversion methods explicitly
assume knowledge of the prior source term (Connor et al.,
2008; Eckhardt et al., 2008; Liu et al., 2017). This is more or
less justified by appropriate construction of the prior source
term based, for example, on a detailed analysis of an inven-
tory and accident (Stohl et al., 2012), on previous estimates
when available (Evangeliou et al., 2017), or on measured or
observed data (Stohl et al., 2011). While in well-documented
cases this approach could be well-justified, in cases with very
limited available information or even complete absence of in-
formation on the source term, such as the iodine occurrence
over Europe in 2017 (Masson et al., 2018) and the unex-
pected detection of ruthenium in Europe in 2017 (Bossew
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et al., 2019; Saunier et al., 2019), the use of strong prior
source term assumptions could lead to prior-dominated re-
sults with limited validity. Although the choice of the prior
source term is crucial, few studies have discussed the choice
of the prior source term in detail and provided sensitivity
studies on this selection as in Seibert et al. (2011) for the tem-
poral profile of sulfur dioxide emissions and in Stohl et al.
(2009) for the spatial distribution of greenhouse gas emis-
sions.

The aim of this paper is to explore the sensitivity of linear
inversion methods to the prior source term selection coupled
with tuning of the covariance matrix representing modeling
error. We considered the optimization method proposed by
Eckhardt et al. (2008), as well as its probabilistic counter-
part formulated as the hierarchical Bayesian model, extended
here by a nonzero prior source term with variational Bayes’
inference (Tichy et al., 2016) and with Monte Carlo infer-
ence using a Gibbs sampler (Ulrych and Smidl, 2017). Two
real cases will be examined: the ETEX (Nodop et al., 1998)
and Chernobyl (Evangeliou et al., 2016) datasets. ETEX pro-
vides ideal data for a prior source term sensitivity study since
the emission profile is exactly known. We propose various
modifications of the known prior source term and study their
influence on the results of the selected inversion methods.
The Chernobyl dataset, on the other hand, provides a very
demanding case in which only consensus on the release is
available and the source term is more speculative.

2 Inverse modeling using the prior source term

We are concerned with linear models of atmospheric dis-
persion using an SRS matrix (Seibert, 2001; Wotawa et al.,
2003; Seibert and Frank, 2004), which has been used in in-
verse modeling (Evangeliou et al., 2017; Liu et al., 2017).
Here, the atmospheric transport model calculates the linear
relationship between potential sources and atmospheric con-
centrations. The source—receptor sensitivity is calculated as
m;j =c;/xj, where x; is the assumed release from the re-
lease site at time j and c¢; is the calculated concentration at
a receptor c¢; at the respective time period. The measurement
y; at a given time and location can be explained as a sum of
contributions from all elements of the source term weighted
by m;;. In matrix notation,

y=Mx+e, ey

where y € NP is a vector aggregating measurements from all
locations and times (in arbitrary order), and x € i" is a vec-
tor of all possible releases from a given time period and all
possible source-receptor sensitivities form the SRS matrix
M € RP*" The residual model, e € R?, is a sum of model
and measurement errors. While the model looks trivial, its
use in practical applications poses significant challenges. The
key reason is that all elements of the model are subject to
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uncertainty (Winiarek et al., 2012; Liu et al., 2017) and the
problem is ill-posed.

In the rest of this section, we will discuss an influence of
the modeling error and show how existing methods approach
compensation of such error. We will analyze in detail two
methods for the source term estimation: (i) the optimization
model proposed by Eckhardt et al. (2008) with a prior source
term already considered and (ii) a Bayesian model (Tichy
et al., 2016) extended here by prior source term information
and solved using both the variational Bayes’ method and the
Gibbs sampling method.

2.1 Influence of atmospheric model error

It is generally assumed that the SRS matrix M is correct and
the true source term minimizes error of y = Mx. However,
M is prone to errors due to a number of approximations in
the formulation of the atmospheric transport model and use
of uncertain weather analysis data as input to the atmospheric
transport model. Therefore, one should rather consider a hy-
pothetical model,

y=M+Am)x, @)

where M is the available estimate of the sensitivity matrix
from a numerical model, and the term Ay is the deviation of
the estimate from the true generating matrix, My = (M +
Anp)- Exact estimation of App is not possible due to a lack of
data; however, many existing regularization techniques can
be interpreted as various simplified parameterizations of Apj.

The L2 norm! of the residuum between measurement and
reconstruction for Eq. (3) would become

lly —Mx — Amx|l5 = ||y — Mx|[; - 2y" Apx + x7 &x
& =M"Am + AyM+ Ay Am. 3)

The ideal optimization problem (right-hand side of Eq. 3)
can be decomposed into the norm of residues of the esti-
mated model ||y — Mx| |%, with both linear (i.e., —2y7 Apx)
and quadratic terms in x (i.e., x7 ®x). Both of the additional
terms contribute to incorrect estimation of x when Ay is sig-
nificant.

An common attempt to minimize the influence of the lin-
ear term is to define the prior source term x“ and subtract
Mx“ from both sides of Eq. (2). This yields a new decompo-
sition derived in Appendix A (with substitutions ¥ = x — x*
and y = y — Mx“) as

Iy =My = Anx| = |[7 — MFI} - 2(57 A
a T a T — —T 5 —
—(Anx) M= (Anx®)" Ay ) ¥+ ¥ OF, )

where & is the same term as in Eq. (3).

IThe analysis can be generalized to a quadratic norm with ar-
bitrary kernel R; however, we will discuss its simpler version for
clarity.
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In the ideal situation, we would like to optimize the left-
hand side of Egs. (3) and (4). However, due to unavailability
of Apm the linear term is typically ignored (assumed to be
negligible) and the quadratic term is approximated using a

—~

parametric form of ® &~ E. The optimization criterion is then
- —12 | =T o
J =1y —Mx|;+x" EX. ®)

The estimation error caused by approximation (5) can be in-
fluenced by two choices of the user: (i) first guess x¢ and
(i) regularization matrix E. The purpose of choosing x¢ is
minimization of the linear term in Eq. (4). The choice of the
parametric form of E corresponds to choosing a model of
the SRS matrix error Ay, since E is an approximation of @,
which is determined by App.

In the following sections, we will discuss methods that
estimate E from the data using parameterization of E by
tri-diagonal matrices with a limited number of parameters.
Specifically, we will investigate if the choice of x“ has an
impact on better estimation of E.

2.2 Optimization approach

Algorithm 1 Optimization algorithm for linear inverse prob-
lem.

Select € and erry, then

y=y—Mx*°
B =erry Iy
R=1p (possible extension to absolute/relative noise)

while % < 0.0001 and iter < 50 do

pos
iter = iter+ 1

solve minimization problem with cost function (5) with (6)

X=X+x
forj=1:n
ifx; >0
B j =min | VT5B; ;,erre]
else
B;j=Bj;/2
end
end

end

In Eckhardt et al. (2008), the source term inversion prob-
lem is formulated as in Eq. (5) with choices

E=B+eD'D, (6)

where matrix B is the selected or estimated precision matrix,
the matrix D a discrete representation of the second deriva-
tive with diagonal elements equal to —2 and equal to 1 on the
first sub-diagonals, and the scalar € is the parameter weight-
ing the smoothness of the solution x.

Minimization of Eq. (5) does not guarantee the non-
negativity of the estimated source term x. To solve this is-
sue, an iterative procedure is adopted (Eckhardt et al., 2008)
whereby minimization of Eq. (5) is done repetitively with re-
duced diagonal elements of B related to the negative parts of
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the solution, thus tightening the solution to the prior source
term, which is assumed to be non-negative. The diagonal el-
ements of B related to the positive parts of the solution can,
on the other hand, be enlarged up to a selected constant. This
can be iterated until the absolute value of the sum of negative
source term elements is lower than 0.01 % of the sum of pos-
itive source term elements. Formally, B; ; in the ith iteration
is calculated as

o |osBY7Y forx'' " <0,
BY. = JsJ . I 7

i min{\/EB(;’/. D erry} for x(/.’ D'>o.
We observed very low sensitivity to the choice of the recom-
mended values of 0.5 and /1.5 in Eq. (7). In most cases,
varying these values does not lead to any serious differ-
ences in the resulting estimate. However, the selection of pa-
rameters x¢, erry, and ¢ is crucial and will be discussed in
Sect. 2.4.

The method is summarized as Algorithm 1 and will be de-
noted as the optimization method in this study. The maxi-
mum number of iterations is set to 50, which was enough for
convergence in all our experiments. To solve the minimiza-
tion problem (5), we use the CVX toolbox (Grant and Boyd,
2008, 2018) for MATLAB.

2.3 Bayesian approach

Algorithm 2 LS-APC-VB algorithm for linear inverse prob-
lem.

1. Initialization:

Set 1nitial values (denoted by zero iteration number in super-

script (0)) of parameters used in the first iteration: (w)(o) =

I S 0 — 0 _

max(MT )’ (T) erry I, and (L) Iy.

2. Iterate from i = 1 until convergence or maximum number of
iterations is reached:

(a) Compute estimate of the source term (x)(i) using regu-
larized least squares:

; , -1\~
E,(c’)=((w)(l_l)MTM+(LTLT>J ) .®
@) (i) (=1) 4, T 7\(=D
uD = 5O (1) =Dy y+(LTL ) ). ©

and respective moment of the truncated normal distribu-
tion.

(b) Update estimates of (T)(” and (L)(i), using Egs. (B3)-
(B10) defined in Appendix B.

(c) Compute precision parameter (w)(f) using Eqgs. (B11)-
(B12) in Appendix B.

3. Report estimated source term (x) and its uncertainty Xy.

In Tichy et al. (2016), the problem was addressed using
a Bayesian approach. The difference from the optimization
approach is twofold. First, it has a different approximation of
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the covariance matrix Z:
E=LYLT, ®)

where matrix L models smoothness and matrix Y mod-
els closeness to the prior source term x?. Matrix Y =

diag (vy, ..., vy) is a diagonal matrix with positive entries,
while matrix L is a lower bi-diagonal matrix:
1 0 0 0
1 0 0
L= )
0 . 0
0 0 [—1 1

Second, the Bayesian approach allows us to estimate the
hyper-parameters Y and L from the data.

Specifically, it formulates a hierarchical probabilistic
model:

p(ylx, ) =N(Mx,cu‘11p) (10)
P (w) =G (Vo, o) » (11)
p(x|L,Y) =zj\/<x“, (LTLT)_I,[O, +oo]), (12)
p(vj) =G (@0, Bo), j=1,....n, (13)
(1) =N (=1y7"), j =1 (14
p(¥) =G @o.m0), j=1,...on. (15)

Here, N(p,X) denotes a multivariate normal distribu-
tion with a given mean vector and covariance matrix,
tN(w, X, [a,b]) denotes a multivariate normal distribution
truncated to given support [a, b] (for details, see Appendix
in Tichy et al., 2016), and G(«, B) denotes a gamma distri-
bution with given scalar parameters. Prior constants ¢ and
Bo are selected similarly to ¥ and pg as 1079, yielding a
noninformative prior, and prior constants o and 7o are se-
lected as 1072 to favor a smooth solution (equivalent to / |
prior value —1); see the discussion in Tichy et al. (2016). To
consider the prior vector x¢ is novel in the LS-APC model.

To estimate the parameters of the prior model (10), (11),
and (10)—(15), we will use two inference methods, varia-
tional Bayes’ approximation and Gibbs sampling.

2.3.1 Variational Bayes’ solution

The variational Bayes’ solution (§m1’d1 and Quinn, 2006)
seeks the posterior in the specific form of conditional inde-
pendence such as

p(x,v. L Y1 a1, 0ly) = p(x|y)p(v|y)pdly)
p(Wi,..n-11y) P(@]y). (16)

The best possible approximation minimizes Kullback—
Leibler divergence (Kullback and Leibler, 1951) between the
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estimated solution and hypothetical true posterior. This min-
imization uniquely determines the form of the posterior dis-
tribution:

pxly) =tNx (1x, Zx) (17
pWjly) =Gy, (), B;), Yji=1,...n, (18)
1Y) =N, (i, 21y), Vi=1,.n—1, (19)
pWjly) =Gy, (¢j.mj), Vj=1..n—1, (20)
p@ly) =Gy, (9, p), (21
for which the shaping parameters

Uy, Ex,aj,ﬁj,mj, le, ¢j»nj, v, and p are derived in
Appendix B. The shaping parameters are functions of stan-
dard moments of posterior distribution, which are denoted
here as ¥ and indicate the expected value with respect to the
distribution on the variable in the argument. The standard
moments together with shaping parameters form a set of im-
plicit equations solved iteratively; see Algorithm 2. Note that
only convergence to a local optimum is guaranteed; hence, a
good initialization and iteration strategy are beneficial (see
Algorithm 2 and the discussion in Tichy et al., 2016). The
algorithm is denoted as the LS-APC-VB algorithm.

2.3.2 Gibbs sampling solution

Algorithm 3 LS-APC-G algorithm for linear inverse prob-
lem.

1. Initialization

(a) Set an initial state for each variable
erry, LYy p—1, 0.

(b) Set iteration index j = 1.

X, v=

2. Until the preselected number of iterations is reached

(a) Sweep through all variables x,v,1,v;  ,_1,® and

sample from their respective full conditionals.
(b) Update the parameters of full conditionals based on
drawn samples.

3. Based on the histograms of samples, estimate the maximum,
mean, median, variance or any other desired statistic.

The Gibbs sampler is a Markov chain Monte Carlo method
for obtaining sequences of samples from distributions for
which direct sampling is difficult or intractable (Casella
and George, 1992). It is a special case of the Metropolis—
Hastings algorithm with the proposal distribution derived
directly from the model (Chib and Greenberg, 1995).
Given a joint probability density p(x,v,L, Y1, .—1,®,¥),
a full conditional distribution needs to be derived for each
variable or a block of variables; i.e., for x, distribution
p(x|v,L, Y1, n—1,w,y) has to be found. These full condi-
tionals then serve as proposal generators and have the same
form as Egs. (17)—(21). We use the original Gibbs sampler
from George and McCulloch (1993). Having samples from
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the last iteration, or a random initialization for the first iter-
ation, the algorithm sweeps through all variables and draws
samples from their respective full conditional distributions. It
can be shown that samples generated in such a manner form a
Markov chain whose stationary distribution, the distribution
to which the chain converges, is the original joint probability
density. Since the convergence of the algorithm can be very
slow, it is common practice to discard the first few obtained
samples. This is known as a burn-in period. The advantage
of this algorithm is its indifference to the initial state from
which sampling starts.

2.4 Tuning parameters and prior source term

All mentioned methods are sensitive to a certain extent to
the selection of their parameters. Here, we will identify these
tuning parameters and discuss their settings in the following
experiments. Moreover, we will discuss the selection of the
prior source term.

The optimization approach is summarized in Algorithm 1
wherein two key tuning parameters are needed: parameter
erry, which affects the closeness of a solution to the prior
source term through the matrix B, and parameter €, which
affects the smoothness of a solution. In the following experi-
ments, we select the parameter € by experience, while it can
be seen that the solution is similar for a relatively wide range
of values (a few orders of magnitude). The parameter err,
seems to be crucial for the optimization method and sensi-
tivity to the choice of this parameter will be studied, while
err, will be referred to as the tuning parameter. Note that
heuristic techniques such as the L-curve method (Hansen and
O’Leary, 1993) cannot be used here because of the modi-
fication of the matrix B within the algorithm. This will be
demonstrated in Sect. 3 (Fig. 2). The LS-APC-VB method,
summarized in Algorithm 2, also needs the selection of ini-
tial erry ; however, relatively low sensitivity to this choice was
reported (Tichy et al., 2016). The LS-APC-G method, sum-
marized in Algorithm 3, is also initialized using err,, while
its sensitivity to this choice is negligible due to the Gibbs
sampling mechanism.

To select the prior source term seems to be an even more
difficult problem, especially in cases of releases with lim-
ited available information. Therefore, we will investigate var-
ious errors in the prior source term, which can be considered
thanks to controlled experiments in which the true source
term is available. We consider the time shift of the prior
source term in contrast with the true source term, different
scales, and a blurred version of the true source term. These
errors can be examined alone or combined, which will prob-
ably be more realistic.

2.5 Tuning by cross-validation

While the tuning parameters selected in the previous section
are often selected manually, statistical methods for their se-
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lection are also available. One of the most popular is cross-
validation (Efron and Tibshirani, 1997), which we will in-
vestigate in the context of source term determination. The
method is really simple: all available data are split into train-
ing and testing datasets Y.in> Mirain, Yiest> a0d Miese. The
training dataset is then used for source term estimation, while
the test dataset is used for computation of the norm of the
residue of the estimated source term, ||y — Miest (X) |]2.
Such an estimate is known to be almost unbiased but with
large variance. Therefore, the procedure is repeated several
times and the tuning parameters are selected based on sta-
tistical evaluation of the results. In this experiment, we re-
peat the random selection of 80 % of the measurements as
the training set and using the remaining 20 % as the test set.
For each tuning parameter erry, this is repeated 100 times in
order to reach statistical significance of the selected tuning
parameter.

3 Sensitivity study on the ETEX dataset

The European Tracer Experiment (ETEX) is one of a few
large controlled tracer experiments (see https://rem.jrc.ec.
europa.eu/etex/, last access: 26 April 2020). We use data
from the first release in which a total amount of 340kg of
nearly inert perfluoromethylcyclohexane (PMCH) was re-
leased at a constant rate for nearly 12 h at Monterfil in Brit-
tany, France, on 23 October 1994 (Nodop et al., 1998). At-
mospheric concentrations of PMCH were monitored at 168
measurement stations across Europe with a sampling inter-
val of 3h and a total number of measurements of 3102. The
ETEX dataset has been used as a validation scenario for in-
verse modeling (see, e.g., Bocquet, 2007; Martinez-Camara
et al., 2014; Tichy et al., 2016). The great benefit of this
dataset is that the estimated source terms can be directly com-
pared with the true release given in Fig. 1 (first row) using
dashed red lines.

To calculate the SRS matrices, we used the La-
grangian particle dispersion model FLEXPART (Stohl et al.,
1998, 2005) version 8.1. We assume that the release period
occurred during 120 h period; thus, 120 forward calculations
of a 1h hypothetical unit release were performed and SRS
coefficients were calculated from simulated concentrations
corresponding to the 3102 measurements. As a result, we ob-
tained the SRS matrix M € R3192%120 FLEXPART is driven
by meteorological input data from the European Center for
Medium-Range Weather Forecasts (ECMWF) from which
different datasets are available. We used two: (i) data from
the 40-year reanalysis (ERA-40) and (ii) data from the con-
tinuously updated ERA-Interim reanalysis. The computed
matrices for ETEX are given in Appendix C together with
their associated singular values to demonstrate conditioning
of the problem.

The tested method will be compared in terms of the mean
absolute error (MAE) between the estimated and the true
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source term for different tuning parameters err,. We select
two representative values of the smoothing parameter € for
the optimization method. Specifically, we selected € = 107>
and € = 10™*, while higher values lead to overly smooth and
lower values to non-smooth solutions. We tested eight differ-
ent prior source terms x?; see Fig. 1, top row, black lines.
These included the following: x* equal to (i) the true source
term; (ii) zeros for all elements; (iii) true source term right-
shifted by five time steps; (iv) true source term scaled by a
factor of 2.0; (v) true source term blurred using a convolu-
tion kernel of five time steps, left-shifted by five time steps,
and scaled by a factor of 1.3; (vi) true source term substan-
tially right-shifted; (vii) true source term scaled by a factor
of 10; and (viii) source term with constant activity. The re-
sulting MAE:s for all tested methods and for all eight prior
source terms are displayed in Fig. 1 for ETEX with the ERA-
40 dataset in the second column and for ETEX with ERA-
Interim in the third row. The figures in the second and third
rows are accompanied by the MAE between the true source
term and the prior source term used, displayed with dashed
red lines.

3.1 Results

We observe that for all choices of the optimization method,
the results exhibit two notable modes of solution: the data
mode for tuning parameters with minimum impact on the
loss function and the prior mode for tuning parameter val-
ues that cause the prior to dominate the loss function. This
is notable for the results in the range of err, in Fig. 1. For
erry = 10710 the data term dominates the loss function, and
all methods converge to a similar answer (note that the data
mode is different for different smoothing parameters in the
optimization method).

For erry = 107, the loss function is dominated by the prior
and all estimates converge to x“. Although there are typi-
cally only two visibly stable modes of all the solutions (the
data and prior mode), we also observe a third mode in the
optimization solution, best seen, e.g., in Fig. 1 in the second
row and the fourth column or in the third row and the fifth
column, where the error significantly drops. These “sweet
spots” are the desired locations that we hope to find by tun-
ing of the hyper-parameters. While they are obvious when we
know the ground truth, the challenge is to find them without
this knowledge.

An attempt to find the optimal tuning via the L-curve
method (i.e., dependence between the norm of the solution
and the norm of the residuum between measurement and re-
construction) is displayed and demonstrated in two cases:
ETEX ERA-40 with x¢ 2.0 scaled (Fig. 2, left) and ETEX
ERA-Interim with x“ shifted, scaled, and blurred (Fig. 2,
right) for the optimization method with € = 107, In these
cases (and all others), L-curve shapes were not reached at all
and thus an optimum regularization parameter cannot be cho-
sen from these plots. The red crosses denote the value corre-
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Figure 1. The uppermost row of panels shows eight different prior source terms x¢ (black lines) used for the ETEX source term estimation.
The true ETEX source term is repeated in every panel (red dashed line). The middle and the lowermost rows display the mean absolute error
between estimated and true source terms for the ETEX ERA-40 and ETEX ERA-Interim datasets, respectively.

(a)

ETEX ERA-40, x* 2.0 scaled

(b)
1

ETEX ERA-Interim, x®

shifted, scaled, blurred

prior mode

data mode

x>

prior mode

/X‘/%

data mode of a solution. The LS-APC-G method suffers from

X

02 03

10 10

lly-M*<xs|| lly-Mr<xs]|

Figure 2. L-curve-type plots using the optimization algorithm with
€ = le —5 from ETEX ERA-40 with x¢ 2.0 scaled (a) and from
ETEX ERA-Interim with x¢ shifted, scaled, and blurred (b). The
red crosses denote “sweet spots”.

sponding to minima of MAEs. One can see that the sweet
spots are on the transition between the data mode and the
prior mode of solutions with no specific feature in these mea-
sures. More detailed analysis is presented in the next section.

The LS-APC-VB method also exhibits modes of solu-
tion; however, the transition between the data mode and the
prior source term mode seems to be rather fast. Notably, no
such transitions are observed in the case of the LS-APC-G
method. This is caused by the fact that the Gibbs sampling is
not sensitive to the selection of the initial state, as discussed
in Sect. 2.3.2. With the exception of x as a constant activity
(Fig. 1, eighth column), the LS-APC-VB method performs
better than the optimization method when approaching the
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overestimating the source term in time steps when the true
source term is zero and not enough evidence is available in
the data. This can clearly be seen in Figs. 3 and 4 where esti-
mates from the LS-APC-G method are displayed using green
lines; see especially the time steps between 15 and 45 h. This
is closely related to the low sensitivities in SRS matrices be-
tween the 15th and 45th columns; see Fig. C1 for an illustra-
tion.

3.2 Desired optima of the estimated source term

Here, we will discuss the behavior of the methods around the
regions of the tuning parameter with minimum MAE (sweet
spots) observed in the case of the optimization method. Note
that no such regions are observed in the case of the LS-APC-
VB and LS-APC-G methods. The temporal profiles of the
estimated source term at different penalization coefficients
selected around two different sweet spots are displayed in
Figs. 3 and 4.

Figure 3 displays results for the ETEX ERA-40 dataset
with the prior source term selected as the 2.0 times scaled
true source term. The top graph is a copy of sensitivity to
tuning in terms of MAE from Fig. 1 (second row, fourth col-
umn), and labels (a), (b), (¢), and (d) indicate selected val-
ues of tuning parameters for which the resulting estimated
source terms are shown in Fig. 3. The four estimates illustrate
the transition from the data mode of solution (a) to the prior
mode of solution (d). The data mode underestimates the true
release, while the prior mode overestimates it. As displayed

Geosci. Model Dev., 13, 5917-5934, 2020
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Figure 3. The uppermost panel shows mean absolute errors between
estimated and true source terms for the ETEX ERA-40 dataset with
x% 2.0 scaled for all methods. Certain settings of the tuning parame-
ter are highlighted and labeled with (a), (b), (c), and (d). Estimated
source terms for these tuning parameter choices are given in the
panels below. The lowermost panel displays the estimated source
terms from the LS-APC-VB and LS-APC-G algorithms for com-
parison.

in Fig. 3b and c, the slow transition between these two modes
allows us to approach the true source term closely, since the
chosen prior term is only a scaled version of the true release
and the sweet spot lies exactly between the two modes. Both
the LS-APC-VB and the LS-APC-G methods diverge from
the “good” solution since they consider it to be very unlikely
with respect to the observed data. Since no heuristics such as
the L-curve can identify this tuning as providing good results
(see Fig. 2, left), we argue that choosing the optimal setting
of the tuning parameter is not possible without knowledge of
the true source term and the occurrence of the sweet spot is
only a coincidence.

Figure 4 displays results for the ETEX ERA-Interim
dataset with the prior source term shifted, scaled, and blurred
in the same way as in the third row and fifth column of Fig. 3.
Here, the transition is not so sharp as in the previous case
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Figure 4. Same as Fig. 3 for the ETEX ERA-Interim dataset with
x“ shifted, scaled, and blurred.

since the true source term does not lie exactly on the tran-
sition between the data mode (panel a) and the prior mode
(panel d). The data mode (a) also contains nonzero elements,
mainly in the first half of the source term. The transition can
be seen in Fig. 4b and ¢ where the nonzero activity at the be-
ginning of the data mode is eliminated by using prior source
term information, while the nonzero elements are relatively
close to the true release (b). In (c), the zero activity in the first
half remains due to the prior source term; however, the esti-
mated activity within the true release period moves toward
the assumed prior source term. In (d), the estimation is al-
ready very close to the chosen prior source term. Once again,
the improvement appears to be coincidental rather than sys-
tematic.

We note that the two discussed sweet spots are selected
as representative cases and other observed sweet spots (see,
e.g., Fig. 3, the second or eighth column) are very similar in
nature. By analyzing the sweet spots, we conclude that they
represent a transition from the data mode to the prior mode
of solution. In some cases, the transition is very close to the
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Figure 5. The top left panel (a) shows the sensitivity of MAE to the
tuning parameter for the ETEX ERA-40 dataset with x¢ 2.0 scaled.
This is a repetition from Fig. 1. The chosen optimal setting based
on CV is shown with a thick red vertical line. The top right panel
(b) shows the error residuals of the CV experiments as a function
of the tuning parameter. Residuals are shown as box-and-whisker
plots, where the boxes extend between the 25th and 75th percentiles
(whiskers between 2.7 sigmas) and medians are marked with red
lines, while mean values are displayed using a solid magenta line.
The lowermost panel (c¢) shows the source term obtained with the
tuning parameter setting chosen via CV.

true release (see, e.g., Fig. 3), while in some cases, no point
on the transition path approaches the true solution (see, e.g.,
Fig. 4), and the data or prior mode is the closest.

3.3 Tuning by cross-validation

Since the LS-APC-VB and LS-APC-G methods provide
rather stable estimates of the source term, we will investi-
gate the use of cross-validation (CV) in optimization-based
approaches. The results of CV for the optimization method
with € = 107> for selected combinations are displayed in
Figs. 5, 6, and 7 in the top right panels: (i) ERA-40 with
x“ 2.0 scaled; (ii) ERA-Interim with x¢ shifted, blurred, and
scaled; and (iii) ERA-40 with x“ equal to the true source
term. The results are displayed using box plots where me-
dians are displayed using red lines inside boxes, while the
boxes cover the 25th and 75th quantiles. The mean values of
the residuals for each tuning parameter are displayed using
magenta lines. The value of the tuning parameter that min-
imizes the CV error is also visualized in the top left panels
using solid vertical red lines inside the graphs of MAE sen-
sitivity from Fig. 1. Bottom panels of figures display the es-
timated source terms using the tested methods for the tuning
parameter selected by cross-validation together with the true
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Figure 7. Same as Fig. 5 for the ETEX ERA-40 dataset with x¢
equal to the true source term.

source term (dashed red line) and the prior source term used
(full black line).

The results demonstrate significant differences between
the prior mode and the data mode of the solution, which can
be seen in all cross-validation box plots. This is also the case
for x¢, which is not displayed here. Notably, the minima of
cross-validation are not reached in the positions of the sweet
spots, indicating that the observed MAE minima are coinci-
dental. In all tested cases, the minima of cross-validation are
reached closer to the data mode than to the prior mode. This
is demonstrated for the extreme case of x¢ equal to the true
source term in Fig. 7. Even for this case, the minimum of
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Figure 8. Box-and-whisker plots of the MAE averaged over all ex-
plored prior source terms, with the tuning parameter settings deter-
mined by CV for the optimization method (left) and the LS-APC-
VB method (middle), as well as for the LS-APC-VB method using
a default erry setting of 100.

cross-validation is associated with the data mode rather than
the prior mode.

To evaluate the overall results, we compute the mean
MAE over all estimated source terms using the optimiza-
tion method with € = 107> and the tuning parameter erry se-
lected using cross-validation (CV) for each prior source term
x?. This result is given in Fig. 8 using a box-and-whisker
plot. The same box-and-whisker plots are also computed for
the LS-APC-VB method with the same scheme of selection
of tuning parameters err, using the cross-validation method
(denoted CV in Fig. 8) and for the LS-APC-VB algorithm
with the tuning parameter erry set to 10° as recommended
in Tichy et al. (2016) (denoted default in Fig. 8). These re-
sults suggest that the LS-APC-VB method with fixed start
(but weighted to data using selection of »(®) slightly outper-
forms other methods in terms of the mean MAE for ETEX
data with various assumed prior source terms without the ne-
cessity of exhaustive tuning.

4 Sensitivity study on the Chernobyl dataset

We demonstrate the sensitivity of the tuning methods to esti-
mation of the source term for the Chernobyl accident, which
became, together with the Fukushima accident, a widely dis-
cussed case in the inverse modeling literature. Specifically,
we study caesium-134 (Cs-134) and caesium-137 (Cs-137)
releases from the Chernobyl nuclear power plant (ChNPP).
For this purpose, we use a recently published dataset (Evan-
geliou et al., 2016) consisting of 4891 observations of Cs-134
and 12 281 observations of Cs-137. We use the same experi-
mental setup as in Evangeliou et al. (2017), which will now
briefly be described.

4.1 Atmospheric modeling

The Lagrangian particle dispersion model FLEXPART ver-
sion 10.3 (Stohl et al., 1998, 2005; Pisso et al., 2019) was
used to simulate the transport of radiocesium and to cal-
culate the SRS matrices. FLEXPART was driven by two
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meteorological reanalyses so that these can be compared.
First, ERA-Interim (Dee et al., 2011), a European Center for
Medium-Range Weather Forecast (ECMWF) reanalysis, was
used with a temporal resolution of 3 h and spatial resolution
of circa 80km on 60 vertical levels from the surface up to
0.1 hPa. Second, the ERA-40 (Uppala et al., 2005) ECMWF
reanalysis was used at a 125 km spatial resolution. The emis-
sions from the ChNPP are discretized into six 0.5 km high
vertical layers from O to 3km. The assumed temporal res-
olution is 3h from 00:00 UTC on 26 April to 21:00 UTC
on 5 May 1986, for which the forward runs of FLEXPART
are done. This period is selected according to the consensus
that the activity declined by approximately 6 orders of mag-
nitude after 5 May (De Cort et al., 1998). This discretized
the temporal-spatial domain to 480 assumed releases (80
temporal elements times 6 vertical layers) for each nuclide.
For each spatiotemporal element, concentration and deposi-
tion sensitivities are computed using 300 000 particles. Fol-
lowing Evangeliou et al. (2017), the aerosol tracers Cs-134
and Cs-137 are subject to wet (Grythe et al., 2017) and dry
(Stohl et al., 2005) deposition depending on different particle
sizes with aerodynamic mean diameters of 0.4, 1.2, 1.8, and
5.0 um. The distribution of mass is assumed as 15 %, 30 %,
40 %, and 15 % for 0.4, 1.2, 1.8, and 5.0 um particle sizes,
respectively, following measurements of Mal4 et al. (2013)
and computation results of Tichy et al. (2018).

4.2 Prior source term and measurement uncertainties

The exact temporal profile of the Chernobyl release is un-
certain, although certain features are commonly accepted
(De Cort et al., 1998). The first 3d correspond to higher
release with an initial explosion and release of part of the
fuel. The next 4 d correspond to lower releases, and the last
3 d correspond to higher releases again due to fires and core
meltdown. After these 10d, the released activity dropped by
several orders of magnitude (De Cort et al., 1998).

We follow the setup of Evangeliou et al. (2017) and con-
sider six previously estimated Chernobyl source terms of Cs-
134 and Cs-137 for which the criteria of consideration were
their sufficient temporal resolution and emission height infor-
mation. The source terms are taken from Brandt et al. (2002)
(two cases with the same amount of release but slightly dif-
ferent release heights), Persson et al. (1987), Izrael et al.
(1990), Abagyan et al. (1986), and Talerko (2005). See Evan-
geliou et al. (2017) for detailed descriptions and profiles. The
prior source term in our experiment is computed as their av-
erage emissions at a given time and height. In sum, the total
prior releases of Cs-134 and Cs-137 are 54 and 74 PBq, re-
spectively.

The uncertainties associated with measurements are rela-
tively high since both concentration and deposition measure-
ments are used from the dataset (Evangeliou et al., 2016).
As was pointed out by Gudiksen et al. (1989) and Winiarek
et al. (2014), deposition measurements may be biased by
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an unknown mass of radiocesium already deposited over
Europe from, e.g., nuclear weapons tests. This mass has,
however, been reported (De Cort et al., 1998) and already
subtracted from the dataset. Still, similarly to Evangeliou
et al. (2017), we consider relative measurement errors of
30 % for concentration measurements and 60 % for deposi-
tion measurements, while the absolute measurement errors
are handled in the same way as in Stohl et al. (2012). Here,
the measurement vector and SRS matrix are preconditioned
(scaled) using the matrix R, which is a diagonal matrix with
(agbs—}- (are]oy)z)il/2 on its diagonal, where o4 is as-
sumed absolute error, o is assumed relative error, and o de-
notes the Hadamard product (element-wise multiplication).
The scaling is then y . = Ry and Mgcaled = RML

4.3 Results

In this case, direct comparison of the estimates with the true
emission profile is not possible since this remains unknown.
Therefore, we will provide results of the tested methods as
the sensitivity of the total estimated release activity to tuning
parameters in the same way as in Sect. 3. Note that the total
release activity is a sum of releases from all six vertical layers
and all four aerosol size fractions. Due to this composition of
the problem, the selection of the smoothness parameter € in
the case of the optimization approach is relatively difficult
since specific selection may fit better for one vertical layer
than for another. We will provide results for two settings of
this parameter, € = 1072 and € = 10’4, leading to two dif-
ferent behaviors of the optimization method.

The resulting estimates of the total released activity are
displayed in Fig. 9 where the total of the prior source term
used x“ is displayed with a dashed red line (same for all
tested settings of the tuning parameter err, ). The estimated
total release activity with the use of the prior source term x¢
is displayed using full lines with colors given in the legend in
Fig. 9, while estimations without the use of this prior source
term, i.e., with x* =0, are given using dashed lines and re-
spective colors.

Similarly to the ETEX results, the results in Fig. 9 suggest
the occurrence of two main modes of solution, the data mode
and the prior mode, with a smooth transition between them in
the case of the LS-APC-VB and optimization methods. The
LS-APC-G method (evaluated only at four points denoted by
green squares due to high computational costs) has, again,
low sensitivity to the initialization of the tuning parameter.
However, the results of the LS-APC-G method are close to
the data mode of the remaining method, or higher than those.
Contrary to the previous results, the LS-APC-VB algorithm
does not provide a stable solution and suffers from the need
to select the tuning parameter. This signifies that the problem
is ill-conditioned even with the proposed regularization term;
thus, VB converges to various local minima. The optimiza-
tion method with both settings of the smoothness parameter
also has two modes of solution. In the prior mode of solu-
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tion (higher values of the tuning parameter), both settings ap-
proach the same total release activity for both nonzero (full
lines) and zero (dashed lines) prior source terms. The prior
mode is dominated by the prior source term used for an arbi-
trary smoothness parameter €. The difference can be seen in
the data mode whereby about one-third higher total released
activity was estimated for smoothness parameter € = 10~
than for smoothness parameter € = 10~2 on the same level
of tuning parameter err,. This is caused by the penalization
of high peaks of activity in the case of € = 1072, Thus, in
the data mode of solution, the smoothness parameter is much
more important than the prior source term used, which plays
almost no role here.

Notice that the estimated mass is higher in the data mode
than in the prior mode. This means that the model con-
strained by the measurement data alone would support a
higher total release amount than the a priori source term. The
true source term is not known; however, it is likely that the
data mode overestimates the true total release. This can hap-
pen when the SRS matrix is biased. For instance, removal
of radiocesium that is too rapid would lead to estimated air
concentrations with the correct source term that are too low,
and the inversion would compensate for the bias by increas-
ing the posterior source term (notice, though, that deposition
values would in this case be overestimated at least close to
the source, leading to the contrary effect for the deposition
data). Regardless, this effect shows that in the data mode, the
resulting source term is heavily influenced by possible biases
in the transport model.

4.4 Tuning by cross-validation

The same cross-validation scheme as in the case of ETEX
(Sect. 3.3) was used here for the Chernobyl datasets. The
train—test split was once again 80 %—-20 %, and the CV
was performed 50 times for each tuning parameter erry.
The cross-validation errors are displayed in Fig. 10 using
box plots and associated mean values of the residue er-
1015 || Yiest — Miest {(X) ||2. Here, the results are given for the
datasets of Cs-134 (top row) and Cs-137 (bottom row) with
FLEXPART driven with ERA-40 meteorological fields. We
will investigate CV for the tuning of parameters for the opti-
mization and the LS-APC-VB method. The results are pre-
sented for two x¢ configurations in Fig. 10: LS-APC-VB
with x4, LS-APC-VB with x¢ = 0, the optimization method
with x? and with smoothness parameter € = 1072, and the
optimization method with x* =0 and with smoothness pa-
rameter € = 102, For these, box plots are displayed together
with mean residuals using the same types of lines as in Fig. 9.
Moreover, minimal mean residuals are identified and denoted
using red circles in Fig. 10 for each graph, and their associ-
ated total activities are displayed in the legend of each graph.

In the case of Cs-134 (top row), the cross-validation was
able to determine optimal values of tuning parameters in the
case of all tested methods. The total estimated releases asso-
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Figure 10. Cross-validation for Chernobyl Cs-134 (top panels) and Cs-137 (bottom panels) source terms using FLEXPART driven with ERA-
40 meteorological reanalyses. Optima in the sense of cross-validation are denoted using red circles with total estimated releases reported in

the legends.

ciated with these tuning parameters are 87.1 PBq (LS-APC-
VB with x%), 56 PBq (LS-APC-VB with x¢ = 0), 69.7 PBq
(the optimization method with x“), and 43 PBq (the opti-
mization method with x¢ = 0), which are in accordance with
the mean of previously reported total activity of 54 PBq used
as a prior. Note that the prior-dominated modes have lower
residuals than the data-dominated modes in all cases. This
suggests that the prior source term used and applied to the
FLEXPART/ERA-40 simulation matches the measurements
well. On the other hand, this is not the case for Cs-137 for
which the prior-dominated modes have, with the exception
of LS-APC-VB with x% =0, significantly higher residuals
than the data-dominated modes. This may be caused by two
factors. First, the prior source term is less adequate for inter-
pretation of measurements of Cs-137 than those of Cs-134.
Second, all methods assume a quadratic loss function, which
may be less appropriate for this dataset and could cause over-

Geosci. Model Dev., 13, 5917-5934, 2020

estimation of the source term with the tuning parameter se-
lected using cross-validation in comparison with the previ-
ously reported 74 PBq used as a prior. We note that similar
results were also observed with the ERA-Interim dataset.

The results suggest that a well-selected prior source term
can bind the solution to acceptable values and prevent the oc-
currence of extreme outliers. On the other hand, we observed
that the regularization terms commonly used to compensate
for errors of the SRS matrices are not able to compensate
for the error caused by inaccurate SRS matrices. Further re-
search is clearly needed to develop a more relevant method
of regularization.

5 Conclusions

Methods for the determination of the source term of an at-
mospheric release have to cope with inaccurate prediction

https://doi.org/10.5194/gmd-13-5917-2020
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models often represented by the source—receptor sensitivity
(SRS) matrix. Relying solely on the SRS matrix using a best
estimate of weather and dispersion parameters may lead to
highly inaccurate results. We have shown that various reg-
ularization terms introduced by different inversion methods
are essentially coarse approximations of the error of the SRS
matrix, and thus we can evaluate their suitability using meth-
ods of statistical model validation. We have performed sen-
sitivity tests of inverse modeling methods to the selection
of the prior source term (first guess) and other tuning pa-
rameters for two selected inversion methods: the optimiza-
tion method (Eckhardt et al., 2008) and the LS-APC method
(Tichy et al., 2016). These were preformed on datasets from
the ETEX controlled release and the Chernobyl releases of
caesium-134 and caesium-137.

We have observed that the results have two strong modes
of solution: the data mode for minimal influence of the prior
on the loss and the prior mode for the loss function with
significant influence of the prior. The prior mode is natu-
rally significantly influenced by the choice of the prior source
term. However, the dominant impact on the resulting esti-
mate has the choice of the regularization. In the case of the
ETEX dataset, good estimates were obtained for every choice
of the prior source term; however, the regularization has to be
carefully tuned. For some choices of the prior source term,
the error of the estimated source term was exceptionally low
for good selection of the tuning parameters. After analyzing
these minima, we conjecture that they are caused by coin-
cidence. These minima are visible only in comparison with
the ground truth; they have no visible impact on the common
validation metrics such as the L-curve or cross-validation and
thus cannot be objectively identified.

We have tested the suitability of the cross-validation ap-
proach for selection of the tuning parameters for both meth-
ods. In the case of the ETEX release, we have observed that
this approach tends to select modes closer to the data mode
than the prior mode of solution. However, this is not the case
of the Chernobyl Cs-134 release for which cross-validation
selects solutions close to the prior-dominated mode. This
may be caused by the fact that the prior source term used
here fits the measurements well, and only small corrections
by the inversion are needed.
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An interesting question is whether it is beneficial to use
a nonzero prior source term at all. Considering ETEX, for
which the true release is known, one can see that the esti-
mates in data modes are often even better than the considered
prior source terms. On the other hand, when the prior source
term used is close to the true release, which is probably the
case for the Chernobyl Cs-134 release, its use seems benefi-
cial. Also, the prior source term could be valuable in cases
when the release is not fully seen by the measurement net-
work and thus the measurements do not provide a good con-
straint for the source term estimation. However, determining
the reliability of the prior source term is difficult and even
impossible in real-world scenarios, and the prior source term
would probably be shifted, scaled, and/or blurred. We recom-
mend tackling this task using the cross-validation approach,
providing a reasonable although computationally expensive
tool for determination at least between a prior-dominated
mode or a data-dominated mode of solution. A more so-
phisticated approach is to design a different regularization
of the error term Ay exploiting, e.g., sensitivities to local
changes in concentrations around the measuring sites. The
information about sensitivity is already available from an at-
mospheric transport model but it is not fully exploited with
current source term determination methods.

Geosci. Model Dev., 13, 5917-5934, 2020
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Appendix A: Derivation of residuum between
measurement and reconstruction

From Eq. (2), y = (M+ Apm)x can be rewritten using the
subtraction of Mx“ and Apx? from both sides, yielding

y—Mx? — Apx® =M (x —x%) + Am (x —x9), (AD)
which can be read as
¥ =MXx + Apx + Apx? (A2)

for commonly used substitutions y = y — Mx“% and x = x —
x?. This means that the minimization of Eq. (A2) is equiva-
lent to the minimization of the former Eq. (2). Thus,

min||y — Mx — Aypx|[3 <= min|y

—Mx — AmX — Apmx‘3 =

=min | ¥y -2y Mx +x M Mx
X

[y—Mx|[3

—2(5" Am— (Anx) M- (Anx) " Am) ¥

linear in X

+57 (M7 Av+ MM+ AL A )7 |

[

where terms independent of X are omitted.
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Appendix B: Shaping parameters of LS-APC-VB
posteriors

%, =((a))MTM—|—<LTLT>)71, (B1)
e = (@) M7y +(LTLT)x7), (B2)
o« =ap+ %1,“, (B3)
B =Po+ %diag ((L7xx"L)) (B4)

_diag <<LTx“xTL>) + %diag ((LTx“x“TL» . (B5)
), =((uj)(xj.+l>+(wj))_l, (B6)
=2, — o))+ D) @)
+ (1) (xj.<x>,+l +xd () - xjx7)>, (B8)

1

gj =§o+§, (B9)
1 2
n =m0+ —10). (B10)
0=ﬁo+§, (B11)
_ 1 T T 1 T
P—Po+§tr<<xx >M M)—§2y M (x)
1 T
+§y y. (B12)
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Appendix C: SRS matrices used for the ETEX and
Chernobyl experiments

SRS matrices for ETEX are displayed in Fig. C1 for illus-
tration. The SRS matrix computed using ERA-40 reanalyses
is in the left column, while the SRS matrix computed using
ERA-Interim is in the right column. The matrices are associ-
ated with their singular values displayed in the bottom row.
These illustrate properties of the matrices and, importantly,
their ill conditionality.

(a) FLEXPART, ERA-40 (b) FLEXPART, ERA-Interim
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Figure C1. ETEX SRS matrices computed using FLEXPART driven by meteorological input data from the European Center for Medium-
Range Weather Forecasts (ECMWF). (a, ¢) Data from the 40-year reanalysis (ERA-40) and (b, d) data from the continuously updated
ERA-Interim reanalysis. The matrices are associated with their singular values (bottom row).
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Code and data availability. All data used for the present publica-
tion can be freely downloaded from https://rem.jrc.ec.europa.eu/
etex/ (last access: 26 April 2020, Nodop et al., 1998) and from
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model versions 8.1 and 10.3 are open-source and freely avail-
able from their developers at https://www.flexpart.eu/ (last access:
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mentations of algorithms can be downloaded from http://www.utia.
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