Articles | Volume 13, issue 10
https://doi.org/10.5194/gmd-13-4713-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4713-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Tsuguki Kinoshita
College of Agriculture, Ibaraki University, Ami 300393, Japan
Gen Sakurai
Institute for Agro-Environmental Sciences, National Agriculture and
Food Research Organization, Tsukuba 3058604, Japan
Yadu Pokhrel
Department of Civil and Environmental Engineering, Michigan State
University, East Lansing, Michigan 48824, USA
Akihiko Ito
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Masashi Okada
Center for Social and Environmental System Research, National
Institute for Environmental Studies, Tsukuba 3058506, Japan
Yusuke Satoh
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Etsushi Kato
Institute of Applied Energy, Tokyo 105003, Japan
Tomoko Nitta
Institute of Industrial Science, The University of Tokyo, Kashiwa
2778574, Japan
Shinichiro Fujimori
Graduate School of Engineering, Kyoto University, Kyoto 6158540,
Japan
Farshid Felfelani
Department of Civil and Environmental Engineering, Michigan State
University, East Lansing, Michigan 48824, USA
Yoshimitsu Masaki
College of Agriculture, Ibaraki University, Ami 300393, Japan
Graduate School of Science and Technology, Hirosaki University,
Hirosaki 0368561, Japan
Toshichika Iizumi
Institute for Agro-Environmental Sciences, National Agriculture and
Food Research Organization, Tsukuba 3058604, Japan
Motoki Nishimori
Institute for Agro-Environmental Sciences, National Agriculture and
Food Research Organization, Tsukuba 3058604, Japan
Naota Hanasaki
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Kiyoshi Takahashi
Center for Social and Environmental System Research, National
Institute for Environmental Studies, Tsukuba 3058506, Japan
Yoshiki Yamagata
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Seita Emori
Center for Global Environmental Research, National Institute for
Environmental Studies, Tsukuba 3058506, Japan
Related authors
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
Earth Syst. Dynam., 16, 257–273, https://doi.org/10.5194/esd-16-257-2025, https://doi.org/10.5194/esd-16-257-2025, 2025
Short summary
Short summary
Reducing non-CO2 greenhouse gases is important alongside CO2 for climate mitigation. Here, we look at how reducing their emissions compares to reducing CO2 using an Earth system model. While both types of gases contribute to warming, their regional climate impacts differ. Besides, the carbon cycle responds differently depending on whether climate change is driven by CO2 or non-CO2 gases. Considering both types of gases is important for carbon cycle analysis and climate mitigation strategies.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Xuanming Su, Kiyoshi Takahashi, Tokuta Yokohata, Katsumasa Tanaka, Shinichiro Fujimori, Jun'ya Takakura, Rintaro Yamaguchi, and Weiwei Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1640, https://doi.org/10.5194/egusphere-2024-1640, 2024
Preprint archived
Short summary
Short summary
We created a new model combining socioeconomic data and climate projections. Using multiple future scenarios, we calculated new costs for reducing emissions, estimated damage based on the latest impacts, and extended our analysis to the year 2450. Our results show different ways to control emissions and their effects on future temperatures. This highlights the importance of adapting climate policies to different economic growth scenarios for better long-term planning.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Kazuyuki Saito, Hirokazu Machiya, Go Iwahana, Tokuta Yokohata, and Hiroshi Ohno
Geosci. Model Dev., 14, 521–542, https://doi.org/10.5194/gmd-14-521-2021, https://doi.org/10.5194/gmd-14-521-2021, 2021
Short summary
Short summary
Soil organic carbon (SOC) and ground ice (ICE) are essential but under-documented information to assess the circum-Arctic permafrost degradation impacts. A simple numerical model of essential SOC and ICE dynamics, developed and integrated north of 50° N for 125,000 years since the last interglacial, reconstructed the history and 1° distribution of SOC and ICE consistent with current knowledge, together with successful demonstration of climatic and topographical controls on SOC evolution.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Qing He, Naota Hanasaki, Akiko Matsumura, Edwin H. Sutanudjaja, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2952, https://doi.org/10.5194/egusphere-2025-2952, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work presents a global groundwater modeling framework at 5-arcminute resolution, developed through an offline coupling of the H08 water resource model and MODFLOW6. The model includes a single-layer aquifer and is designed to capture long-term mean groundwater dynamics under varying climate types. The manuscript describes the model structure, input datasets, and evaluation against available observations.
Yosuke Niwa, Yasunori Tohjima, Yukio Terao, Tazu Saeki, Akihiko Ito, Taku Umezawa, Kyohei Yamada, Motoki Sasakawa, Toshinobu Machida, Shin-Ichiro Nakaoka, Hideki Nara, Hiroshi Tanimoto, Hitoshi Mukai, Yukio Yoshida, Shinji Morimoto, Shinya Takatsuji, Kazuhiro Tsuboi, Yousuke Sawa, Hidekazu Matsueda, Kentaro Ishijima, Ryo Fujita, Daisuke Goto, Xin Lan, Kenneth Schuldt, Michal Heliasz, Tobias Biermann, Lukasz Chmura, Jarsolaw Necki, Irène Xueref-Remy, and Damiano Sferlazzo
Atmos. Chem. Phys., 25, 6757–6785, https://doi.org/10.5194/acp-25-6757-2025, https://doi.org/10.5194/acp-25-6757-2025, 2025
Short summary
Short summary
This study estimated regional and sectoral emission contributions to the unprecedented surge of atmospheric methane for 2020–2022. The methane is the second most important greenhouse gas, and its emissions reduction is urgently required to mitigate global warming. Numerical modeling-based estimates with three different sets of atmospheric observations consistently suggested large contributions of biogenic emissions from South Asia and Southeast Asia to the surge of atmospheric methane.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Xin Huang, Qing He, Naota Hanasaki, Rolf H. Reichle, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2004, https://doi.org/10.5194/egusphere-2025-2004, 2025
Preprint archived
Short summary
Short summary
This study demonstrates a new method using SMAP soil moisture products to identify irrigation effects, tested to be valid in an example region in California's Central Valley and showed great potential for application in arid/ semi-arid regions. The approach offers a simple, straightforward approach to monitoring irrigation signals without additional in-situ data or model tuning, providing a useful tool to extract irrigation water use data in observation-scarce regions.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Tomohiro Hajima, Michio Kawamiya, Akihiko Ito, Kaoru Tachiiri, Chris D. Jones, Vivek Arora, Victor Brovkin, Roland Séférian, Spencer Liddicoat, Pierre Friedlingstein, and Elena Shevliakova
Biogeosciences, 22, 1447–1473, https://doi.org/10.5194/bg-22-1447-2025, https://doi.org/10.5194/bg-22-1447-2025, 2025
Short summary
Short summary
This study analyzes atmospheric CO2 concentrations and global carbon budgets simulated by multiple Earth system models, using several types of simulations (CO2 concentration- and emission-driven experiments). We successfully identified problems with regard to the global carbon budget in each model. We also found urgent issues with regard to land use change CO2 emissions that should be solved in the latest generation of models.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique M. Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda R. Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul K. Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Xin Lan, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick C. McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data, 17, 965–1039, https://doi.org/10.5194/essd-17-965-2025, https://doi.org/10.5194/essd-17-965-2025, 2025
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and datasets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
Irina Melnikova, Philippe Ciais, Katsumasa Tanaka, Hideo Shiogama, Kaoru Tachiiri, Tokuta Yokohata, and Olivier Boucher
Earth Syst. Dynam., 16, 257–273, https://doi.org/10.5194/esd-16-257-2025, https://doi.org/10.5194/esd-16-257-2025, 2025
Short summary
Short summary
Reducing non-CO2 greenhouse gases is important alongside CO2 for climate mitigation. Here, we look at how reducing their emissions compares to reducing CO2 using an Earth system model. While both types of gases contribute to warming, their regional climate impacts differ. Besides, the carbon cycle responds differently depending on whether climate change is driven by CO2 or non-CO2 gases. Considering both types of gases is important for carbon cycle analysis and climate mitigation strategies.
