Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4891-2020
https://doi.org/10.5194/gmd-13-4891-2020
Model description paper
 | 
15 Oct 2020
Model description paper |  | 15 Oct 2020

Dynamic Anthropogenic activitieS impacting Heat emissions (DASH v1.0): development and evaluation

Isabella Capel-Timms, Stefán Thor Smith, Ting Sun, and Sue Grimmond

Related authors

Hectometric-scale modelling of the urban mixed layer evaluated with a dense LiDAR-ceilometer network
Russell H. Glazer, Sue Grimmond, Lewis Blunn, Daniel Fenner, Humphrey Lean, Andreas Christen, Will Morrison, and Dana Looschelders
EGUsphere, https://doi.org/10.5194/egusphere-2025-2064,https://doi.org/10.5194/egusphere-2025-2064, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
GUST1.0: A GPU-accelerated 3D Urban Surface Temperature Model
Shuo-Jun Mei, Guanwen Chen, Jian Hang, and Ting Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-1485,https://doi.org/10.5194/egusphere-2025-1485, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Harmonised boundary layer wind profile dataset from six ground-based doppler wind lidars in a transect across Paris, France
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167,https://doi.org/10.5194/essd-2025-167, 2025
Preprint under review for ESSD
Short summary
Enhancing Urban Pluvial Flood Modelling through Graph Reconstruction of Incomplete Sewer Networks
Ruidong Li, Jiapei Liu, Ting Sun, Shao Jian, Fuqiang Tian, and Guangheng Ni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3780,https://doi.org/10.5194/egusphere-2024-3780, 2025
Short summary
Modular approach to near-time data management for multi-city atmospheric environmental observation campaigns
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024,https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary

Related subject area

Atmospheric sciences
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary

Cited articles

Allen, L., Lindberg, F., and Grimmond, C. S. B.: Global to city scale urban anthropogenic heat flux: model and variability, Int. J. Climatol., 31, 1990–2005, 2011. 
ASHRAE: ANSI/ASHRAE Standard 140-2017, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, 2017. 
Baetens, R. and Saelens, D.: Modelling uncertainty in district energy simulations by stochastic residential occupant behaviour, J. Build. Perform. Simu., 9, 431–447, https://doi.org/10.1080/19401493.2015.1070203, 2016. 
BCO: Guide to Specification 2009, British Council for Offices, 2009. 
BEIS: Department for Business, Energy & Industrial Strategy: Sub-national electricity consumption data, available at: https://www.gov.uk/government/collections/sub-national-electricity-consumption-data#lsoa/msoa-data, last access: 14 July 2017a. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Thermal emissions or anthropogenic heat fluxes (QF) from human activities impact the local- and larger-scale urban climate. DASH considers both urban form and function in simulating QF by use of an agent-based structure that includes behavioural characteristics of city populations. This allows social practices to drive the calculation of QF as occupants move, varying by day type, demographic, location, activity, and socio-economic factors and in response to environmental conditions.
Share