Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5191-2020
https://doi.org/10.5194/gmd-13-5191-2020
Model experiment description paper
 | 
02 Nov 2020
Model experiment description paper |  | 02 Nov 2020

Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state

Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu

Related authors

Role of aerosol–cloud–radiation interactions in modulating summertime quasi-biweekly rainfall intensity over South China
Hongli Chen, Pang-Chi Hsu, Anbao Zhu, and Xiaoyan Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-2013,https://doi.org/10.5194/egusphere-2025-2013, 2025
Short summary
Atmospheric convergence zones stemming from large-scale mixing
Gabriel M. P. Perez, Pier Luigi Vidale, Nicholas P. Klingaman, and Thomas C. M. Martin
Weather Clim. Dynam., 2, 475–488, https://doi.org/10.5194/wcd-2-475-2021,https://doi.org/10.5194/wcd-2-475-2021, 2021
Short summary
Effects of horizontal resolution and air–sea coupling on simulated moisture source for East Asian precipitation in MetUM GA6/GC2
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi
Geosci. Model Dev., 13, 6011–6028, https://doi.org/10.5194/gmd-13-6011-2020,https://doi.org/10.5194/gmd-13-6011-2020, 2020
Short summary
Systematic bias of Tibetan Plateau snow cover in subseasonal-to-seasonal models
Wenkai Li, Shuzhen Hu, Pang-Chi Hsu, Weidong Guo, and Jiangfeng Wei
The Cryosphere, 14, 3565–3579, https://doi.org/10.5194/tc-14-3565-2020,https://doi.org/10.5194/tc-14-3565-2020, 2020
Short summary
The effect of seasonally and spatially varying chlorophyll on Bay of Bengal surface ocean properties and the South Asian monsoon
Jack Giddings, Adrian J. Matthews, Nicholas P. Klingaman, Karen J. Heywood, Manoj Joshi, and Benjamin G. M. Webber
Weather Clim. Dynam., 1, 635–655, https://doi.org/10.5194/wcd-1-635-2020,https://doi.org/10.5194/wcd-1-635-2020, 2020
Short summary

Related subject area

Climate and Earth system modeling
SASIEv.1: a framework for seasonal and multi-centennial Arctic sea ice emulation
Sian Megan Chilcott, Malte Meinshausen, and Dirk Notz
Geosci. Model Dev., 18, 4965–4982, https://doi.org/10.5194/gmd-18-4965-2025,https://doi.org/10.5194/gmd-18-4965-2025, 2025
Short summary
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary

Cited articles

Annamalai, H. and Slingo, J. M.: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon, Clim. Dynam., 18, 85–102, https://doi.org/10.1007/s003820100161, 2001. 
Annamalai, H. and Sperber, K. R.: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability, J. Atmos. Sci., 62, 2726–2748, https://doi.org/10.1175/JAS3504.1, 2005. 
Benedict, J. J. and Randall, D. A.: Structure of the Madden–Julian oscillation in the superparameterized CAM, J. Atmos. Sci., 66, 3277–3296, https://doi.org/10.1175/2009JAS3030.1, 2009. 
Bernie, D. J., Woolnough, S. J., Slingo, J. M., and Guilyardi, E.: Modeling diurnal and intraseasonal variability of the ocean mixed layer, J. Climate, 18, 1190–1202, https://doi.org/10.1175/JCLI3319.1, 2005. 
Bollasina, M. A. and Ming, Y.: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon, Clim. Dynam., 40, 823–838, https://doi.org/10.1007/s00382-012-1347-7, 2013. 
Download
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Share