Detlef van Vuuren, Brian O'Neill, Claudia Tebaldi, Louise Chini, Pierre Friedlingstein, Tomoko Hasegawa, Keywan Riahi, Benjamin Sanderson, Bala Govindasamy, Nico Bauer, Veronika Eyring, Cheikh Fall, Katja Frieler, Matthew Gidden, Laila Gohar, Andrew Jones, Andrew King, Reto Knutti, Elmar Kriegler, Peter Lawrence, Chris Lennard, Jason Lowe, Camila Mathison, Shahbaz Mehmood, Luciana Prado, Qiang Zhang, Steven Rose, Alexander Ruane, Carl-Friederich Schleussner, Roland Seferian, Jana Sillmann, Chris Smith, Anna Sörensson, Swapna Panickal, Kaoru Tachiiri, Naomi Vaughan, Saritha Vishwanathan, Tokuta Yokohata, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3765, https://doi.org/10.5194/egusphere-2024-3765, 2025
Short summary
Short summary
We propose a set of six plausible 21st century emission scenarios, and their multi-century extensions, that will be used by the international community of climate modeling centers to produce the next generation of climate projections. These projections will support climate, impact and mitigation researchers, provide information to practitioners to address future risks from climate change, and contribute to policymakers’ considerations of the trade-offs among various levels of mitigation.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Gab Abramowitz, Anna Ukkola, Sanaa Hobeichi, Jon Cranko Page, Mathew Lipson, Martin G. De Kauwe, Samuel Green, Claire Brenner, Jonathan Frame, Grey Nearing, Martyn Clark, Martin Best, Peter Anthoni, Gabriele Arduini, Souhail Boussetta, Silvia Caldararu, Kyeungwoo Cho, Matthias Cuntz, David Fairbairn, Craig R. Ferguson, Hyungjun Kim, Yeonjoo Kim, Jürgen Knauer, David Lawrence, Xiangzhong Luo, Sergey Malyshev, Tomoko Nitta, Jerome Ogee, Keith Oleson, Catherine Ottlé, Phillipe Peylin, Patricia de Rosnay, Heather Rumbold, Bob Su, Nicolas Vuichard, Anthony P. Walker, Xiaoni Wang-Faivre, Yunfei Wang, and Yijian Zeng
Biogeosciences, 21, 5517–5538, https://doi.org/10.5194/bg-21-5517-2024, https://doi.org/10.5194/bg-21-5517-2024, 2024
Short summary
Short summary
This paper evaluates land models – computer-based models that simulate ecosystem dynamics; land carbon, water, and energy cycles; and the role of land in the climate system. It uses machine learning and AI approaches to show that, despite the complexity of land models, they do not perform nearly as well as they could given the amount of information they are provided with about the prediction problem.
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024, https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Short summary
This study examines large daily river flow fluctuations in the dammed Mekong River, developing integrated 3D hydrodynamic and response time models alongside a hydrological model with an embedded reservoir module. This approach allows estimation of travel times between hydrological stations and contributions of subbasins and upstream regions. Findings show a power correlation between upstream discharge and travel time, and significant fluctuations occurred even before dam construction.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Xuanming Su, Kiyoshi Takahashi, Tokuta Yokohata, Katsumasa Tanaka, Shinichiro Fujimori, Jun'ya Takakura, Rintaro Yamaguchi, and Weiwei Xiong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1640, https://doi.org/10.5194/egusphere-2024-1640, 2024
Preprint archived
Short summary
Short summary
We created a new model combining socioeconomic data and climate projections. Using multiple future scenarios, we calculated new costs for reducing emissions, estimated damage based on the latest impacts, and extended our analysis to the year 2450. Our results show different ways to control emissions and their effects on future temperatures. This highlights the importance of adapting climate policies to different economic growth scenarios for better long-term planning.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Kedar Otta, Hannes Müller Schmied, Simon N. Gosling, and Naota Hanasaki
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-215, https://doi.org/10.5194/hess-2023-215, 2023
Revised manuscript not accepted
Short summary
Short summary
Reservoirs play important roles in hydrology and water resources management globally and are incorporated into many Global Hydrological Models. Their simulations are, however, poorly validated due to the lack of available long-term in-situ observation data globally. Here we investigated the applicability of the latest satellite-based reservoir storage estimations in the contiguous US. We found that those products are useful for validating reservoir storage simulations when they are normalized.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Sayaka Yoshikawa, Kiyoshi Takahashi, Wenchao Wu, Keisuke Matsuhashi, and Nobuo Mimura
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-169, https://doi.org/10.5194/gmd-2022-169, 2022
Revised manuscript not accepted
Short summary
Short summary
Socio-economic scenarios developed worldwide require revised versions for local assessments in Japan. Moreover, global narratives may lack important region-specific drivers, national policy perspectives, and unification of government-provided data. Therefore, we present the development of several socio-economic scenarios with changes in population and land use based on the previous study as a framework for projecting climate change impacts and adaptation assessment in Japan.
