Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5191-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-5191-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Yingxia Gao
Key Laboratory of Meteorological Disaster of Ministry of
Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/NUIST-UoR International Research Institute, Nanjing University of Information Science & Technology, Nanjing, China
National Centre for Atmospheric Science-Climate and Department of
Meteorology, University of Reading, Reading, United Kingdom
Nicholas P. Klingaman
National Centre for Atmospheric Science-Climate and Department of
Meteorology, University of Reading, Reading, United Kingdom
Charlotte A. DeMott
Department of Atmospheric Science, Colorado State University, Fort
Collins, Colorado, USA
Key Laboratory of Meteorological Disaster of Ministry of
Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/NUIST-UoR International Research Institute, Nanjing University of Information Science & Technology, Nanjing, China
Related authors
No articles found.
Hongli Chen, Pang-Chi Hsu, Anbao Zhu, and Xiaoyan Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2013, https://doi.org/10.5194/egusphere-2025-2013, 2025
Short summary
Short summary
Persistent heavy rainfall in the Asian summer monsoon region, including South China, is closely linked to intraseasonal oscillations with periods of 8–30 days. This study shows that rising levels of air pollution particles can intensify such rainfall by altering cloud development and radiation. Using observations and model simulations, the findings improve understanding of rainfall variability and support advances in extended-range forecasting.
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021, https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Short summary
Much of the rainfall in tropical regions comes from organised cloud bands called convergence zones (CZs). These bands have hundreds of kilometers. In South America (SA), they cause intense rain for long periods of time. To study these systems, we need to define and identify them with computer code. We propose a definition of CZs based on the the pathways of air, selecting regions where air masses originated in separated regions meet. This method identifies important mechanisms of rain in SA.
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020, https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Short summary
Precipitation over East Asia simulated in the Met Office Unified Model is compared with observations. Moisture sources of EA precipitation are traced using a moisture tracking model. Biases in moisture sources are linked to biases in precipitation. Using the tracking model, changes in moisture sources can be attributed to changes in SST, circulation and associated evaporation. This proves that the method used in this study is useful to identify the causes of biases in regional precipitation.
Wenkai Li, Shuzhen Hu, Pang-Chi Hsu, Weidong Guo, and Jiangfeng Wei
The Cryosphere, 14, 3565–3579, https://doi.org/10.5194/tc-14-3565-2020, https://doi.org/10.5194/tc-14-3565-2020, 2020
Short summary
Short summary
Understanding the forecasting skills of the subseasonal-to-seasonal (S2S) model on Tibetan Plateau snow cover (TPSC) is the first step to applying the S2S model to hydrological forecasts over the Tibetan Plateau. This study conducted a multimodel comparison of the TPSC prediction skill to learn about their performance in capturing TPSC variability. S2S models can skillfully forecast TPSC within a lead time of 2 weeks but show limited skill beyond 3 weeks. Systematic biases of TPSC were found.
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020, https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary
Short summary
The impact of chlorophyll on the southwest monsoon is unknown. Here, seasonally varying chlorophyll in the Bay of Bengal was imposed in a general circulation model coupled to an ocean mixed layer model. The SST increases by 0.5 °C in response to chlorophyll forcing and shallow mixed layer depths in coastal regions during the inter-monsoon. Precipitation increases significantly to 3 mm d-1 across Myanmar during June and over northeast India and Bangladesh during October, decreasing model bias.
Cited articles
Annamalai, H. and Slingo, J. M.: Active/break cycles: Diagnosis of the
intraseasonal variability of the Asian summer monsoon, Clim. Dynam., 18,
85–102, https://doi.org/10.1007/s003820100161, 2001.
Annamalai, H. and Sperber, K. R.: Regional heat sources and the active and
break phases of boreal summer intraseasonal (30–50 day) variability, J.
Atmos. Sci., 62, 2726–2748, https://doi.org/10.1175/JAS3504.1, 2005.
Benedict, J. J. and Randall, D. A.: Structure of the Madden–Julian oscillation in the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296, https://doi.org/10.1175/2009JAS3030.1, 2009.
Bernie, D. J., Woolnough, S. J., Slingo, J. M., and Guilyardi, E.: Modeling
diurnal and intraseasonal variability of the ocean mixed layer, J. Climate,
18, 1190–1202, https://doi.org/10.1175/JCLI3319.1, 2005.
Bollasina, M. A. and Ming, Y.: The general circulation model precipitation
bias over the southwestern equatorial Indian Ocean and its implications for
simulating the South Asian monsoon, Clim. Dynam., 40, 823–838,
https://doi.org/10.1007/s00382-012-1347-7, 2013.
Danabasoglu, G., Large, W. G., Tribbia, J. J., Gent, P. R., Briegleb, B. P.,
and McWilliams, J. C.: Diurnal coupling in the tropical oceans of CCSM3, J.
Climate, 19, 2347–2365, 2006.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
DeMott, C. A., Stan, C., Randall, D. A., Kinter, J. L., and Khairoutdinov, M.: The Asian monsoon in the superparameterized CCSM and Its relationship to
tropical wave activity, J. Climate, 24, 5134–5156, https://doi.org/10.1175/2011JCLI4202.1, 2011.
DeMott, C. A., Stan, C., Randall, D. A., and Branson, M. D.: Intraseasonal
variability in coupled GCMs: The roles of ocean feedbacks and model physics,
J. Climate, 27, 4970–4995, https://doi.org/10.1175/JCLI-D-13-00760.1, 2014.
DeMott, C. A., Klingaman, N. P., and Woolnough, S. J.: Atmosphere–ocean
coupled processes in the Madden-Julian oscillation, Rev. Geophys., 53,
1099–1154, https://doi.org/10.1002/2014RG000478, 2015.
DeMott, C. A., Benedict, J. J., Klingaman, N. P., Woolnough, S. J., and Randall, D. A.: Diagnosing ocean feedbacks to the MJO: SST-modulated surface
fluxes and the moist static energy budget, J. Geophys. Res.-Atmos., 121,
8350–8373, https://doi.org/10.1002/2016JD025098, 2016.
DeMott, C. A., Klingaman, N. P., Tseng, W.-L., Burt, M. A., Gao, Y., and
Randall, D. A.: The convection connection: How ocean feedbacks affect tropical mean moisture and MJO propagation, J. Geophys. Res.-Atmos., 124, 11910–11931, https://doi.org/10.1029/2019JD031015, 2019.
Ding, Q. and Wang, B.: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon, J. Climate, 20, 3751–3767,
https://doi.org/10.1175/JCLI4221.1, 2007.
ECMWF: Public Datasets, available at: https://apps.ecmwf.int/datasets/, last access: 30 October 2020.
Fu, X. and Wang, B.: Differences of boreal summer intraseasonal oscillations
simulated in an atmosphere–ocean coupled model and an atmosphere-only model, J. Climate, 17, 1263–1271, 2004.
Gao, Y.: BSISO in SP GCMs: effects of air–sea coupling and mean-state biases, figshare, https://doi.org/10.6084/m9.figshare.c.4874406.v3, 2020.
Gao, Y., Klingaman, N. P., DeMott, C. A., and Hsu, P.: Diagnosing ocean
feedbacks to the BSISO: SST-modulated surface fluxes and the moist static
energy budget, J. Geophys. Res.-Atmos., 124, 146–170, https://doi.org/10.1029/2018JD029303, 2019.
Hendon, H. H.: Impact of air–sea coupling on the Madden–Julian oscillation
in a general circulation model, J. Atmos. Sci., 57, 3939–3952,
https://doi.org/10.1175/1520-0469(2001)058<3939:IOASCO>2.0.CO;2, 2000.
Hirons, L. C., Klingaman, N. P., and Woolnough, S. J.: MetUM-GOML1: a
near-globally coupled atmosphere–ocean-mixed-layer model, Geosci. Model Dev., 8, 363–379, https://doi.org/10.5194/gmd-8-363-2015, 2015.
Hsu, P.-C. and Li, T.: Role of the boundary layer moisture asymmetry in
causing the eastward propagation of the Madden-Julian Oscillation, J. Climate, 25, 4914–4931, https://doi.org/10.1175/JCLI-D-11-00310.1, 2012.
Hsu, P.-C., Lee, J.-Y., and Ha, K.-J.: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China, Int. J.
Climatol., 36, 1403–1412, https://doi.org/10.1002/joc.4433, 2016.
Hsu, P.-C., Lee, J.-Y., Ha, K.-J., and Tsou, C.-H.: Influences of boreal
summer intraseasonal oscillation on heat waves in monsoon Asia, J. Climate,
30, 7191–7211, https://doi.org/10.1175/JCLI-D-16-0505.1, 2017.
Hsu, P.-C., Qian, Y., Liu, Y., Murakami, H., and Gao, Y.: Role of abnormally
enhanced MJO over the Western Pacific in the formation and subseasonal
predictability of the record-breaking Northeast Asian heatwave in the summer
of 2018, J. Climate, 33, 3333–3349, https://doi.org/10.1175/JCLI-D-19-0337.1, 2020.
Hu, W., Duan, A., and Wu, G.: Impact of subdaily air–sea interaction on
simulating intraseasonal oscillations over the tropical Asian monsoon region, J. Climate, 28, 1057–1073, https://doi.org/10.1175/JCLI-D-14-00407.1, 2015.
Hu, W., Duan, A., and He, B.: Evaluation of intra-seasonal oscillation
simulations in IPCC AR5 coupled GCMs associated with the Asian summer monsoon, Int. J. Climatol., 37, 476–496, https://doi.org/10.1002/joc.5016, 2017.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S.,
Joyce, R., McGavock, B., and Susskind, J.: Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2, 36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.
Inness, P. M., Slingo, J. M., Guilyardi, E., and Cole, J.: Simulation of the
Madden–Julian oscillation in a coupled general circulation model. Part II:
The role of the basic state, J. Climate, 16, 365–382,
https://doi.org/10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2, 2003.
Jiang, X.: Key processes for the eastward propagation of the Madden-Julian
Oscillation based on multimodel simulations. J. Geophys. Res.-Atmos., 122,
755–770, https://doi.org/10.1002/2016JD025955, 2017.
Jiang, X., Waliser, D. E., Xavier, P. K., Petch, J., Klingaman, N. P.,
Woolnough, S. J., Guan, B., Bellon, G., Crueger, T., DeMott, C., Hannay, C.,
Lin, H., Hu, W., Kim, D., Lappen, C.-L., Lu, M.-M., Ma, H.-Y., Miyakawa, T.,
Ridout, J. A., Schubert, S. D., Scinocca, J., Seo, K.-H., Shindo, E., Song,
X., Stan, C., Tseng, W.-L., Wang, W., Wu, T., Wu, X., Wyser, K., Zhang, G. J., and Zhu, H.: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations, J. Geophys. Res.-Atmos., 120, 4718–4748, https://doi.org/10.1002/2014JD022375, 2015.
Jiang, X., Zhao, M., Maloney, E. D., and Waliser, D. E.: Convective moisture
adjustment time scale as a key factor in regulating model amplitude of the
Madden-Julian oscillation, Geophys. Res. Lett., 43, 10412–10419,
https://doi.org/10.1002/2016GL070898, 2016.
Jiang, X., Adames, A. F., Zhao, M., Waliser, D., and Maloney, E.: A unified
moisture moist framework for seasonality of MJO propagation, J. Climate, 31,
4215–4224, https://doi.org/10.1175/JCLI-D-17-0671.1, 2018.
Kapur, A. and Zhang, C.: Multiplicative MJO forcing of ENSO, J. Climate, 25, 8132–8147, https://doi.org/10.1175/JCLI-D-11-00609.1, 2012.
Kessler, W. S., McPhaden, M. J., and Weickmann, K. M.: Forcing of intraseasonal Kelvin waves in the equatorial Pacific, J. Geophys. Res., 100, 10613–10631, https://doi.org/10.1029/95JC00382, 1995.
Khairoutdinov, M., Randall, D., and DeMott, C.: Simulations of the atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes, J. Atmos. Sci., 62, 2136–2154, https://doi.org/10.1175/JAS3453.1, 2005.
Khairoutdinov, M. F. and Randall, D. A.: Cloud resolving modeling of the ARM
summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2, 2003.
Klingaman, N. P.: spcam3-kpp: SPCAM3-KPP release 1.0, Zenodo, https://doi.org/10.5281/zenodo.4021071, 2020.
Klingaman, N. P. and DeMott, C. A.: Mean state biases and interannual variability affect perceived sensitivities of the Madden-Julian oscillation
to air-sea coupling, J. Adv. Model. Earth Syst., 12, e2019MS001799,
https://doi.org/10.1029/2019MS001799, 2020.
Klingaman, N. P. and Woolnough, S. J.: The role of air-sea coupling in the
simulation of the Madden-Julian oscillation in the Hadley Centre model, Q. J. Roy. Meteorol. Soc., 140, 2272–2286, https://doi.org/10.1002/qj.2295, 2014.
Klingaman, N. P., Woolnough, S. J., Weller, H., and Slingo, J. M.: The impact
of finer-resolution air–sea coupling on the intraseasonal oscillation of the Indian monsoon, J. Climate, 24, 2451–2468, https://doi.org/10.1175/2010JCLI3868.1, 2011.
Large, W., McWilliams, J., and Doney, S.: Oceanic vertical mixing: A review
and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994.
Lau, W. K. M. and Waliser, D. E.: Intraseasonal variability in the atmosphere-ocean climate system, 2nd Edn., Springer, Berlin, 2012.
Lee, J.-Y., Wang, B., Wheeler, M. C., Fu, X., Waliser, D. E., and Kang, I.-S.: Real-time multivariate indices for the boreal summer intraseasonal
oscillation over the Asian summer monsoon region, Clim. Dynam., 40, 493–509, https://doi.org/10.1007/s00382-012-1544-4, 2013.
Levine, R. C. and Turner, A. G.: Dependence of Indian monsoon rainfall on
moisture fluxes across the Arabian Sea and the impact of coupled model sea
surface temperature biases, Clim. Dynam., 38, 2167–2190,
https://doi.org/10.1007/s00382-011-1096-z, 2012.
Li, J., Mao, J., and Wu, G.: A case study of the impact of boreal summer
intraseasonal oscillations on Yangtze rainfall, Clim. Dynam., 44, 2683–2702, https://doi.org/10.1007/s00382-014-2425-9, 2015.
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated) outgoing long wave radiation dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996.
Lin, J.-L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R.,
Lin, W., Wheeler, M. C., Schubert, S. D., Del Genio, A., Donner, L. J., Emori, S., Gueremy, J.-F., Hourdin, F., Rasch, P. J., Roeckner, E., and
Scinocca, J. F.: Tropical intraseasonal variability in 14 IPCC AR4 climate
models. Part I: Convective signals, J. Climate, 19, 2665–2690,
https://doi.org/10.1175/JCLI3735.1, 2006.
Liu, Y. and Hus, P.-C.: Long-term changes in wintertime persistent heavy
rainfall over southern China contributed by the Madden–Julian Oscillation,
Atmos. Ocean. Sci. Lett., 12, 361–368, https://doi.org/10.1080/16742834.2019.1639471, 2019.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 Day Oscillation in
the Zonal Wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708,
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2, 1971.
Madden, R. A. and Julian, P. R.: Description of global-scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 29, 1109–1123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2, 1972.
Maloney, E. D.: The moist static energy budget of a composite tropical
intraseasonal oscillation in a climate model, J. Climate, 22, 711–729,
https://doi.org/10.1175/2008JCLI2542.1, 2009.
Maloney, E. D. and Hartmann, D. L.: The sensitivity of intraseasonal
variability in the NCAR CCM3 to changes in convective parameterization, J.
Climate, 14, 2015–2034, https://doi.org/10.1175/1520-0442(2001)014<2015:TSOIVI>2.0.CO;2, 2001.
McPhaden, M. J.: Evolution of the 2002/2003 El Nino, B. Am. Meteorol. Soc., 85, 677–695, 2004.
Moon, J.-Y., Wang, B., Ha, K.-J., and Lee, J.-Y.: Teleconnections associated
with Northern Hemisphere summer monsoon intraseasonal oscillation, Clim.
Dynam., 40, 2761–2774, https://doi.org/10.1007/s00382-012-1394-0, 2013.
Misra, V., Marx, L., Brunke, M., and Zeng, X.: The equatorial Pacific cold
tongue bias in a coupled climate model, J. Climate, 21, 5852–5869,
https://doi.org/10.1175/2008JCLI2205.1, 2008.
Neena, J. M., Waliser, D., and Jiang, X.: Model performance metrics and
process diagnostics for boreal summer intraseasonal variability, Clim. Dynam., 48, 1661–1683, https://doi.org/10.1007/s00382-016-3166-8, 2017.
NOAA: Index of /data/global-precipitation-climatology-project-gpcp-daily/access, available at: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-daily/access/, last access: 30 October 2020.
Physical Sciences Laboratory: NOAA Interpolated Outgoing Longwave Radiation (OLR), available at: https://psl.noaa.gov/data/gridded/data.interp_OLR.html, last access: 30 October 2020.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J.,
Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi,
A., and Taylor, K. E.: Climate models and their evaluation, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, USA, 589–662, 2007.
Ren, X., Yang, X.-Q., and Sun, X.: Zonal oscillation of western Pacific
subtropical high and subseasonal SST variations during Yangtze persistent
heavy rainfall events, J. Climate, 26, 8929–8946, https://doi.org/10.1175/JCLI-D-12-00861.1, 2013.
Sabeerali, C. T., Ramu Dandi, A., Dhakate, A., Salunke, K., Mahapatra, S., and Rao, S. A.: Simulation of boreal summer intraseasonal oscillations in
the latest CMIP5 coupled GCMs, J. Geophys. Res.-Atmos., 118, 4401–4420,
https://doi.org/10.1002/jgrd.50403, 2013.
Seo, K.-H., Schemm, J.-K. E., Wang, W., and Kumar, A.: The boreal summer
intraseasonal oscillation simulated in the NCEP climate forecast system: The
effect of sea surface temperature, Mon. Weather Rev., 135, 1807–1827,
https://doi.org/10.1175/MWR3369.1, 2007.
Smith, D. M. and Murphy, J. M.: An objective ocean temperature and salinity
analysis using covariances from a global climate model, J. Geophys. Res., 112, C02022, https://doi.org/10.1029/2005JC003172, 2007.
Sperber, K. R. and Annamalai, H.: Coupled model simulations of boreal summer
intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics, Clim. Dynam., 31, 345–372, https://doi.org/10.1007/s00382-008-0367-9, 2008.
Sperber, K. R., Slingo, J. M., and Annamalai, H.: Predictability and the
relationship between subseasonal and interannual variability during the Asian summer monsoon, Q. J. Roy. Meteorol. Soc., 126, 2545–2574,
https://doi.org/10.1002/qj.49712656810, 2000.
Sperber, K. R., Gualdi, S., Legutke, S., and Gayler, V.: The Madden–Julian
oscillation in ECHAM4 coupled and uncoupled general circulation models,
Clim. Dynam., 25, 117–140, https://doi.org/10.1007/s00382-005-0026-3, 2005.
Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou, T.: The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century, Clim. Dynam., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6, 2013.
Stan, C.: The role of SST variability in the simulation of the MJO, Clim.
Dynam., 51, 2943–2964, https://doi.org/10.1007/s00382-017-4058-2, 2018.
Stan, C., Khairoutdinov, M., DeMott, C. A., Krishnamurthy, V., Straus, D.
M., Randall, D. A., Kinter, J. L., and Shukla, J.: An ocean-atmosphere climate simulation with an embedded cloud resolving model, Geophys. Res. Lett., 37, L01702, https://doi.org/10.1029/2009GL040822, 2010.
Waliser, D. E., Lau, K. M., and Kim, J.-H.: The influence of coupled sea
surface temperatures on the Madden-Julian Oscillation: A model perturbation
experiment, J. Atmos. Sci., 56, 333–358, 1999.
Waliser, D. E., Jin, K., Kang, I.-S., Stern, W. F., Schubert, S. D., Wu, M.
L. C., Lau, K.-M., Lee, M.-I., Krishnamurthy, V., Kitoh, A., Meehl, G. A.,
Galin, V. Y., Satyan, V., Mandke, S. K., Wu, G., Liu, Y., and Park, C.-K.:
AGCM simulations of intraseasonal variability associated with the Asian
summer monsoon, Clim. Dynam., 21, 423–446, https://doi.org/10.1007/s00382-003-0337-1, 2003.
Wang, B., Webster, P. J., and Teng, H.: Antecedents and self-induction of
active-break south Asian monsoon unraveled by satellites, Geophys. Res. Lett., 32, L04704, https://doi.org/10.1029/2004GL020996, 2005.
Wang, B., Webster, P., Kikuchi, K., Yasunari, T., and Qi, Y.: Boreal summer
quasi-monthly oscillation in the global tropics, Clim. Dynam., 27, 661–675, https://doi.org/10.1007/s00382-006-0163-3, 2006.
Weare, B. C., Strub, P. T., and Samuel, M. D.: Annual mean surface heat
fluxes in the tropical Pacific ocean, J. Phys. Oceanogr., 11, 705–717,
https://doi.org/10.1175/1520-0485(1981)011<0705:AMSHFI>2.0.CO;2, 1981.
Weaver, S. J., Wang, W., Chen, M., and Kumar, A.: Representation of MJO variability in the NCEP climate forecast system, J. Climate, 24, 4676–4694, https://doi.org/10.1175/2011JCLI4188.1, 2011.
Wheeler, M. and Kiladis, G. N.: Convectively coupled equatorial waves:
Analysis of clouds and temperature in the wavenumber–frequency domain, J.
Atmos. Sci., 56, 374–399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2, 1999.
Woolnough, S. J., Vitart, F., and Balmaseda, M. A.: The role of the ocean in
the Madden–Julian oscillation: Implications for MJO prediction, Q. J. Roy.
Meteorol. Soc., 133), 117–128, https://doi.org/10.1002/qj.4, 2007.
Wu, X., Deng, L., Song, X., Vettoretti, G., Peltier, W. R., and Zhang, G. J.:
Impact of a modified convective scheme on the Madden-Julian Oscillation and
El Niño-Southern Oscillation in a coupled climate model, Geophys. Res.
Lett., 34, L16823, https://doi.org/10.1029/2007GL030637, 2007.
Yasunari, T.: Cloudiness fluctuations associated with the northern summer
monsoon, J. Meteorol. Soc. Jpn., 57, 227–242, 1979.
Zhang, C.: Madden-Julian oscillation, Rev. Geophys., 43, RG2003,
https://doi.org/10.1029/2004RG000158, 2005.
Zhang, C. and Gottschalck, J.: SST anomalies of ENSO and the Madden–Julian
oscillation in the equatorial Pacific, J. Climate, 15, 2429–2445,
https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2, 2002.
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer...