Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5583-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5583-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
Carley E. Iles
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL, CEA-CNRS-UVSQ, Université
Paris-Saclay, Gif-sur-Yvette, France
Robert Vautard
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL, CEA-CNRS-UVSQ, Université
Paris-Saclay, Gif-sur-Yvette, France
Jane Strachan
Met Office Hadley Centre, Exeter, UK
Sylvie Joussaume
Laboratoire des Sciences du Climat et de l'Environnement,
LSCE/IPSL, CEA-CNRS-UVSQ, Université
Paris-Saclay, Gif-sur-Yvette, France
Bernd R. Eggen
Met Office Hadley Centre, Exeter, UK
Chris D. Hewitt
Met Office Hadley Centre, Exeter, UK
Centre for Applied Climate Sciences, University of Southern
Queensland, Toowoomba, Australia
Related authors
Carley Elizabeth Iles, Bjørn Hallvard Samset, and Marianne Tronstad Lund
EGUsphere, https://doi.org/10.5194/egusphere-2025-4115, https://doi.org/10.5194/egusphere-2025-4115, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Polar sea ice changes and midlatitude weather affect each other, but how these teleconnections play out differ between the poles and between sea ice regions. Knowing how they interact is important for climate risk assessments, but few studies have investigated how the teleconnections evolve with global warming. Using large ensembles of climate model simulations, we find teleconnections patterns that differ between sea ice regions, but are quite robust to changes in global surface temperature.
Nina Schuhen, Carley E. Iles, Marit Sandstad, Viktor Ananiev, and Jana Sillmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3331, https://doi.org/10.5194/egusphere-2025-3331, 2025
Short summary
Short summary
As climate changes, extremes are becoming increasingly frequent. We investigate the time of emergence for a large range of different extremes, meaning the earliest time when a significant change in these extremes can be detected beyond natural variability, whether in the past or in the future. The results based on 21 global climate models show considerable differences between regions, types of indices and emissions scenarios, as well as between temperature and precipitation extremes.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Carley Elizabeth Iles, Bjørn Hallvard Samset, and Marianne Tronstad Lund
EGUsphere, https://doi.org/10.5194/egusphere-2025-4115, https://doi.org/10.5194/egusphere-2025-4115, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Polar sea ice changes and midlatitude weather affect each other, but how these teleconnections play out differ between the poles and between sea ice regions. Knowing how they interact is important for climate risk assessments, but few studies have investigated how the teleconnections evolve with global warming. Using large ensembles of climate model simulations, we find teleconnections patterns that differ between sea ice regions, but are quite robust to changes in global surface temperature.
Nina Schuhen, Carley E. Iles, Marit Sandstad, Viktor Ananiev, and Jana Sillmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-3331, https://doi.org/10.5194/egusphere-2025-3331, 2025
Short summary
Short summary
As climate changes, extremes are becoming increasingly frequent. We investigate the time of emergence for a large range of different extremes, meaning the earliest time when a significant change in these extremes can be detected beyond natural variability, whether in the past or in the future. The results based on 21 global climate models show considerable differences between regions, types of indices and emissions scenarios, as well as between temperature and precipitation extremes.
Duncan Watson-Parris, Laura J. Wilcox, Camilla W. Stjern, Robert J. Allen, Geeta Persad, Massimo A. Bollasina, Annica M. L. Ekman, Carley E. Iles, Manoj Joshi, Marianne T. Lund, Daniel McCoy, Daniel M. Westervelt, Andrew I. L. Williams, and Bjørn H. Samset
Atmos. Chem. Phys., 25, 4443–4454, https://doi.org/10.5194/acp-25-4443-2025, https://doi.org/10.5194/acp-25-4443-2025, 2025
Short summary
Short summary
In 2020, regulations by the International Maritime Organization aimed to reduce aerosol emissions from ships. These aerosols previously had a cooling effect, which the regulations might reduce, revealing more greenhouse gas warming. Here we find that, while there is regional warming, the global 2020–2040 temperature rise is only +0.03 °C. This small change is difficult to distinguish from natural climate variability, indicating the regulations have had a limited effect on observed warming to date.
Paul J. Durack, Karl E. Taylor, Peter J. Gleckler, Gerald A. Meehl, Bryan N. Lawrence, Curt Covey, Ronald J. Stouffer, Guillaume Levavasseur, Atef Ben-Nasser, Sebastien Denvil, Martina Stockhause, Jonathan M. Gregory, Martin Juckes, Sasha K. Ames, Fabrizio Antonio, David C. Bader, John P. Dunne, Daniel Ellis, Veronika Eyring, Sandro L. Fiore, Sylvie Joussaume, Philip Kershaw, Jean-Francois Lamarque, Michael Lautenschlager, Jiwoo Lee, Chris F. Mauzey, Matthew Mizielinski, Paola Nassisi, Alessandra Nuzzo, Eleanor O’Rourke, Jeffrey Painter, Gerald L. Potter, Sven Rodriguez, and Dean N. Williams
EGUsphere, https://doi.org/10.5194/egusphere-2024-3729, https://doi.org/10.5194/egusphere-2024-3729, 2025
Short summary
Short summary
CMIP6 was the most expansive and ambitious Model Intercomparison Project (MIP), the latest in a history, extending four decades. CMIP engaged a growing community focused on improving climate understanding, and quantifying and attributing observed climate change being experienced today. The project's profound impact is due to the combining the latest climate science and technology, enabling the latest-generation climate simulations and increasing community attention in every successive phase.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Sebastian Sippel, Clair Barnes, Camille Cadiou, Erich Fischer, Sarah Kew, Marlene Kretschmer, Sjoukje Philip, Theodore G. Shepherd, Jitendra Singh, Robert Vautard, and Pascal Yiou
Weather Clim. Dynam., 5, 943–957, https://doi.org/10.5194/wcd-5-943-2024, https://doi.org/10.5194/wcd-5-943-2024, 2024
Short summary
Short summary
Winter temperatures in central Europe have increased. But cold winters can still cause problems for energy systems, infrastructure, or human health. Here we tested whether a record-cold winter, such as the one observed in 1963 over central Europe, could still occur despite climate change. The answer is yes: it is possible, but it is very unlikely. Our results rely on climate model simulations and statistical rare event analysis. In conclusion, society must be prepared for such cold winters.
Davide Faranda, Gabriele Messori, Erika Coppola, Tommaso Alberti, Mathieu Vrac, Flavio Pons, Pascal Yiou, Marion Saint Lu, Andreia N. S. Hisi, Patrick Brockmann, Stavros Dafis, Gianmarco Mengaldo, and Robert Vautard
Weather Clim. Dynam., 5, 959–983, https://doi.org/10.5194/wcd-5-959-2024, https://doi.org/10.5194/wcd-5-959-2024, 2024
Short summary
Short summary
We introduce ClimaMeter, a tool offering real-time insights into extreme-weather events. Our tool unveils how climate change and natural variability affect these events, affecting communities worldwide. Our research equips policymakers and the public with essential knowledge, fostering informed decisions and enhancing climate resilience. We analysed two distinct events, showcasing ClimaMeter's global relevance.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Clemens Schwingshackl, Anne Sophie Daloz, Carley Iles, Kristin Aunan, and Jana Sillmann
Nat. Hazards Earth Syst. Sci., 24, 331–354, https://doi.org/10.5194/nhess-24-331-2024, https://doi.org/10.5194/nhess-24-331-2024, 2024
Short summary
Short summary
Ambient heat in European cities will substantially increase under global warming, as projected by three heat metrics calculated from high-resolution climate model simulations. While the heat metrics consistently project high levels of ambient heat for several cities, in other cities the projected heat levels vary considerably across the three heat metrics. Using complementary heat metrics for projections of ambient heat is thus important for assessments of future risks from heat stress.
Robert Vautard, Geert Jan van Oldenborgh, Rémy Bonnet, Sihan Li, Yoann Robin, Sarah Kew, Sjoukje Philip, Jean-Michel Soubeyroux, Brigitte Dubuisson, Nicolas Viovy, Markus Reichstein, Friederike Otto, and Iñaki Garcia de Cortazar-Atauri
Nat. Hazards Earth Syst. Sci., 23, 1045–1058, https://doi.org/10.5194/nhess-23-1045-2023, https://doi.org/10.5194/nhess-23-1045-2023, 2023
Short summary
Short summary
A deep frost occurred in early April 2021, inducing severe damages in grapevine and fruit trees in France. We found that such extreme frosts occurring after the start of the growing season such as those of April 2021 are currently about 2°C colder [0.5 °C to 3.3 °C] in observations than in preindustrial climate. This observed intensification of growing-period frosts is attributable, at least in part, to human-caused climate change, making the 2021 event 50 % more likely [10 %–110 %].
Sjoukje Y. Philip, Sarah F. Kew, Geert Jan van Oldenborgh, Faron S. Anslow, Sonia I. Seneviratne, Robert Vautard, Dim Coumou, Kristie L. Ebi, Julie Arrighi, Roop Singh, Maarten van Aalst, Carolina Pereira Marghidan, Michael Wehner, Wenchang Yang, Sihan Li, Dominik L. Schumacher, Mathias Hauser, Rémy Bonnet, Linh N. Luu, Flavio Lehner, Nathan Gillett, Jordis S. Tradowsky, Gabriel A. Vecchi, Chris Rodell, Roland B. Stull, Rosie Howard, and Friederike E. L. Otto
Earth Syst. Dynam., 13, 1689–1713, https://doi.org/10.5194/esd-13-1689-2022, https://doi.org/10.5194/esd-13-1689-2022, 2022
Short summary
Short summary
In June 2021, the Pacific Northwest of the US and Canada saw record temperatures far exceeding those previously observed. This attribution study found such a severe heat wave would have been virtually impossible without human-induced climate change. Assuming no nonlinear interactions, such events have become at least 150 times more common, are about 2 °C hotter and will become even more common as warming continues. Therefore, adaptation and mitigation are urgently needed to prepare society.
Kathrin Wehrli, Fei Luo, Mathias Hauser, Hideo Shiogama, Daisuke Tokuda, Hyungjun Kim, Dim Coumou, Wilhelm May, Philippe Le Sager, Frank Selten, Olivia Martius, Robert Vautard, and Sonia I. Seneviratne
Earth Syst. Dynam., 13, 1167–1196, https://doi.org/10.5194/esd-13-1167-2022, https://doi.org/10.5194/esd-13-1167-2022, 2022
Short summary
Short summary
The ExtremeX experiment was designed to unravel the contribution of processes leading to the occurrence of recent weather and climate extremes. Global climate simulations are carried out with three models. The results show that in constrained experiments, temperature anomalies during heatwaves are well represented, although climatological model biases remain. Further, a substantial contribution of both atmospheric circulation and soil moisture to heat extremes is identified.
Linh N. Luu, Robert Vautard, Pascal Yiou, and Jean-Michel Soubeyroux
Earth Syst. Dynam., 13, 687–702, https://doi.org/10.5194/esd-13-687-2022, https://doi.org/10.5194/esd-13-687-2022, 2022
Short summary
Short summary
This study downscales climate information from EURO-CORDEX (approx. 12 km) output to a higher horizontal resolution (approx. 3 km) for the south of France. We also propose a matrix of different indices to evaluate the high-resolution precipitation output. We find that a higher resolution reproduces more realistic extreme precipitation events at both daily and sub-daily timescales. Our results and approach are promising to apply to other Mediterranean regions and climate impact studies.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Geert Jan van Oldenborgh, Folmer Krikken, Sophie Lewis, Nicholas J. Leach, Flavio Lehner, Kate R. Saunders, Michiel van Weele, Karsten Haustein, Sihan Li, David Wallom, Sarah Sparrow, Julie Arrighi, Roop K. Singh, Maarten K. van Aalst, Sjoukje Y. Philip, Robert Vautard, and Friederike E. L. Otto
Nat. Hazards Earth Syst. Sci., 21, 941–960, https://doi.org/10.5194/nhess-21-941-2021, https://doi.org/10.5194/nhess-21-941-2021, 2021
Short summary
Short summary
Southeastern Australia suffered from disastrous bushfires during the 2019/20 fire season, raising the question whether these have become more likely due to climate change. We found no attributable trend in extreme annual or monthly low precipitation but a clear shift towards more extreme heat. However, this shift is underestimated by the models. Analysing fire weather directly, we found that the chance has increased by at least 30 %, but due to the underestimation it could well be higher.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Sjoukje Philip, Sarah Kew, Geert Jan van Oldenborgh, Friederike Otto, Robert Vautard, Karin van der Wiel, Andrew King, Fraser Lott, Julie Arrighi, Roop Singh, and Maarten van Aalst
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, https://doi.org/10.5194/ascmo-6-177-2020, 2020
Short summary
Short summary
Event attribution studies can now be performed at short notice. We document a protocol developed by the World Weather Attribution group. It includes choices of which events to analyse, the event definition, observational analysis, model evaluation, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis, and communication procedures. The protocol will be useful for future event attribution studies and as a basis for an operational attribution service.
Cited articles
Anstey, J. A., Davini, P., Gray, L. J., Woollings, T. J., Butchart, N.,
Cagnazzo, C., Christiansen, B., Hardiman, S. C., Osprey, S. M., and Yang, S.:
Multi-model analysis of Northern Hemisphere winter blocking: Model biases
and the role of resolution, J. Geophys. Res.-Atmos., 118, 3956–3971, https://doi.org/10.1002/jgrd.50231, 2013.
Bador, M., Boé, J., Terray, L., Alexander, L. V., Baker, A., Bellucci,
A., Haarsma, R., Koenigk, T., Moine, M.-P., Lohmann, K, Putrasahan, D. A., Roberts, C., Roberts, M., Scoccimarro, E.,
Schiemann, R., Seddon, J., Senan, R., Valcke, S., and Vanniere, B.: Impact of higher spatial atmospheric
resolution on precipitation extremes over land in global climate models, J.
Geophys. Res.-Atmos., 125, e2019JD032184, https://doi.org/10.1029/2019JD032184, 2020.
Baker, A. J., Schiemann, R., Hodges, K. I., Demory, M., Mizielinski, M. S.,
Roberts, M. J., Shaffrey, L. C., Strachan, J., and Vidale, P. L.: Enhanced
Climate Change Response of Wintertime North Atlantic Circulation, Cyclonic
Activity, and Precipitation in a 25-km-Resolution Global Atmospheric
Model, J.
Climate, 32, 7763–7781, https://doi.org/10.1175/JCLI-D-19-0054.1,
2019.
Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing
climate: Does short-term summer precipitation increase faster?, Geophys.
Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015.
Bazile, E., Abida, R., Verrelle, A., Le Moigne, P., and Szczypta, C.: Report
for the 55years MESCAN-SURFEX re-analysis, deliverable D2.8 of the UERRA
project, 22 pp., available at:
http://www.uerra.eu/publications/deliverable-reports.html (last access: 21 February 2020), 2017.
Berckmans, J., Woollings, T., Demory, M. E., Vidale, P.-L., and Roberts, M.:
Atmospheric blocking in a high resolution climate model: influences of mean
state, orography and eddy forcing, Atmos. Sci. Lett., 14, 34–40,
https://doi.org/10.1002/asl2.412, 2013.
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez,
J.M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D.,
Keuler, K., Nikulin, G., Teichmann C., and Vautard, R.: Daily precipitation
statistics in a EURO-CORDEX RCM ensemble: added value of raw and
bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737,
https://doi.org/10.1007/s00382-015-2865-x, 2016.
Cattiaux, J., Vautard, R., Cassou, C., Yiou, P., Masson-Delmotte, V., and
Codron, F.: Winter 2010 in Europe: A cold extreme in a warming climate,
Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613, 2010.
Cattiaux, J., Quesada, B., Arakélian, A., Codron, F., Vautard, R., and Yiou, P.: North-Atlantic dynamics and European temperature extremes in the IPSL
model: sensitivity to atmospheric resolution, Clim. Dynam., 40, 2293–2310,
https://doi.org/10.1007/s00382-012-1529-3, 2013.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Colle, B. A., Zhang, Z., Lombardo, K., Liu, P., Chang, E., and Zhang, M.:
Historical evaluation and future prediction in Eastern North America and
western Atlantic extratropical cyclones in the CMIP5 models during the cool
season, J. Climate, 26, 882–903, https://doi.org/10.1175/JCLI-D-12-00498.1, 2013.
Copernicus Climate Data Store: available at: https://cds.climate.copernicus.eu/#!/home, last access: 28 January 2020.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders,
I., Ban, N., Bastin, S., Belda, M., Belusic, D., Caldas-Alvarez, A.,
Margarida Cardos, R., Davolio, S., Dobler, A., Fernandez, J., Fita Borrell,
L., Fumiere, Q., Giorgi, F., Goergen, K., Guettler, I., Halenka, T.,
Heinzeller, D., Hodnebrog, Ø., Jacob, D., Kartsios, S., Katragko, E.,
Kendon, E., Khodayar, S., Kunstmann, H., Knist, S., Lavín, A., Lind,
P., Lorenz, T., Maraun, D., Marelle, L., van Meijgaard, E., Milovac, J.,
Myhre, G., Panitz, H.-J., Piazza, M., Raffa, M., Raub, T., Rockel, B.,
Schär, C., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Stocchi,
P., Tölle, M., Truhetz, H., Vautard, R., de Vries, H., and Warrach-Sagi,
K.: A first-of-its-kind multi-model convection permitting ensemble for
investigating convective phenomena over Europe and the Mediterranean, Clim.
Dynam., 55, 3–34,
https://doi.org/10.1007/s00382-018-4521-8, 2020.
Dahlgren, P., Landelius, T., Kållberg, P., and Gollvik, S., A
high-resolution regional reanalysis for Europe. Part 1: Three-dimensional
reanalysis with the regional HIgh-Resolution Limited-Area Model (HIRLAM),
Q. J. Roy. Meteor. Soc., 142, 2119–2131, https://doi.org/10.1002/qj.2807, 2016.
Davini, P., Corti, S., D'Andrea, F., Rivière, G., and von Hardenberg,
J.: Improved Winter European Atmospheric Blocking Frequencies in
High-Resolution Global Climate Simulations, J. Adv. Model. Earth Syst., 9,
2615–2634, https://doi.org/10.1002/2017MS001082, 2017a.
Davini, P., von Hardenberg, J., Corti, S., Christensen, H. M., Juricke, S., Subramanian, A., Watson, P. A. G., Weisheimer, A., and Palmer, T. N.: Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model, Geosci. Model Dev., 10, 1383–1402, https://doi.org/10.5194/gmd-10-1383-2017, 2017b.
Davini, P. and D'Andrea, F.: From CMIP-3 to CMIP-6: Northern Hemisphere
atmospheric blocking simulation in present and future climate, J. Climate, 33, 10021–10038,
https://doi.org/10.1175/JCLI-D-19-0862.1, 2020.
Dawson, A. and Palmer, T. N.: Simulating weather regimes: impact of model
resolution and stochastic parameterization, Clim. Dynam., 44, 2177–2193,
https://doi.org/10.1007/s00382-014-2238-x, 2015.
Dawson, A., Palmer, T. N., and Corti, S.: Simulating regime structures in
weather and climate prediction models, Geophys. Res. Lett., 39, L21805,
https://doi.org/10.1029/2012GL053284, 2012.
Demory, M.-E., Vidale, P. L., Roberts, M. J., Berrisford, P., Strachan, J.,
Schiemann, R., and Mizielinski, M. S.: The role of horizontal resolution in
simulating drivers of the global hydrological cycle, Clim. Dynam., 42,
2201–2225, https://doi.org/10.1007/s00382-013-1924-4, 2014.
Demory, M.-E., Berthou, S., Sørland, S. L., Roberts, M. J., Beyerle, U., Seddon, J., Haarsma, R., Schär, C., Christensen, O. B., Fealy, R., Fernandez, J., Nikulin, G., Peano, D., Putrasahan, D., Roberts, C. D., Steger, C., Teichmann, C., and Vautard, R.: Can high-resolution GCMs reach the level of information provided by 12–50 km CORDEX RCMs in terms of daily precipitation distribution?, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-370, in review, 2020.
de Vries, H., Scher, S., Haarsma, R., Drijfhout, S., and van Delden, A.:
How Gulf-Stream SST-fronts influence Atlantic winter storms, Clim. Dynam.,
52, 5899–5909, https://doi.org/10.1007/s00382-018-4486-7, 2019.
Donat, M. G., Leckebusch, G. C., Wild, S., and Ulbrich, U.: Benefits and limitations
of regional multi-model ensembles for storm loss estimations, Clim. Res.,
44, 211–225, https://doi.org/10.3354/cr00891, 2010.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012.
ECAD E-OBS gridded dataset: available at: https://www.ecad.eu/download/ensembles/download.php, last access: 20 November 2017.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Fabiano, F., Christensen, H. M., Strommen, K., Athanasiadis, P., Baker, A.,
Schiemann, R., and Corti, S.: Euro-Atlantic weather Regimes in the PRIMAVERA
coupled climate simulations: impact of resolution and mean state biases on
model performance, Clim. Dynam., 54, 5031–5048, https://doi.org/10.1007/s00382-020-05271-w, 2020.
Fantini, A., Raffaele, F., Torma, C., Bacer, S., Coppola, E., Giorgi, F.,
Ahrens, B., Dubois, C., Sanchez, E., and Verdecchia, M.: Assessment of
multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and
EURO-CORDEX experiments against high resolution observations, Clim. Dynam., 51,
877–900, https://doi.org/10.1007/s00382-016-3453-4, 2018.
Førland, E. J., Allerup, P., Dahlström, B., Elomaa, E., Jonsson, T., Madsen, H., Perala, J., Rissanen, P., Vedin, H., and Vejen, F.: M.: Manual for Operational Correction
of Nordic Precipitation Data, Norwegian Meteorological Institute, Oslo, Norway, Report no. 24/96, ISSN 0805-9918, 72 pp.,
1996.
Gao, J., G., Shoshiro, M., Roberts, M. J., Haarsma, R., Putrasahan, D.,
Roberts, C. D., Scoccimarro, E., Terray, L., Vannière, B., and Vidale, P.
L.: Influence of model resolution on bomb cyclones revealed by
HighResMIP-PRIMAVERA simulations, Environ. Res. Lett., 15, 084001, https://doi.org/10.1088/1748-9326/ab88fa, 2020.
Giorgi F., Jones C., and Asrar G. R.: Addressing climate information needs at
the regional level: the CORDEX framework, WMO Bull., 58, 175–183, 2009.
Goodison, B. E., Louie, P. Y., and Yang, D.: The WMO solid precipitation
measurement intercomparison, World Meteorological
Organization-Publications-WMO TD, Geneva, Switzerland, Report No. 67, 65–70, 1997.
Gutjahr, O., Schefczyk, L., Reiter, P., and Heinemann, G.: Impact of the
horizontal resolution on the simulation of extremes in COSMO-CLM, Meteorol.
Z., 25, 543–562, https://doi.org/10.1127/metz/2016/0638, 2016.
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016.
Hart, N. C. G., Washington, R., and Stratton, R. A.: Stronger local
overturning in convective-permitting regional climate model improves
simulation of the subtropical annual cycle, Geophys. Res. Lett., 45,
11334–11342, https://doi.org/10.1029/2018GL079563, 2018.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P.
D., and New, M.: A European daily high-resolution gridded data set of surface
temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113,
D20119, https://doi.org/10.1029/2008JD010201, 2008.
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019.
Herrmann, M., Somot, S., Calmanti, S., Dubois, C., and Sevault, F.: Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration, Nat. Hazards Earth Syst. Sci., 11, 1983–2001, https://doi.org/10.5194/nhess-11-1983-2011, 2011.
Hersbach, H., Bell, B., Berrisford, P., Horányi, A., Muñoz-Sabater,
J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D.:
Global reanalysis: goodbye ERA-Interim, hello ERA5, ECMWF Newsletter, 159, 17–24,
https://doi.org/10.21957/vf291hehd7, 2019.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Ko-vats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research,
Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda, M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A., Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E. L., Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A., García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K., Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C., Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S., Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E., Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P., Montávez, J. P., Navarra, A., Nikulin, G., de Noblet-Ducoudré, N., Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J.-P., Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R., Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L., Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate downscaling over
Europe: perspectives from the EURO-CORDEX community, Reg. Environ. Change, 20, 1–20,
https://doi.org/10.1007/s10113-020-01606-9, 2020.
Jézéquel, A., Yiou, P., and Radanovics, S.: Role of circulation in
European heatwaves using flow analogues, Clim. Dynam., 50, 1145–1159,
https://doi.org/10.1007/s00382-017-3667-0, 2018.
Jourdier, B.: Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France, Adv. Sci. Res., 17, 63–77, https://doi.org/10.5194/asr-17-63-2020, 2020.
Jung, T., Gulev, S. K., Rudeva, I., and Soloviov, V.: Sensitivity of
extratropical cyclone characteristics to horizontal resolution in the ECMWF
model, Q. J. Roy. Meteor. Soc., 132, 1839–1857, https://doi.org/10.1256/qj.05.212, 2006.
Jung, T., Miller, M. J., Palmer, T. N., Towers, P., Wedi, N., Achuthavarier,
D., Adams, J. M., Altshuler, E. L., Cash, B. A., Kinter, J. L., Marx, L.,
Stan, C., and Hodges, K. I.: High-Resolution Global Climate Simulations with
the ECMWF Model in Project Athena: Experimental Design, Model Climate, and
Seasonal Forecast Skill, J. Climate, 25, 3155–3172,
https://doi.org/10.1175/JCLI-D-11-00265.1, 2012.
Kendon, E. J., Roberts, N. M., Senior, C. A., and Roberts, M. J.: Realism of
rainfall in a very high-resolution regional climate model, J. Climate, 25,
5791–5806, https://doi.org/10.1175/JCLI-D-11-00562.1, 2012.
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C.,
and Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576, https://doi.org/10.1038/nclimate2258, 2014.
Kendon, E. J., Ban, N., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan,
S. C., Evans, J. P., Fosser, G., and Wilkinson, J. M.: Do
Convection-Permitting Regional Climate Models Improve Projections of Future
Precipitation Change?, B. Am. Meteorol. Soc., 98, 79–93,
https://doi.org/10.1175/BAMS-D-15-0004.1, 2017.
Klaver, R., Haarsma, R., Vidale, P. L., and Hazeleger, W.: Effective resolution
in high resolution global atmospheric models for climate studies, Atmos. Sci.
Lett., 21:e952, 1–8, https://doi.org/10.1002/asl.952, 2020.
Kopparla, P., Fischer, E. M., Hannay, C., and Knutti, R.: Improved
simulation of extreme precipitation in a high-resolution atmosphere model,
Geophys. Res. Lett., 40, 5803–5808, https://doi.org/10.1002/2013GL057866, 2013.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kunz, M., Mohr, S., Rauthe, M., Lux, R., and Kottmeier, Ch.: Assessment of extreme wind speeds from Regional Climate Models – Part 1: Estimation of return values and their evaluation, Nat. Hazards Earth Syst. Sci., 10, 907–922, https://doi.org/10.5194/nhess-10-907-2010, 2010.
Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., and Olsson, E.: A
high-resolution regional reanalysis for Europe. Part 2: 2D analysis of
surface temperature, precipitation and wind, Q. J. R. Meteorol. Soc, 142,
2132–2142, https://doi.org/10.1002/qj.2813, 2016.
Lhotka, O., Kyselý, J., and Farda, A.: Climate change scenarios of heat
waves in Central Europe and their uncertainties, Theor. Appl. Climatol., 131,
1043–1054, https://doi.org/10.1007/s00704-016-2031-3, 2018.
Matsueda, M., Mizuta, R., and Kusunoki, S.: Future change in wintertime
atmospheric blocking simulated using a 20-km-mesh atmospheric global
circulation model, J. Geophys. Res., 114, D12114, https://doi.org/10.1029/2009JD011919,
2009.
Mizielinski, M. S., Roberts, M. J., Vidale, P. L., Schiemann, R., Demory, M.-E., Strachan, J., Edwards, T., Stephens, A., Lawrence, B. N., Pritchard, M., Chiu, P., Iwi, A., Churchill, J., del Cano Novales, C., Kettleborough, J., Roseblade, W., Selwood, P., Foster, M., Glover, M., and Malcolm, A.: High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign, Geosci. Model Dev., 7, 1629–1640, https://doi.org/10.5194/gmd-7-1629-2014, 2014.
Niermann, D., Kaiser-Weiss, A., Borsche, M., van den Besselaar, E., Lussana,
C., Isotta, F., Frei, C, Cantarello, L., Tveito, O. E., van der Schrier, G.,
Cornes, R., Vreede, E., Bojariu, R., and Davie, J.: Report for Deliverable 3.6
of the UERRA project: Scientific report on assessment of regional analysis
against independent data sets, 138 pp., available at:
http://www.uerra.eu/publications/deliverable-reports.html (last access: 8 February 2020), 2017.
O'Brien, T. A., Collins, W. D., Kashinath, K., Rübel, O., Byna, S., Gu,
J., Krishnan, H., and Ullrich, P. A.: Resolution dependence of precipitation
statistical fidelity in hindcast simulations, J. Adv. Model. Earth Syst., 8,
976–990, https://doi.org/10.1002/2016MS000671, 2016.
O'Reilly, C. H., Minobe, S., and Kuwano-Yoshida, A.: The influence of the
Gulf Stream on wintertime European blocking, Clim. Dynam., 47, 1545–1567,
https://doi.org/10.1007/s00382-015-2919-0, 2016.
Prein, A. F. and Gobiet, A.: Impacts of uncertainties in European gridded
precipitation observations on regional climate analysis, Int. J. Climatol.,
37, 305–327, https://doi.org/10.1002/joc.4706, 2017.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann,
C., Fox Maule, C., van Meijgaard, E., Déqué, M., Nikulin, G.,
Vautard, R., Colette, A., Kjellström, E., and Jacob, D.: Precipitation
in the EURO-CORDEX 0.11∘ and 0.44∘ simulations: high
resolution, high benefits?, Clim. Dynam., 46, 383–412, https://doi.org/10.1007/s00382-015-2589-y, 2016.
Pryor, S. C., Nikulin, G., and Jones, C.: Influence of spatial resolution on
regional climate model derived wind climates, J. Geophys. Res., 117, D03117,
https://doi.org/10.1029/2011JD016822, 2012.
Risanto, C. B., Castro, C. L., Moker Jr., J. M., Arellano Jr., A. F., Adams,
D. K., Fierro, L. M., Minjarez Sosa, C. M.: Evaluating Forecast Skills of
Moisture from Convective-Permitting WRF-ARW Model during 2017 North
American Monsoon Season, Atmosphere-Basel, 10, 694, https://doi.org/10.3390/atmos10110694, 2019.
Roberts, M. J., Vidale, P. L., Senior, C., Hewitt, H. T., Bates, C.,
Berthou, S., Chang, P., Christensen, H. M., Danilov, S., Demory, M. E.,
Griffies, S. M., Haarsma, R., Jung, T., Martin, G., Minobe, S., Ringler, T.,
Satoh, M., Schiemann, R., Scoccimarro, E., Stephens, G., and Wehner, M. F.:
The benefits of global high-resolution for climate simulation:
process-understanding and the enabling of stakeholder decisions at the
regional scale, B. Am. Meteorol. Soc., 99, 2341–2359,
https://doi.org/10.1175/BAMS-D-15-00320.1, 2018.
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J., Cabos,
W., Calmanti, S., Calvet, J., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate Studies. B.
Am. Meteorol. Soc., 97, 1187–1208,
https://doi.org/10.1175/BAMS-D-14-00176.1, 2016.
Schiemann, R., Demory, M. E., Shaffrey, L. C., Strachan, J., Vidale, P. L.,
Mizielinski, M. S., Roberts, M. J., Matsueda, M., Wehner, M. F., and Jung,
T.: The resolution sensitivity of Northern Hemisphere blocking in four 25-km
atmospheric global circulation models, J. Climate, 30, 337–358,
https://doi.org/10.1175/JCLI-D-16-0100.1, 2017.
Schiemann, R., Vidale, P. L., Shaffrey, L. C., Johnson, S. J., Roberts, M. J., Demory, M.-E., Mizielinski, M. S., and Strachan, J.: Mean and extreme precipitation over European river basins better simulated in a 25 km AGCM, Hydrol. Earth Syst. Sci., 22, 3933–3950, https://doi.org/10.5194/hess-22-3933-2018, 2018.
Schiemann, R., Athanasiadis, P., Barriopedro, D., Doblas-Reyes, F., Lohmann, K., Roberts, M. J., Sein, D. V., Roberts, C. D., Terray, L., and Vidale, P. L.: Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution, Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, 2020.
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., and Zhang, X.: Changes in climate extremes and their
impacts on the natural physical environment, in: Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation. A Special
Report of Working Groups I and II of the Intergovernmental Panel on Climate
Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D.,
Dokken, D. J., Ebi, K., L. Mastrandrea, M. D., Mach, K. J., Plattner, G.-K.,
Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press,
Cambridge, UK, and New York, NY, USA, 109–230, 2012.
Shields, C. A., Kiehl, J. T., and Meehl, G. A.: Future changes in regional
precipitation simulated by a half-degree coupled climate model: Sensitivity
to horizontal resolution, J. Adv. Model. Earth Syst., 8, 863–884, https://doi.org/10.1002/2015MS000584, 2016.
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy
Spectra, Mon. Weather Rev., 132, 3019–3032, https://doi.org/10.1175/MWR2830.1, 2004.
SMHI EURO4M MESAN data: European high-resolution surafce reanalysis published as a CLIPC activity, available at: http://exporter.nsc.liu.se/620eed0cb2c74c859f7d6db81742e114/, last access: 13 November 2020.
Strandberg, G. and Lind, P.: The importance of model resolution on simulated precipitation in Europe – from global to regional model, Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-31, in review, 2020.
Stott, P. A., Christidis, N., Otto, F. E., Sun, Y., Vanderlinden, J., van
Oldenborgh, G. J., Vautard, R., von Storch, H., Walton, P., Yiou, P., and
Zwiers, F. W.: Attribution of extreme weather and climate-related events,
WIREs Clim. Change, 7, 23–41, https://doi.org/10.1002/wcc.380, 2016.
Strommen, K., Mavilia, I., Corti, S., Matsueda, M., Davini, P., von
Hardenberg, J., Vidale, P.-L., and Mizuta, R.: The sensitivity of
Euro-Atlantic regimes to model horizontal resolution, Geophys. Res. Lett., 46, 7810–7818, https://doi.org/10.1029/2019GL082843, 2019.
Taylor, K., Williamson, D., and Zwiers, F.: The sea surface temperature and
sea-ice concentration boundary conditions for AMIP II simulations, Tech. Rep. 60, PCMDI, 25 pp., available at:
https://pcmdi.llnl.gov/mips/amip/amip2/AMIP2EXPDSN/BCS/amip2bcs.html (last access: 11 November 2020), 2000.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Terai, C. R., Caldwell, P. M., Klein, S. A. Tang, Q., and Branstetter, M. L.:
The atmospheric hydrologic cycle in the ACME v0.3 model, Clim. Dynam., 50,
3251–3279, https://doi.org/10.1007/s00382-017-3803-x, 2018.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain – Precipitation over
the Alps, J. Geophys. Res.-Atmos., 120, 3957–3972, https://doi.org/10.1002/2014JD022781, 2015.
van der Linden, E. C., Haarsma, R. J., and van der Schrier, G.: Impact of climate model resolution on soil moisture projections in central-western Europe, Hydrol. Earth Syst. Sci., 23, 191–206, https://doi.org/10.5194/hess-23-191-2019, 2019.
Van Haren, R., Haarsma, R. J., Van Oldenborgh, G. J., and Hazeleger, W.:
Resolution Dependence of European Precipitation in a State-of-the-Art
Atmospheric General Circulation Model, J. Climate, 28, 5134–5149, https://doi.org/10.1175/JCLI-D-14-00279.1, 2015a.
Van Haren, R., Haarsma, R. J., de Vries, H., van Oldenborgh, G. J., and
Hazeleger, W.: Resolution dependence of circulation forced future central
European summer drying, Environ. Res. Lett., 10, 055002,
https://doi.org/10.1088/1748-9326/10/5/055002, 2015b.
Vanniere, B., Vidale, P. L., Demory, M.-E., Schiemann, R., Roberts, M. J.,
Roberts, C. D., Matsueda, M., Terray, L., Koenigk, T., and Senan,
R.: Multi-model evaluation of the sensitivity of the global energy budget
and hydrological cycle to resolution, Clim. Dynam., 52, 6817–6846,
https://doi.org/10.1007/s00382-018-4547-y, 2019.
Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué,
M., Fernández, J., García-Díez, M., Goergen, K., Güttler,
I., Halenka, T., Karacostas, T., Katragkou, E., Keuler, K., Kotlarski, S.,
Mayer, S., van Meijgaard, E., Nikulin, G., Patarcic, M., Scinocca, J.,
Sobolowski, S., Suklitsch, M., Teichmann, C., Warrach-Sagi, K., Wulfmeyer,
V., and Yiou, P.: The simulation of European heat waves from an ensemble of
regional climate models within the EURO-CORDEX project, Clim. Dynam., 41,
2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.
Vautard, R., Yiou, P., Otto, F., Stott, P., Christidis, N., van Oldenborgh,
G. J., and Schaller, N.: Attribution of human-induced dynamical and
thermodynamical contributions in extreme weather events, Environ. Res.
Lett., 11, 114009, https://doi.org/10.1088/1748-9326/11/11/114009, 2016.
Volosciuk, C., Maraun, D., Semenov, V. A., and Park, W.: Extreme Precipitation
in an Atmosphere General Circulation Model: Impact of Horizontal and
Vertical Model Resolutions, J. Climate, 28, 1184–1205,
https://doi.org/10.1175/JCLI-D-14-00337.1, 2015.
Wehner, M. F., Smith, R. L., Bala, G., and Duffy, P.: The effect of
horizontal resolution on simulation of very extreme US precipitation events
in a global atmosphere model, Clim. Dynam., 34, 241–247,
https://doi.org/10.1007/s00382-009-0656-y, 2010.
Wehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C.-T.,
Paciorek, C., Gleckler, P. J., Sperber, K. R., Collins, W. D., Gettelman,
A., and Jablonowski, C.: The effect of horizontal resolution on simulation
quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth
Syst., 6, 980–997, https://doi.org/10.1002/2013MS000276, 2014.
Willison, J., Robinson, W. A., and Lackmann, G. M.: North Atlantic Storm-Track
Sensitivity to Warming Increases with Model Resolution, J. Climate, 28,
4513–4524, https://doi.org/10.1175/JCLI-D-14-00715.1, 2015.
Zappa, G., Shaffrey, L. C. and Hodges, K. I.: The Ability of CMIP5 Models to
Simulate North Atlantic Extratropical Cyclones, J. Climate, 26, 5379–5396,
https://doi.org/10.1175/JCLI-D-12-00501.1, 2013.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C. Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, Climatic Change, 2, 851–870, https://doi.org/10.1002/wcc.147, 2011.
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
We investigate how increased resolution affects the simulation of European climate extremes for...