Naveen Chandra, Prabir K. Patra, Yousuke Niwa, Akihiko Ito, Yosuke Iida, Daisuke Goto, Shinji Morimoto, Masayuki Kondo, Masayuki Takigawa, Tomohiro Hajima, and Michio Watanabe
Atmos. Chem. Phys., 22, 9215–9243, https://doi.org/10.5194/acp-22-9215-2022, https://doi.org/10.5194/acp-22-9215-2022, 2022
Short summary
Short summary
This paper is intended to accomplish two goals: (1) quantify mean and uncertainty in non-fossil-fuel CO2 fluxes estimated by inverse modeling and (2) provide in-depth analyses of regional CO2 fluxes in support of emission mitigation policymaking. CO2 flux variability and trends are discussed concerning natural climate variability and human disturbances using multiple lines of evidence.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Irina Melnikova, Olivier Boucher, Patricia Cadule, Katsumasa Tanaka, Thomas Gasser, Tomohiro Hajima, Yann Quilcaille, Hideo Shiogama, Roland Séférian, Kaoru Tachiiri, Nicolas Vuichard, Tokuta Yokohata, and Philippe Ciais
Earth Syst. Dynam., 13, 779–794, https://doi.org/10.5194/esd-13-779-2022, https://doi.org/10.5194/esd-13-779-2022, 2022
Short summary
Short summary
The deployment of bioenergy crops for capturing carbon from the atmosphere facilitates global warming mitigation via generating negative CO2 emissions. Here, we explored the consequences of large-scale energy crops deployment on the land carbon cycle. The land-use change for energy crops leads to carbon emissions and loss of future potential increase in carbon uptake by natural ecosystems. This impact should be taken into account by the modeling teams and accounted for in mitigation policies.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, Stephen Sitch, Vanessa Haverd, Danica Lombardozzi, Vivek K. Arora, Julia Pongratz, Julia E. M. S. Nabel, Daniel S. Goll, Etsushi Kato, Hanqin Tian, Almut Arneth, Pierre Friedlingstein, Atul K. Jain, Sönke Zaehle, and Victor Brovkin
Biogeosciences, 18, 4985–5010, https://doi.org/10.5194/bg-18-4985-2021, https://doi.org/10.5194/bg-18-4985-2021, 2021
Short summary
Short summary
Satellite observations since the early 1980s show that Earth's greening trend is slowing down and that browning clusters have been emerging, especially in the last 2 decades. A collection of model simulations in conjunction with causal theory points at climatic changes as a key driver of vegetation changes in natural ecosystems. Most models underestimate the observed vegetation browning, especially in tropical rainforests, which could be due to an excessive CO2 fertilization effect in models.
Yuji Masutomi, Toshichika Iizumi, Key Oyoshi, Nobuyuki Kayaba, Wonsik Kim, Takahiro Takimoto, and Yoshimitsu Masaki
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-131, https://doi.org/10.5194/gmd-2021-131, 2021
Revised manuscript not accepted
Short summary
Short summary
The accuracy of seasonal climate forecasts for monthly precipitation of JMA/MRI-CPS2, a dynamical seasonal climate forecast (SCF) system, is higher than that of statistical SCF (St-SCF) system using climate indices around the equator (10° S–10° N) even for six-month lead forecasts. On a global scale, the forecast accuracy of JMA/MRI-CPS2 is higher for one-month lead forecasts; however, St-SCFs were more accurate for forecasts more than two months in advance.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Yosuke Niwa, Yousuke Sawa, Hideki Nara, Toshinobu Machida, Hidekazu Matsueda, Taku Umezawa, Akihiko Ito, Shin-Ichiro Nakaoka, Hiroshi Tanimoto, and Yasunori Tohjima
Atmos. Chem. Phys., 21, 9455–9473, https://doi.org/10.5194/acp-21-9455-2021, https://doi.org/10.5194/acp-21-9455-2021, 2021
Short summary
Short summary
Fires in Equatorial Asia release a large amount of carbon into the atmosphere. Extensively using high-precision atmospheric carbon dioxide (CO2) data from a commercial aircraft observation project, we estimated fire carbon emissions in Equatorial Asia induced by the big El Niño event in 2015. Additional shipboard measurement data elucidated the validity of the analysis and the best estimate indicated 273 Tg C for fire emissions during September–October 2015.
Jun'ya Takakura, Shinichiro Fujimori, Kiyoshi Takahashi, Naota Hanasaki, Tomoko Hasegawa, Yukiko Hirabayashi, Yasushi Honda, Toshichika Iizumi, Chan Park, Makoto Tamura, and Yasuaki Hijioka
Geosci. Model Dev., 14, 3121–3140, https://doi.org/10.5194/gmd-14-3121-2021, https://doi.org/10.5194/gmd-14-3121-2021, 2021
Short summary
Short summary
To simplify calculating economic impacts of climate change, statistical methods called emulators are developed and evaluated. There are trade-offs between model complexity and emulation performance. Aggregated economic impacts can be approximated by relatively simple emulators, but complex emulators are necessary to accommodate finer-scale economic impacts.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Chihiro Kodama, Tomoki Ohno, Tatsuya Seiki, Hisashi Yashiro, Akira T. Noda, Masuo Nakano, Yohei Yamada, Woosub Roh, Masaki Satoh, Tomoko Nitta, Daisuke Goto, Hiroaki Miura, Tomoe Nasuno, Tomoki Miyakawa, Ying-Wen Chen, and Masato Sugi
Geosci. Model Dev., 14, 795–820, https://doi.org/10.5194/gmd-14-795-2021, https://doi.org/10.5194/gmd-14-795-2021, 2021
Short summary
Short summary
This paper describes the latest stable version of NICAM, a global atmospheric model, developed for high-resolution climate simulations toward the IPCC Assessment Report. Our model explicitly treats convection, clouds, and precipitation and could reduce the uncertainty of climate change projection. A series of test simulations demonstrated improvements (e.g., high cloud) and issues (e.g., low cloud, precipitation pattern), suggesting further necessity for model improvement and higher resolutions.
Kazuyuki Saito, Hirokazu Machiya, Go Iwahana, Tokuta Yokohata, and Hiroshi Ohno
Geosci. Model Dev., 14, 521–542, https://doi.org/10.5194/gmd-14-521-2021, https://doi.org/10.5194/gmd-14-521-2021, 2021
Short summary
Short summary
Soil organic carbon (SOC) and ground ice (ICE) are essential but under-documented information to assess the circum-Arctic permafrost degradation impacts. A simple numerical model of essential SOC and ICE dynamics, developed and integrated north of 50° N for 125,000 years since the last interglacial, reconstructed the history and 1° distribution of SOC and ICE consistent with current knowledge, together with successful demonstration of climatic and topographical controls on SOC evolution.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
Cited articles
Ainsworth, E. A. and Long, P.: What have we learned from 15 years of
free-air CO2 enrichment (FACE)? A meta-analytic review of the responses
of photosynthesis, canopy properties and plant production to rising
CO2, New Phytol., 165, 351–372, 2005.
Alexander, P., Rounsevell, M. D. A., Dislich, C., Dodson, J. R.,
Engström, K., and Moran, D.: Drivers for global agricultural land use
change: The nexus of diet, population, yield and bioenergy, Global
Environ. Chang., 35, 138–147, 2015.
Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C.,
Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendoncker, N.,
Doelman, J. C., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S.,
Harrison, P. A., Hasegawa, T., Havlik, P., Holzhauer, S., Humpenöder,
F., Jacobs-Crisioni, C., Jain, A. K., Krisztin, T., Kyle, P., Lavalle, C.,
Lenton, T., Liu, J., Meiyappan, P., Popp, A., Powell, T., Sands, R. D.,
Schaldach, R., Stehfest, E., Steinbuks, J., Tabeau, A., van Meijl, H., Wise,
M. A., and Rounsevell, M. D. A.: Assessing uncertainties in land cover
projections, Global Change Biol., 23, 767–781, 2017.
Alexander, P., Rabin, S., Anthoni, P., Henry, R., Pugh, T. A. M.,
Rounsevell, M. D. A., and Arneth, A.: Adaptation of global land use and
management intensity to changes in climate and atmospheric carbon dioxide,
Global Change Biol., 24, 2791–2809, 2018.
Arent, D. J., Döll, P., Strzepek, K. M., Jiménez Cisneros, B. E.,
Reisinger, A., Tóth, F. L., and Oki, T.: Cross-chapter box on the
water–energy–food/feed/fiber nexus as linked to climate change, in:
Climate Change 2014: Impacts, Adaptation, and Vulnerability – Part A: Global
and Sectoral Aspects, Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel of Climate Change, edited by: Field,
C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir,
T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B.,
Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White,
L. L., Cambridge University Press, Cambridge, UK, New
York, NY, USA, 2014.
Baldocchi, D.: An analytical solution for coupled leaf photosynthesis and
stomatal conductance models, Tree Physiol., 14, 1069–1079, 1994.
Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais,
N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G. B., Bondeau,
A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S.,
Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N.,
Williams, C., Woodward, F. I., and Papale, D.: Terrestrial gross carbon
dioxide uptake: Global distribution and covariation with climate, Science,
329, 834–838, https://doi.org/10.1126/science.1184984, 2010.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology / Un modèle à base physique de zone
d'appel variable de l'hydrologie du bassin versant, Hydrol. Sci.
Bull., 24, 43–69, 1979.
BirdLife International: World database of key biodiversity areas. Developed by the KBA partnership, BirdLife International, International Union for the Conservation of Nature, Amphibian Survival Alliance, Conservation International, Critical Ecosystem Partnership Fund, Global Environment Facility, Global Wildlife Conservation, NatureServe, Rainforest Trust, Royal Society for the Protection of Birds, Wildlife Conservation Society and World Wildlife Fund, available at: http://www.keybiodiversityareas.org (last access: 8 January 2018), 2017.
Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., MÜLler, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balance, Glob. Change Biol., 13, 679–706, 2007.
Brovkin, V., Boysen, L., Arora, V. K., Boisier, J. P., Cadule, P., Chini,
L., Claussen, M., Friedlingstein, P., Gayler, V., van den Hurk, B. J. J. M.,
Hurtt, G. C., Jones, C. D., Kato, E., de Noblet-Ducoudré, N., Pacifico,
F., Pongratz, J., and Weiss, M.: Effect of Anthropogenic Land-Use and
Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections
for the Twenty-First Century, J. Climate, 26, 6859–6881, 2013.
Butler, J. H.: Economic Geography: Spatial and Environmental Aspects of
Economic Activity, John Wiley, New York, 402 pp., 1980
Calvin, K. and Bond-Lamberty, B.: Integrated human-earth system
modeling–state of the science and future directions, Environ. Res. Lett., 13, 063006, https://doi.org/10.1088/1748-9326/aac642, 2018.
Chaudhari, S., Pokhrel, Y., Moran, E., and Miguez-Macho, G.: Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics, Hydrol. Earth Syst. Sci., 23, 2841–2862, https://doi.org/10.5194/hess-23-2841-2019, 2019.
Chen, L. and Dirmeyer, P. A.: Adapting observationally based metrics of
biogeophysical feedbacks from land cover/land use change to climate
modeling, Environ. Res. Lett., 11, 034002, https://doi.org/10.1088/1748-9326/11/3/034002, 2016.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et
al.: Carbon and other biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, Stocker, T. F., et al., 465–570, Cambridge, United Kingdom and New York, NY, USA, Cambridge Univ. Press, 2013.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agr.
Forest Meteorol., 54, 107–136, 1991
Collins, W. D., Craig, A. P., Truesdale, J. E., Di Vittorio, A. V., Jones, A. D., Bond-Lamberty, B., Calvin, K. V., Edmonds, J. A., Kim, S. H., Thomson, A. M., Patel, P., Zhou, Y., Mao, J., Shi, X., Thornton, P. E., Chini, L. P., and Hurtt, G. C.: The integrated Earth system model version 1: formulation and functionality, Geosci. Model Dev., 8, 2203–2219, https://doi.org/10.5194/gmd-8-2203-2015, 2015.
Community Earth System Model Project, available at:
http://www.cesm.ucar.edu/, last access: 1 July 2019.
Debele, B., Srinivasan, R., and Parlange, J. Y.: Accuracy evaluation of weather data generation and disaggregation methods at finer timescales, Adv. Water Resour., 30, 1286–1300, https://doi.org/10.1016/j.advwatres.2006.11.009, 2007.
Dietrich, J. P., Bodirsky, B. L., Humpenöder, F., Weindl, I., Stevanović, M., Karstens, K., Kreidenweis, U., Wang, X., Mishra, A., Klein, D., Ambrósio, G., Araujo, E., Yalew, A. W., Baumstark, L., Wirth, S., Giannousakis, A., Beier, F., Chen, D. M.-C., Lotze-Campen, H., and Popp, A.: MAgPIE 4 – a modular open-source framework for modeling global land systems, Geosci. Model Dev., 12, 1299–1317, https://doi.org/10.5194/gmd-12-1299-2019, 2019.
Dietrich, J. P., Popp, A., and Lotze-Campen, H.: Reducing the loss of
information and gaining accuracy with clustering methods in a global
land-use model, Ecol. Model., 263, 233–243, 2013.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp,
L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic,
A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J.,
Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J.,
Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A.
T., and Zadeh, N.: GFDL's ESM2 Global Coupled Climate–Carbon Earth System
Models. Part I: Physical Formulation and Baseline Simulation
Characteristics, J. Climate, 25, 6646–6665, 2012.
Ejiri, Y.: A consideration of the Comparative Cost Model Using
Three-Dimensional Diagrams, Forest Resource Management and Mathematical
Modeling, FORMATH, 7, 135–159, 2008.
Engström, K., Olin, S., Rounsevell, M. D. A., Brogaard, S., van Vuuren, D. P., Alexander, P., Murray-Rust, D., and Arneth, A.: Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework, Earth Syst. Dynam., 7, 893–915, https://doi.org/10.5194/esd-7-893-2016, 2016.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Famien, A. M., Janicot, S., Ochou, A. D., Vrac, M., Defrance, D., Sultan, B., and Noël, T.: A bias-corrected CMIP5 dataset for Africa using the CDF-t method – a contribution to agricultural impact studies, Earth Syst. Dynam., 9, 313–338, https://doi.org/10.5194/esd-9-313-2018, 2018.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta,
149, 78–90, 1980.
Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E.,
Meehl, G. A., and Washington, W. M.: The Importance of Land-Cover Change in
Simulating Future Climates, Science, 310, 1674–1678, 2005.
Felfelani, F., Wada, Y., Longuevergne, L., and Pokhrel, Y.: Natural and
human-induced terrestrial water storage change: A global analysis using
hydrological models and GRACE, J. Hydrol., 553, 105–118, 2017.
Findell, K. L., Berg, A., Gentine, P., Krasting, J. P., Lintner, B. R.,
Malyshev, S., Santanello, J. A., and Shevliakova, E.: The impact of
anthropogenic land use and land cover change on regional climate extremes,
Nat. Commun., 8, 989, https://doi.org/10.1038/s41467-017-01038-w, 2017.
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S.,
Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C.,
Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C.,
Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., and
Zaks, D. P. M.: Solutions for a cultivated planet, Nature, 478, 337–342, 2011.
Food and Agriculture Organization of the United Nations (FAO): FAOSTAT,
Rome, Italy: The Stat. Div. of FAO, available at:
http://faostat.fao.org/ (last access: 20 July 2020), 2019.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens.
Environ., 114, 168–182, 2010.
Fujimori, S., Masui, T., Matsuoka, Y.: AIM/CGE [basic] manual, Discussion
Paper Series, 1–74, 2012.
Fujimori, S., Abe, M., Kinoshita, T., Hasegawa, T., Kawase, H., Kushida, K.,
Masui, T., Oka, K., Shiogama, H., Takahashi, K., Tatebe, H., and Yoshikawa,
M.: Downscaling Global Emissions and Its Implications Derived from Climate
Model Experiments, PLOS ONE 12, e0169733, https://doi.org/10.1371/journal.pone.0169733, 2017a.
Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Herran, D. S., Dai,
H., Hijioka, Y., and Kainuma, M.: SSP3: AIM implementation of Shared
Socioeconomic Pathways, Global Environ. Chang., 42, 268–283, https://doi.org/10.1016/j.gloenvcha.2016.06.009, 2017b.
Goudriaan, J. and van Laar, H. H.: Modelling potential crop growth
processes, Kluwer Academic Publishers, 1994.
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020.
Hanasaki, N., Kanae, S., and Oki, T.: A reservoir operation scheme for
global river routing models, J. Hydrol., 327, 22–41, 2006.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydrol. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K., Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008b.
Hanasaki, N., Inuzuka, T., Kanae, S., and Oki, T.: An estimation of global
virtual water flow and sources of water withdrawal for major crops and
livestock products using a global hydrological model, J. Hydrol.,
384, 232–244, 2010.
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K., and Masui, T.: Global
land-use allocation model linked to an integrated assessment model, Sci. Total Environ., 580, 787–796, 2017.
Havlík, P., Schneider, U. A., Schmid, E., Böttcher, H., Fritz, S.,
Skalský, R., Aoki, K., Cara, S. D., Kindermann, G., Kraxner, F., Leduc,
S., McCallum, I., Mosnier, A., Sauer, T., and Obersteiner, M.: Global
land-use implications of first and second generation biofuel targets, Energy
Policy, 39, 5690–5702, 2011.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hibbard, K., Janetos, A., van Vuuren, D. P., Pongratz, J., Rose, S. K.,
Betts, R., Herold, M., and Feddema, J. J.: Research priorities in land use
and land-cover change for the Earth system and integrated assessment
modelling, Int. J. Climatol., 30, 2118–2128, 2010.
Hirsch, A. L., Guillod, B. P., Seneviratne, S. I., Beyerle, U., Boysen, L.
R., Brovkin, V., Davin, E. L., Doelman, J. C., Kim, H., Mitchell, D. M.,
Nitta, T., Shiogama, H., Sparrow, S., Stehfest, E., Vuuren, D. P., and
Wilson, S.: Biogeophysical Impacts of Land-Use Change on Climate Extremes in
Low-Emission Scenarios: Results From HAPPI-Land, Earth's Future, 6, 396–409,
2018.
Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M.,
and Meinke, H.: Adapting agriculture to climate change, P.
Natl. Acad. Sci. USA, 104, 19691–19696, 2007.
Humpenöder, F., Popp, A., Stevanovic, M., Müller, C., Bodirsky, B.
L., Bonsch, M., Dietrich, J. P., Lotze-Campen, H., Weindl, I., Biewald, A.,
and Rolinski, S.: Land-Use and Carbon Cycle Responses to Moderate Climate
Change: Implications for Land-Based Mitigation?, Environ. Sci.
Tech., 49, 6731–6739, 2015.
Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova, E.,
Malyshev, S., Pacala, S. W., and Houghton, R. A.: The underpinnings of
land-use history: three centuries of global gridded land-use transitions,
wood-harvest activity, and resulting secondary lands, Glob. Change Biol.,
12, 1208–1229, 2006.
Iizumi, T., Yokozawa, M., Sakurai, G., Travasso, M.I., Romanernkov, V.,
Oettli, P., Newby, T., Ishigooka, Y., and Furuya, J.: Historical changes in
global yields: Major cereal and legume crops from 1982 to 2006, Global
Ecol. Biogeogr., 23, 346–357, 2013.
Iizumi, T., Okada, M., and Yokozawza, M.: A meteorological forcing data set
for global crop modeling: Development, evaluation, and intercomparison,
J. Geophys. Res.-Atmos., 119, 363–384, https://doi.org/10.1002/2013JD020130,
2014.
Iizumi, T.: GDHY, Data set, Data Integration and Analysis System (DIAS),
https://doi.org/10.20783/DIAS.528, 2017.
Ito, A.: Changing ecophysiological processes and carbon budget in East Asian
ecosystems under near-future changes in climate: Implications for long-term
monitoring from a process-based model, J. Plant Res., 123, 577–588, 2010.
Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, https://doi.org/10.5194/bg-9-759-2012, 2012.
Ito, A., Nishina, K., Ishijima, K., Hashimoto, S., and Inatomi, M.: Emissions of
nitrous oxide (N2O) from soil surfaces and their historical changes in
East Asia: a model-based assessment, Progr. Earth Planet. Sci.,
5, 55, https://doi.org/10.1186/s40645-018-0215-4, 2018.
Ito, A., Nishina, K., Reyer, C. P. O., François, L., Henrot, A.-J.,
Munhoven, G., Jacquemin, I., Tian, H., Yang, J., Pan, S., Morfopoulos, C.,
Betts, R., Hickler, T., Steinkamp, J., Ostberg, S., Schaphoff, S., Ciais,
P., Chang, J., Rafique, R., Zeng, F., and Zhao, F.: Photosynthetic productivity
and its efficiencies in ISIMIP2a biome models: benchmarking for impact
assessment studies, Environ. Res. Lett., 12, 085001,
https://doi.org/10.1088/1748-9326/aa7a19, 2017.
IUCN and UNEP‐WCMC: The World Database on Protected Areas (WDPA), UNEP‐WCMC, Cambridge, UK, available at: http://www.protectedplanet.net (last access: 2 October 2020), 2018.
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011, 2011.
K-1 model developers: K-1 coupled GCM (MIROC) description, K-1 Tech. Rep.,
1, edited by: Hasumi, H. and Emori, S., Center for Climate System
Research, the University of Tokyo, Tokyo, 34 pp., 2004.
Kaschuk, G., Yin, X., Hungria, M., Leffelaar, P. A., Giller, K. E., and
Kuyper, T. W.: Photosynthetic adaptation of soybean due to varying
effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum
strains, Environ. Exp. Bot., 76, 1–6, 2012.
Kato, E. and Yamagata, Y.: BECCS capability of dedicated bioenergy crops under
a future land-use scenario targeting net negative carbon emissions, Earth's
Future, 2, 421–439, 2014.
Koirala, S., Yeh, P. J. F., Hirabayashi, Y., Kanae, S., and Oki, T.:
Global-scale land surface hydrologic modeling with the representation of
water table dynamics, J. Geophys. Res.-Atmos., 119, 75–89, 2014.
Kriegler, E. and Lucht, W.: Overview of the PIK REMINDMAgPIE-LPJml
integrated assessment framework, available at:
http://www.iiasa.ac.at/web/home/about/events/5_PIK_(Kriegler).pdf (last access: 1 July 2019), 2015.
Krysanova, V., Müller-Wohlfeil, D.-I., and Becker, A.: Development and
test of a spatially distributed hydrological/water quality model for
mesoscale watersheds, Ecol. Model., 106, 261–289, 1998.
Lawrence, D. M., Hurtt, G. C., Arneth, A., Brovkin, V., Calvin, K. V., Jones, A. D., Jones, C. D., Lawrence, P. J., de Noblet-Ducoudré, N., Pongratz, J., Seneviratne, S. I., and Shevliakova, E.: The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design, Geosci. Model Dev., 9, 2973–2998, https://doi.org/10.5194/gmd-9-2973-2016, 2016.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P.,
Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C.,
Robertson, J. C., Rödel, R., Sindorf, N., and Wisser, D.: High-resolution mapping
of the world's reservoirs and dams for sustainable river-flow management,
Front. Ecol. Environ., 9, 494–502, 2011.
Letourneau, A., Verburg, P. H., and Stehfest, E.: A land-use systems
approach to represent land-use dynamics at continental and global scales,
Environ. Model. Softw., 33, 61–79, 2012.
Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, David
B., Martre, P., Ruane, Alex C., Wallach, D., Jones, James W., Rosenzweig,
C., Aggarwal, Pramod K., Alderman, Phillip D., Anothai, J., Basso, B.,
Biernath, C., Cammarano, D., Challinor, A., Deryng, D., Sanctis, Giacomo D.,
Doltra, J., Fereres, E., Folberth, C., Garcia-Vila, M., Gayler, S.,
Hoogenboom, G., Hunt, Leslie A., Izaurralde, Roberto C., Jabloun, M., Jones,
Curtis D., Kersebaum, Kurt C., Kimball, Bruce A., Koehler, A.-K., Kumar,
Soora N., Nendel, C., O'Leary, Garry J., Olesen, Jørgen E., Ottman,
Michael J., Palosuo, T., Prasad, P. V. V., Priesack, E., Pugh, Thomas A. M.,
Reynolds, M., Rezaei, Ehsan E., Rötter, Reimund P., Schmid, E., Semenov,
Mikhail A., Shcherbak, I., Stehfest, E., Stöckle, Claudio O.,
Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha, K.,
Wall, Gerard W., Wang, E., White, Jeffrey W., Wolf, J., Zhao, Z., and Zhu,
Y.: Similar estimates of temperature impacts on global wheat yield by three
independent methods, Nat. Clim. Change, 6, 1130–1136, 2016.
Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and
Lucht, W.: Global food demand, productivity growth, and the scarcity of land
and water resources: a spatially explicit mathematical programming approach,
Agr. Econom., 39, 325–338, https://doi.org/10.1111/j.1574-0862.2008.00336.x, 2008.
Mahmood, R., Pielke Sr., R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A.,
McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat,
A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken,
P. D., Frauenfeld, O. W., Nair, U. S., and Fall, S.: Land cover changes and
their biogeophysical effects on climate, Int. J.
Climatol., 34, 929–953, 2014.
McGuire, A., Sitch, D. S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore III, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Carbon balance of the terrestrial biosphere in the twentieth
century: analysis of CO2, climate and land use effects with four
process-based ecosystem models, Glob. Biogeochem. Cy., 15, 183–206,
2001.
Medlyn, B. E., Dreyer, E., Ellsworth, D., Forstreuter, M., Harley, P. C., Kirschbaum, M. U. F., Le Roux, X., Montpied, P., Strassemeyer, J., Walcroft, A., Wang, K., and Loustau, D.: Temperature response of parameters of a
biochemically based model of photosynthesis. II. A review of experimental
data, Plant Cell Environ., 25, 1167–1179, 2002.
Meiyappan, P., Dalton, M., O'Neill, B. C., and Jain, A. K.: Spatial modeling
of agricultural land use change at global scale, Ecol. Model., 291,
152–174, 2014.
Monfreda, C., Ramankutty, N., and Foley, J.: Farming the planet: 2. Geographic
distribution of crop areas, yields, physiological types, and net primary
production in the year 2000, Global Biogeochem. Cy., 22, GB1022,
https://doi.org/10.1029/2007GB002947, 2008.
Monsi, M. and Saeki, T.: Über den Lichtfaktor in den
Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn.
J. Bot., 14, 22–52, 1953.
Mori, S., Washida, T., Kurosawa, A., and Masui, T.: Assessment of mitigation strategies as tools for risk management under future uncertainties: a multi-model approach, Sustain. Sci., 13, 329–349, https://doi.org/10.1007/s11625-017-0521-6, 2018.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K.,
van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl,
G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J.,
Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The
next generation of scenarios for climate change research and assessment,
Nature, 463, 747–756, 2010.
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., Skalsky, R., Song, C. X., Wang, X., de Wit, A., and Yang, H.: Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403–1422, https://doi.org/10.5194/gmd-10-1403-2017, 2017.
Müller-Hansen, F., Schlüter, M., Mäs, M., Donges, J. F., Kolb, J. J., Thonicke, K., and Heitzig, J.: Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches, Earth Syst. Dynam., 8, 977–1007, https://doi.org/10.5194/esd-8-977-2017, 2017.
Murakami, D. and Yamagata, Y.: Estimation of Gridded Population and GDP Scenarios
with Spatially Explicit Statistical Downscaling, Sustainability, 11, 2106, https://doi.org/10.3390/su11072106,
2019.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., and King, K.
W.: Soil and water assessment tool theoretical documentation (version 2005),
United States Department of Agriculture, 2005.
Nitta, T., Yoshimura, K., Takata, K., O'ishi, R., Sueyoshi, T., Kanae, S.,
Oki, T., Abe-Ouchi, A., and Liston, G. E.: Representing Variability in
Subgrid Snow Cover and Snow Depth in a Global Land Model: Offline
Validation, J. Climate, 27, 3318–3330, 2014.
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Global
Environ. Chang., 42, 169–180, 2017.
Okada, M., Iizumi, T., Sakurai, G., Hanasaki, N., Sakai, T., Okamoto, K.,
and Yokozawa, M.: Modeling irrigation-based climate change adaptation in
agriculture: Model development and evaluation in Northeast China, J.
Adv. Model. Earth Syst., 7, 1409–1424, 2015
Oki, T. and Sud, Y. C.: Design of Total Runoff Integrating Pathways
(TRIP) – A Global River Channel Network, Earth Interact., 2, 1–37, 1998.
Olin, S., Schurgers, G., Lindeskog, M., Wårlind, D., Smith, B., Bodin, P., Holmér, J., and Arneth, A.: Modelling the response of yields and tissue C : N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe, Biogeosciences, 12, 2489–2515, https://doi.org/10.5194/bg-12-2489-2015, 2015.
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., and Fischer, G.:
Effects of climate change on global food production under SRES emissions and
socio-economic scenarios, Global Environ. Chang., 14, 53–67, 2004.
Pokhrel, Y., Hanasaki, N., Wada, Y., and Kim, H.: Recent progresses in
incorporating human land–water management into global land surface models
toward their integration into Earth system models, WIREs Water, 3, 548–574, 2016.
Pokhrel, Y., Felfelani, F., Shin, S., Yamada, T. J., and Satoh, Y.: Modeling
large-scale human alteration of land surface hydrology and climate,
Geosci. Lett., 4, 10, https://doi.org/10.1186/s40562-017-0076-5, 2017.
Pokhrel, Y., Hanasaki, N., Yeh, P. J. F., Yamada, T. J., Kanae, S., and Oki, T.:
Model estimates of sea-level change due to anthropogenic impacts on
terrestrial water storage, Nat. Geosci., 5, 389–392, 2012a.
Pokhrel, Y., Koirala, S., Yeh, P. J. F., Hanasaki, N., Longuevergne, L.,
Kanae, S., and Oki, T.: Incorporation of groundwater pumping in a global Land
Surface Model with the representation of human impacts, Water Resour.
Res., 51, 78–96, 2015.
Pokhrel, Y., Hanasaki, N., Koirala, S., Cho, J., Yeh, P. J. F., Kim, H.,
Kanae, S., and Oki, T.: Incorporating Anthropogenic Water Regulation Modules into
a Land Surface Model, J. Hydrometeorol., 13, 255–269, 2012b.
Popp, A., Dietrich, J. P., Lotze-Campen, H., Klein, D., Bauer, N., Krause,
M., Beringer, T., Gerten, D., and Edenhofer, O.: The economic potential of
bioenergy for climate change mitigation with special attention given to
implications for the land system, Environ. Res. Lett., 6, 034017, https://doi.org/10.1088/1748-9326/6/3/034017,
2011.
Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F.,
Stehfest, E., Bodirsky, B. L., Dietrich, J. P., Doelmann, J. C., Gusti, M.,
Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin,
H., Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H.,
Fricko, O., Riahi, K., and Vuuren, D. P. v.: Land-use futures in the shared
socio-economic pathways, Global Environ. Chang., 42, 331–345, 2017.
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M.,
Iqbal, M. M., Lobell, D. B., and Travasso, M. I.: Food security and food
production systems, in: Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part A: Global and Sectoral Aspects, Contribution of Working
Group II to the Fifth Assessment Report of the Intergovernmental Panel of
Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J.,
Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y.
O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S.,
Mastrandrea, P. R., and White, L. L., Cambridge University Press,
Cambridge, UK, New York, NY, USA, 2014.
Pugh, T. A. M., Müller, C., Elliott, J., Deryng, D., Folberth, C., Olin,
S., Schmid, E., and Arneth, A.: Climate analogues suggest limited potential
for intensification of production on current croplands under climate change,
Nat. Commun., 7, 12608, https://doi.org/10.1038/ncomms12608, 2016.
Richards, L. A.: Capillary Conduction Of Liquids Through Porous Mediums,
J. Appl. Phys., 1, 318–333, 1931.
Robinson, D. T., Di Vittorio, A., Alexander, P., Arneth, A., Barton, C. M., Brown, D. G., Kettner, A., Lemmen, C., O'Neill, B. C., Janssen, M., Pugh, T. A. M., Rabin, S. S., Rounsevell, M., Syvitski, J. P., Ullah, I., and Verburg, P. H.: Modelling feedbacks between human and natural processes in the land system, Earth Syst. Dynam., 9, 895–914, https://doi.org/10.5194/esd-9-895-2018, 2018.
Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Bodirsky, B. L., Bondeau, A., Boons-Prins, E. R., Bouwman, A. F., Leffelaar, P. A., te Roller, J. A., Schaphoff, S., and Thonicke, K.: Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6, Geosci. Model Dev., 11, 429–451, https://doi.org/10.5194/gmd-11-429-2018, 2018.
Romero-Lankao, P., Smith, J. B., Davidson, D. J., Diffenbaugh, N. S.,
Kinney, P. L., Kirshen, P., Kovacs, P., and Villers-Ruiz, L.: North America,
in: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B:
Regional Aspects, Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel of Climate Change, edited by: Barros, V. R.,
Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E.,
Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B.,
Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White,
L. L., Cambridge University Press, Cambridge, UK, New
York, NY, USA, 2014.
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C.,
Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, N., Neumann,
K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H., and
Jones, J. W.: Assessing agricultural risks of climate change in the 21st
century in a global gridded crop model intercomparison, P.
Natl. Acad. Sci. USA, 111, 3268–3273, 2014.
Rounsevell, M. D. A., Arneth, A., Alexander, P., Brown, D. G., de Noblet-Ducoudré, N., Ellis, E., Finnigan, J., Galvin, K., Grigg, N., Harman, I., Lennox, J., Magliocca, N., Parker, D., O'Neill, B. C., Verburg, P. H., and Young, O.: Towards decision-based global land use models for improved understanding of the Earth system, Earth Syst. Dynam., 5, 117–137, https://doi.org/10.5194/esd-5-117-2014, 2014.
Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.: Crop planting
dates: an analysis of global patterns, Global Ecol. Biogeogr.,
19, 607–620, 2010.
Sakurai, G., Iizumi, T., Nishimori, M., and Yokozawa, M.: How much has the
increase in atmospheric CO2 directly affected past soybean production?,
Sci. Rep., 4, 4978, https://doi.org/10.1038/srep04978, 2014.
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE RL05
mascons, J. Geophys. Res.-Sol. Ea., 121, 7547–7569, 2016.
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., van Beek, L. P.,
Wiese, D. N., Wada, Y., Long, D., and Reedy, R. C.: Global models underestimate
large decadal declining and rising water storage trends relative to GRACE
satellite data, P. Natl. Acad. Sci. USA, 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018.
Scholes, R. J. and Brown de Colstoun, E.: ISLSCP II Global Gridded Soil Characteristics, in: Hall, F. G., Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., and Landis, D., ISLSCP Initiative II Collection, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A., available at: http://daac.ornl.gov/ISLSCP_II/guides/islscp2_soils_1deg.html (last access: 1 October 2020), https://doi.org/10.3334/ORNLDAAC/1004, 2011.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land surface parameterization (SiB2) for
atmospheric GCMs, Part I: Model Formulation, J. Climate, 9, 676–705, 1996a.
Sellers, P. J., Tucker, C. J., Collatz, G. J., Los, S. O., Justice, C. O., Dazlich, D. A., and Randall, D. A.: A revised land surface parameterization (SiB2) for
atmospheric GCMs, Part II: The generation of global fields of terrestrial
biophysical parameters from satellite data, J. Climate, 9, 706–737,
1996b.
Smith, P., Gregory, P. J., van Vuuren, D., Obersteiner, M., Havlík, P.,
Rounsevell, M., Woods, J., Stehfest, E., and Bellarby, J.: Competition for
land, Philos. T. R. Soc. B, 365, 2941–2957, 2010.
Smith, P., Haberl, H., Popp, A., Erb, K.-h., Lauk, C., Harper, R., Tubiello,
F. N., de Siqueira Pinto, A., Jafari, M., Sohi, S., Masera, O.,
Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., Clark, H., Dong,
H., Elsiddig, E. A., Mbow, C., Ravindranath, N. H., Rice, C. W., Robledo
Abad, C., Romanovskaya, A., Sperling, F., Herrero, M., House, J. I., and
Rose, S.: How much land-based greenhouse gas mitigation can be achieved
without compromising food security and environmental goals?, Glob. Change
Biol., 19, 2285–2302, 2013.
Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C.: An Efficient
Approach to Modeling the Topographic Control of Surface Hydrology for
Regional and Global Climate Modeling, J. Climate, 10, 118–137, 1997.
Takata, K., Emori, S., and Watanabe, T.: Development of the minimal advanced
treatments of surface interaction and runoff, Global Planet. Change,
38, 209–222, 2003
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and
the Experiment Design, B. Am. Meteorol. Soc.,
93, 485–498, 2012.
Thornton, P. E., Calvin, K., Jones, A. D., Di Vittorio, A. V.,
Bond-Lamberty, B., Chini, L., Shi, X., Mao, J., Collins, W. D., Edmonds, J.,
Thomson, A., Truesdale, J., Craig, A., Branstetter, M. L., and Hurtt, G.:
Biospheric feedback effects in a synchronously coupled model of human and
Earth systems, Nat. Clim. Change, 7, 496–500, 2017.
Tilman, D., Balzer, C., Hill, J., and Befort, B. L.: Global food demand and the sustainable intensification of agriculture,
P. Natl. Acad. Sci. USA, 108, 20260–20264, https://doi.org/10.1073/pnas.1116437108, 2011
United States Department of Agriculture (USDA): Major world crop areas
and climatic profiles, Washington, DC, USDA, p. 279, 1994.
van Vuuren, D. P., Batlle Bayer, L., Chuwah, C., Ganzeveld, L., Hazeleger,
W., van den Hurk, B., van Noije, T., O'Neill, B., and Strengers, B. J.: A
comprehensive view on climate change: coupling of earth system and
integrated assessment models, Environ. Res. Lett., 7, 024012, https://doi.org/10.1088/1748-9326/7/2/024012,
2012.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A.,
Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Clim. Change, 109,
5–31, 2011.
von Bloh, W., Schaphoff, S., Müller, C., Rolinski, S., Waha, K., and Zaehle, S.: Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0), Geosci. Model Dev., 11, 2789–2812, https://doi.org/10.5194/gmd-11-2789-2018, 2018.
Verdin, K. L. and Greenlee, S. K.: Development of continental scale digital
elevation models and extraction of hydrographic features, in: Proceedings,
Third International Conference/Workshop on Integrating GIS and Environmental
Modeling, Santa Fe, New Mexico, 21–26 January, 1996, National Center for
Geographic Information and Analysis, Santa Barbara, California, 1996.
Veldkamp, T. I. E., Zhao, F., Ward, P. J., de Moel, H., Aerts, J. C.,
Schmied, H. M., Portmann, F. T., Masaki, Y., Pokhrel, Y., and Liu, X.: Human impact
parameterizations in global hydrological models improve estimates of monthly
discharges and hydrological extremes: a multi-model validation study,
Environ. Res. Lett., 13, 055008, https://doi.org/10.1088/1748-9326/aab96f, 2018.
Vrugt, J. A., ter Braak,
C. J. F., Diks,
C. G. H., Robinson,
B. A., Hyman,
J. M., and Higdon,
D.: Accelerating Markov chain Monte Carlo simulation by
differential evolution with self-adaptive randomized subspace sampling, Int.
J. Nonlinear Sci., 10, 271–288, 2009.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Watanabe, T.: Bulk parameterization for a vegetated surface and its
application to a simulation of nocturnal drainage flow, Bound.-Lay.
Meteorol., 70, 13–35, 1994.
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with
GRACE using spherical cap mascons, J. Geophys. Res.-Sol.
Ea., 120, 2648–2671, 2015.
Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K., and Galli,
A.: Affluence drives the global displacement of land use, Global
Environ. Chang., 23, 433–438, 2013.
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.:
JPL GRACE Mascon Ocean, Ice, and Hydrology Equivalent Water Height RL05M.1
CRI Filtered Version 2, PO.DAAC, CA, USA, Dataset, https://doi.org/10.5067/TEMSC-2LCR5, 2016.
Willett, K. M., Gillett, N. P., Jones, P. D., and Thorne, P. W.: Attribution of observed surface humidity change to human influence, Nature, 449, 710–712, 2007.
Wiscombe, W. J. and Warren, S. G.: A model for the spectral albedo of snow.
I: Pure snow, J. Atmos. Sci., 37, 2712–2733, 1980.
Wise, M. and Calvin, K.: GCAM3.0 Agriculture and Land Use: Technical Description of
Modeling Approach, PNNL-20971, Pacific Northwest National Laboratory, 2011.
Wise, M., Calvin, K., Kyle, G., Luckow, P., and Edmonds, J.: Economic and
physical modeling of land use in GCAM 3.0 and an application to agricultural
productivity, land, and terrestrial carbon, Clim. Change Econom., 5,
1450003, https://doi.org/10.1142/S2010007814500031, 2014.
Wu, W., Hasegawa, T., Ohashi, H., Hanasaki, N., Liu, J., Matsui, T.,
Fujimori, S., Masui, T., and Takahashi, K.: Global advanced bioenergy
potential under environmental protection policies and societal
transformation measures, GCB Bioenergy, 11, 1041–1055, 2019.
Yokohata, T., Tanaka, K., Nishina, K., Takahashi, K., Emori, S., Kiguchi,
M., Iseri, Y., Honda, Y., Okada, M., Masaki, Y., Yamamoto, A., Shigemitsu,
M., Yoshimori, M., Sueyoshi, T., Iwase, K., Hanasaki, N., Ito, A., Sakurai,
G., Iizumi, T., Nishimori, M., Lim, W. H., Miyazaki, C., Okamoto, A., Kanae,
S., and Oki, T.: Visualizing the Interconnections Among Climate Risks,
Earth's Future, 7, 85–100, 2019.
Zaherpour, J., S. N. Gosling, N. Mount, H. M. Schmied, T. I. E. Veldkamp, R.
Dankers, S. Eisner, D. Gerten, L. Gudmundsson, and I. Haddeland: Worldwide
evaluation of mean and extreme runoff from six global-scale hydrological
models that account for human impacts. Environ. Res. Lett., 2018.
Zhao, M., Heinsch, F. A., Nemani, R., and Running, S. W.: Improvements of
the MODIS terrestrial gross and net primary production global data set,
Remote Sens. Environ., 95, 164–176, https://doi.org/10.1016/j.rse.2004.12.011, 2005.
Zhao, F., Veldkamp, T. I., Frieler, K., Schewe, J., Ostberg, S., Willner, S., Schauberger, B.,
Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng, G.,
Huang, M., Liu, X., Tang, Q., Hanasaki, N., Biemans, H., Gerten, D., Satoh, Y.,
Pokhrel, Y., Stacke, T., Ciais, P., Chang, J., Ducharne, A., Guimberteau, M., Wada, Y.,
Kim, H., and Yamazaki, D.: The critical role of the routing scheme in
simulating peak river discharge in global hydrological models, Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017.
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes...