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Abstract. Future changes in the climate system could have
significant impacts on the natural environment and human
activities, which in turn affect changes in the climate sys-
tem. In the interaction between natural and human systems
under climate change conditions, land use is one of the el-
ements that play an essential role. On the one hand, fu-
ture climate change will affect the availability of water and
food, which may impact land-use change. On the other hand,
human-induced land-use change can affect the climate sys-
tem through biogeophysical and biogeochemical effects. To
investigate these interrelationships, we developed MIROC-
INTEG-LAND (MIROC INTEGrated LAND surface model
version 1), an integrated model that combines the land sur-
face component of global climate model MIROC (Model
for Interdisciplinary Research on Climate) with water re-
sources, crop production, land ecosystem, and land-use mod-
els. The most significant feature of MIROC-INTEG-LAND
is that the land surface model that describes the processes
of the energy and water balance, human water management,
and crop growth incorporates a land use decision-making

model based on economic activities. In MIROC-INTEG-
LAND, spatially detailed information regarding water re-
sources and crop yields is reflected in the prediction of fu-
ture land-use change, which cannot be considered in the con-
ventional integrated assessment models. In this paper, we in-
troduce the details and interconnections of the submodels
of MIROC-INTEG-LAND, compare historical simulations
with observations, and identify various interactions between
the submodels. By evaluating the historical simulation, we
have confirmed that the model reproduces the observed states
well. The future simulations indicate that changes in climate
have significant impacts on crop yields, land use, and irriga-
tion water demand. The newly developed MIROC-INTEG-
LAND could be combined with atmospheric and ocean mod-
els to develop an integrated earth system model to simulate
the interactions among coupled natural–human earth system
components.
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1 Introduction

The problems associated with climate change are related to
the various processes involved in natural and human systems,
as well as their interconnections. Changes in the climate sys-
tem are caused by greenhouse gas emissions and changes in
land use resulting from human activity (Collins et al., 2013).
At the same time, climate change impacts natural and hu-
man systems in a variety of ways (e.g., Arent et al., 2014;
Porter et al., 2014; Romero-Lankao et al., 2014). According
to research on the linkage of various risks caused by climate
change (e.g., Yokohata et al., 2019), changes in the climate
system affect the natural environment, leading to changes in
the socioeconomic system and finally impacting human lives.

One of the factors that plays an essential role in the interac-
tion between the natural and human systems is land use (van
Vuuren et al., 2012; Rounsevell et al., 2014; Lawrence et al.,
2016). In general, changes in land use are driven by changes
in various socioeconomic factors, such as an increase in food
demand (Foley et al., 2011; Weinzettel et al., 2013; Alexan-
der et al., 2015). At the same time, changes in the climate sys-
tem affect the water resources available to agriculture and the
size of the food supply through changes in crop yield (Rosen-
zweig et al., 2014; Liu et al., 2016; Pugh et al., 2016), signif-
icantly affecting human land use (Parry et al., 2004; Howden
et al., 2007). Furthermore, climate mitigation measures of-
ten include the use of biofuel crops, which can significantly
influence human land use (Smith et al., 2013; Humpenöder
et al., 2015; Popp et al., 2017). On the other hand, land-use
change is known to have biogeophysical and biogeochemi-
cal effects on the earth system (Mahmood et al., 2014; Chen
and Dirmeyer, 2016; Smith et al., 2016), as changes in land
use bring about changes in surface heat and water budgets,
which, in turn, affect air temperature and precipitation (Fed-
dema et al., 2005; Findell et al., 2017; Hirsch et al., 2018).
Changes in land use also affect the terrestrial carbon budget,
thereby influencing the concentration of greenhouse gases
(GHGs) in the atmosphere (Brovkin et al., 2013; Lawrence
et al., 2016; Le Quéré et al., 2018). It seems clear, then, that
climate change induces land-use change by affecting vari-
ous human activities, and that human land-use change affects
changes in the climate system (Hibbard et al., 2010; van Vu-
uren et al., 2012; Alexander et al., 2017; Calvin and Bond-
Lamberty 2018, Robinson et al., 2018).

Various numerical models have been developed to de-
scribe the interaction between natural and human systems
in order to project future conditions as they relate to cli-
mate change (van Vuuren et al., 2012; Calvin and Bond-
Lamberty 2018). Generally, in models dealing with the de-
tails of natural systems, elements related to human activity
are simplified, and in models dealing with the details of hu-
man activities, elements related to natural systems tend to
be likewise simplified (Müller-Hansen et al., 2017; Robin-
son et al., 2018). An earth system model (ESM) describes
in detail the physical and carbon cycle processes in a nat-

ural system. A number of ESMs take human activities into
consideration (Calvin and Bond-Lamberty 2018). The iESM
project (Collins et al., 2015) is based on a CESM (Com-
munity Earth System Model Project, 2019) that incorporates
GCAM (Calvin, 2011; Wise et al., 2014), an integrated as-
sessment model (IAM) that provides a comprehensive de-
scription of human economic activities. With iESM, it is pos-
sible to capture the various interactions between the natu-
ral environment and human economic activities (Collins et
al., 2015), but the model used to indicate the impact of cli-
mate change on water resources and crops is rather simpli-
fied (Thornton et al., 2017; Robinson et al., 2018; Calvin and
Bond-Lamberty 2018).

IAMs consider supply and demand equations across the
entire range of economic transactions and calculate the
changes in surface air temperature resulting from increased
GHGs in the atmosphere (Moss et al., 2010). IAMs can also
project future changes in human land use (Wise and Calvin,
2011; Letourneau et al., 2012; Hasegawa et al., 2017). In gen-
eral, however, IAMs simplify processes related to the natural
environment (water resources, the ecosystem, crop growth,
etc.) (Robinson et al., 2018) and thus do not explore the inter-
actions between the natural and human systems on a spatially
disaggregated basis (Alexander et al., 2018).

Many models for predicting changes in human land use
have been developed (e.g., Hurtt et al., 2006; Lotze-Campen
et al., 2008; Havlík et al., 2011; Wise and Calvin 2011;
Meiyappan et al., 2014; Dietrich et al., 2019). Among these,
the LPJ-GUESS and PLUMv2 coupled models are able to
consider spatially specific interactions between changes in
vegetation, irrigation, crop growth, and land use (Engström
et al., 2016; Alexander et al., 2018). However, LPJ-GUESS
(Olin et al., 2015) is a dynamic vegetation model that is inca-
pable of exploring interactions related to physical processes,
such as biogeophysical effects or future changes in water
resources. On the other hand, LPJmL is a well-established
global dynamical vegetation, hydrology, and crop growth
model that can also consider the nitrogen and carbon cy-
cles (Rolinski et al., 2018; von Bloh et al., 2018). The out-
put of LPJmL (Bondeau et al., 2007), such as crop yield,
land and/or water constraints, and vegetation and soil car-
bon, is used in the land-use model MAgPIE (Lotze-Campen
et al., 2008; Popp et al., 2011; Dietrich et al., 2013; Kriegler
and Lucht 2015; Dietrich et al., 2019). Although the gridded
information of LPJmL is linked to MAgPIE (Alexander et
al., 2018), the land-use change calculated by MAgPIE is not
communicated to LPJmL (one-way coupling), making inter-
active calculations using the dynamic vegetation, hydrology,
crop growth, and land-use models impossible.

In this study, we develop a global model that can evalu-
ate the spatially detailed interactions between physical and
biological processes, human water use, crop production, and
land use related to economic activities. The model is based
on the land surface component of global climate model
MIROC (Model for Interdisciplinary Research on Climate,
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version 5.0; Watanabe et al., 2010), into which we have in-
corporated water resources, land ecosystem, crop growth,
and land-use models. In the integrated model, which we call
MIROC-INTEG-LAND (MIROC INTEGrated LAND sur-
face model version 1), the budgets of energy, water, and car-
bon are determined by consistently considering the processes
related to land surface physics, ecosystems, and human activ-
ities.

Section 2 in this paper explains the overall structure of
MIROC-INTEG-LAND. The component models of MIROC-
INTEG-LAND (climate, land ecosystem, water resource,
crop growth, and land use), here called “submodels”, are
described in detail in Sect. 3. Special attention is given to
the land-use submodel, as it was specifically developed for
inclusion into MIROC-INTEG-LAND and is expected to
play a pivotal role. The other submodels – the climate, wa-
ter resources, crop growth, and land ecosystem models –
are based on models developed in the course of previous
research. Section 3 outlines how the submodels used here
differ from the original models. Section 4 explains the nu-
merical procedure used to combine the submodels in the in-
tegrated model. Section 5 describes the data used for the
various inputs and boundary conditions required to operate
the integrated model. Section 6 verifies model reliability by
comparing historical simulation results with various obser-
vational data. A summary of the results from simulations by
MIROC-INTEG-LAND of future conditions and a discus-
sion of the interactions between climate and water resources,
crops, land use, and ecosystem are presented in Sect. 7. Fi-
nally, in Sect. 8, we discuss possible research themes regard-
ing the interaction between natural and human systems that
can be addressed using MIROC-INTEG-LAND.

2 Overall features of MIROC-INTEG-LAND

2.1 Model structure

The distinctive feature of MIROC-INTEG-LAND (Fig. 1)
is that it couples human activity models to the land sur-
face component of MIROC, a state-of-the-art global cli-
mate model (Watanabe et al., 2010). The MIROC series
is a global atmosphere–land–ocean coupled global climate
model, which is one of the models contributing to the Cou-
pled Model Intercomparison Project (CMIP). MIROC’s land
surface component MATSIRO (Minimal Advanced Treat-
ments of Surface Interaction and Runoff; Takata et al., 2003;
Nitta et al., 2014) can consider the energy and water bud-
gets consistently on the land grid with a spatial resolution
of 1◦. MIROC-INTEG-LAND performs its calculations over
the global land area only, and neither the atmosphere nor
ocean components of MIROC are coupled. One of the ad-
vantages of running only the land surface model is that it
can be used to assess the impacts of land on climate change,

Figure 1. Relationships among variables in MIROC-INTEG-
LAND. Components of the integrated model (submodels) are
shown as colored boxes. Climate (land surface) and water re-
source components are represented with HiGWMAT (Pokhrel et
al., 2012a), which is based on the land surface model MATSIRO
(Nitta et al., 2014) in a global climate model MIROC (Watanabe et
al., 2010). Land ecosystem and crop growth components are repre-
sented with VISIT (Ito and Inatomi 2012) and PRYSBI2 (Sakurai
et al., 2014), respectively. The land-use model TeLMO (Terrestrial
Land-use MOdel) is developed in this study. Inputs into the model
are shown as boxes of climate and socioeconomic scenarios. Solid
arrows between the boxes indicate the exchange of variables be-
tween the submodels. Dashed arrows indicate the input variables of
the submodels.

taking into account the uncertainties of future atmospheric
projections.

Human activity models are included in MIROC-INTEG-
LAND: HiGWMAT (Pokhrel et al., 2012b), which is a global
land surface model with human water management modules,
and PRYSBI2 (Sakurai et al., 2014), which is a global crop
model. In HiGWMAT, models of human water regulation
such as water withdrawals from rivers, dam operations, and
irrigation (Hanasaki et al., 2006, 2008a, b; Pokhrel et al.,
2012a, b) are incorporated into MATSIRO, the abovemen-
tioned global land surface model. In PRYSBI2, the growth
and yield of four crops (wheat, maize, soybean, rice) are cal-
culated. In addition, TeLMO (Terrestrial Land-use MOdel),
a global land-use model developed for the present study, cal-
culates the grid ratio of cropland (food and bioenergy crops),
pasture, and forest (managed and unmanaged) as well as
their transitions. The land-use transition matrix calculated
by TeLMO is used in the process-based terrestrial ecosys-
tem model VISIT (Vegetation Integrative SImulator for Trace
gases; Ito and Inatomi 2012).

In MIROC-INTEG-LAND, various socioeconomic vari-
ables are given as the input data for future projections.
For example, domestic and industrial water demand is used
in HiGWMAT. The crop growth model PRYSBI2 uses fu-
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ture GDP projections in order to estimate the “technologi-
cal factor” that represents crop yield increase due to techno-
logical improvement. The land-use model TeLMO uses fu-
ture demand for food, bioenergy, pasture, and roundwood,
as well as future GDP and population estimates. For fu-
ture socioeconomic projections, we use the scenarios associ-
ated with shared socioeconomic pathways (SSPs; O’Neil et
al., 2017) and representative concentration pathways (RCPs;
van Vuuren et al., 2011). These are generated by an in-
tegrated assessment model: AIM/CGE (Asia-Pacific Inte-
grated Model/Computable General Equilibrium; Fujimori et
al., 2012, 2017b).

Interactions of the natural environment and human ac-
tivities are evaluated through the exchange of variables in
MIROC-INTEG-LAND (Fig. 1). The calculations in HiG-
WMAT are based on atmospheric variables (e.g., surface air
temperature, humidity, wind, and precipitation) that serve as
boundary conditions. The HiGWMAT model calculates the
land surface and underground physical variables for three
tiles (natural vegetation, rainfed cropland, and irrigated crop-
land) in each grid; a grid average is calculated by multiply-
ing the areal weight of the three tiles. In HiGWMAT, water
is taken from rivers or groundwater based on water demand
(domestic, industrial, and agricultural). Agricultural demand
is calculated endogenously in HiGWMAT, and withdrawn
water is supplied to the irrigated cropland area, which mod-
ifies the soil moisture. The operation of dams and storage
reservoirs also modifies the flow of the river. Using the soil
moisture and temperature calculated in HiGWMAT, the crop
model PRYSBI2 simulates crop growth and yield. PRYSBI2
also uses the same atmospheric variables that are used as in-
put data in HiGWMAT.

The land-use model TeLMO uses the yield calculated by
PRYSBI2. In TeLMO, the ratios of food plus bioenergy crop,
pasture, and forest in each grid are calculated based on so-
cioeconomic input variables such as the demand for food,
bioenergy, pasture, and roundwood, as well as crop yield and
ground slope. TeLMO also calculates the transition matrix
of land usage (e.g., forest to cropland, cropland to pasture),
which is passed to the terrestrial ecosystem model VISIT
to evaluate the carbon cycle. The land uses calculated by
TeLMO are also used as the grid ratios of natural vegetation
and cropland area (rainfed and irrigated) in HiGWMAT.

2.2 Novelty of MIROC-INTEG-LAND

An important feature of MIROC-INTEG-LAND is that the
land allocation model is coupled to the state-of-the-art land
surface model, and that the impact of future climate and so-
cioeconomic changes on water resources and land use can be
considered consistently. In general, future land-use changes
are often assessed by using an IAM. However, as mentioned
earlier, IAMs are not grid based, but rather they divide the
world into dozens of regions and describe the entirety of eco-
nomic activity in these regions. Therefore, IAMs have a sim-

plified description of the processes related to water resources
and crop growth. In contrast, MIROC-INTEG-LAND pro-
vides capabilities to calculate complex physical processes
over the land and considers the changes in water resources,
taking into account human activities such as irrigation and
reservoir operation. Furthermore, process-based crop mod-
els allow for an explicit and detailed consideration of growth
processes of five different crops.

For the projection of future land use, IAMs usually (1) cal-
culate the area of agricultural land by using yield informa-
tion averaged over these regions based on the balance be-
tween supply and demand and (2) allocate the agricultural
land by using a downscaling approach (e.g., Hasegawa et al.,
2017). As pointed out in previous studies (Alexander et al.,
2017), the problem with this method is that it does not allow
for an explicit consideration of spatiotemporal information
such as yield and production cost when determining land-use
change. The Food Cropland Model in TeLMO addresses this
issue by making it possible to consistently consider the spa-
tiotemporal information such as crop yields and the balance
between supply and demand when allocating the agricultural
land, by using the Food Cropland Down-scale Module and
the International Trade Module as explained in Appendix B.

As for the projection of future land-use change, TeLMO
enables the calculation of future land-use change as an of-
fline simulation, by using the crop yield data calculated
in advance. On the other hand, crop yield depends on the
water resource availability that is affected by the changes
in soil physical processes due to future climate change, as
well as the changes in irrigated cropland area caused by the
increases in future food demands. MIROC-INTEG-LAND
couples the models of physical land-surface processes, hu-
man water management, and crop growth processes with the
land-use allocation model to consider these various interac-
tions, as explained above.

3 Submodels

3.1 Global land surface model with human water
management HiGWMAT

The HiGWMAT model (Pokhrel et al., 2015) is a global
land surface model (LSM) that simulates surface and sub-
surface hydrologic processes considering both the natural
and anthropogenic flow of water globally (1◦ in latitude
and longitude). It incorporates human water management
schemes (Pokhrel et al., 2012a, b) into the global LSM MAT-
SIRO (Minimal Advanced Treatments of Surface Interac-
tion and Runoff) (Takata et al., 2003). In MIROC-INTEG-
LAND, HiGWMAT calculates the physical states (based on
the changes in the energy and water budgets), including hu-
man water use and management. In HiGWMAT, the bio-
physical fluxes are updated after water use and management
processes are simulated (Pokhrel et al., 2012a). Since our
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previous publications provide a detailed description of the
MATSIRO model (Takata et al., 2003), groundwater scheme
(Koirala et al., 2014), and the human impact representations
(Pokhrel et al., 2012a, b, 2015), we include here only a brief
overview of these models or schemes.

3.1.1 MATSIRO land surface model

MATSIRO (Takata et al., 2003; Nitta et al., 2014) was devel-
oped at The University of Tokyo and the National Institute
for Environmental Studies in Japan as the land surface com-
ponent of the MIROC (K-1 Model Developers, 2004; Watan-
abe et al., 2010) general circulation model (GCM) frame-
work. MATSIRO estimates the exchange of energy, water va-
por, and momentum between the land surface and the atmo-
sphere on a physical basis. The effects of vegetation on the
surface energy balance are calculated based on the multilayer
canopy model of Watanabe (1994) and the photosynthesis-
stomatal conductance model of Collatz et al. (1991) follow-
ing the scheme in the SiB2 model (Sellers et al., 1996). The
vertical movement of soil moisture is estimated by numer-
ically solving the Richards equation (Richards, 1931) for
soil layers in the unsaturated zone. The original version of
MATSIRO (Takata et al., 2003) did not include an explicit
representation of water table dynamics. To represent surface
and subsurface runoff processes, a simplified TOPMODEL
(Beven and Kirkby 1979; Stieglitz et al., 1997) is used. The
surface heat balances are solved by an implicit scheme at
the ground and canopy surfaces in the snow-free and snow-
covered portions (i.e., four different surfaces within a grid
cell) to determine ground surface and canopy temperature.
The temperature of snow is prognosticated by using a thermal
conduction equation, and the snow water equivalent (SWE)
is prognosticated by using the mass balance equation consid-
ering snowfall, snowmelt, and freeze. The number of snow
layers in each grid cell is determined from SWE. The albedo
of snow in the model is varied using an aging factor (Wis-
combe and Warren 1980) and in accordance with the time
since the last snowfall and snow temperature, considering the
densification, metamorphism, and soilage of the snow.

3.1.2 Human water management schemes

The original MATSIRO was enhanced by Pokhrel et
al. (2012a, b) through the incorporation of a river-routing
model and human water management schemes (i.e., irriga-
tion, reservoir operation, water withdrawal, and environmen-
tal flow requirement). The irrigation scheme is based on the
soil moisture deficit in the top 1 m (i.e., the root zone) of
the soil column; that is, irrigation demand is estimated as the
difference between the target soil moisture set for each crop
type and the actual simulated soil moisture (Pokhrel et al.,
2012b). Irrigation water is added as sprinkler irrigation on
top of vegetation; a part of this is lost as evapotranspiration,
and the rest returns back to the soil column. Subgrid vari-

ability of vegetation is represented by partitioning each grid
cell into three tiles: natural vegetation, rainfed, and irrigated
cropland.

The crop growth module for irrigation water is based on
the H08 model (Hanasaki et al., 2008a, b), where the crop
vegetation formulations and parameters are adopted from the
Soil and Water Integrated Model (SWIM) (Krysanova et al.,
1998). The crop growth module for irrigation water in HiG-
WMAT estimates the cropping period that is necessary to ob-
tain mature and optimal total plant biomass for 18 different
crop types. Irrigation is activated during the entire growing
season but only for the irrigated portion of a grid cell using a
tile approach (Pokhrel et al., 2012a).

Crop growth considered in the irrigation scheme is simu-
lated within the HiGWMAT model using a crop growth mod-
ule, which differs from the crop scheme in PRYSBI2 that
simulates crop yields (Sect. 3.2). The reasons why different
crop models are used to calculate irrigation water (HiGW-
MAT) and crop yields (PRYSBI2) are that (1) HiGWMAT
has been used as a crop model based on SWIM (and it has
been validated that the water withdrawal in various regions
is consistent with the statistical data; Pokhrel et al., 2012b),
and (2) PRYSBI2 has been used as a crop model based on
SWAT, and crop yield in PRYSBI2 has been calibrated us-
ing the agricultural statistics; Sakurai et al. (2014). MIROC-
INTEG-LAND uses different crop models to obtain realis-
tic water withdrawal in HiGWMAT and to calculate realis-
tic crop yields in PRYSBI2. The differences in the formula-
tion between the crop models in PRYSBI2 and HiGWMAT
are that the former uses more detailed crop modeling of the
two-layer crop canopy, Farquhar photosynthetic CO2 assim-
ilation, and the cropping period based on Sacks et al. (2010)
(see details in Sect. A2), while the latter employs the simpler
crop modeling of the single-layer crop canopy, radiation-use
efficiency-type biomass accumulation, and the hypothetical
planting date that gives the highest yield under the given
weather conditions (Okada et al., 2015).

The reservoir operation and environmental flow require-
ment schemes are based on the H08 model (Hanasaki et
al., 2008a, b). The reservoir operation scheme (Hanasaki et
al., 2006) is integrated within the TRIP global river-routing
model (Oki and Sud, 1998) to simulate reservoir storage and
release for grid cells that contain reservoirs. The reservoir
database is taken from Lehner et al. (2011). Large reservoirs
having a storage capacity greater than 1 km3 are explicitly
simulated; medium-sized reservoirs with a storage capacity
ranging from 3× 106 to 1× 109 m3 (Hanasaki et al., 2010)
are considered to be ponds holding water temporarily and
releasing it entirely during the dry season. The withdrawal
module extracts the total (domestic, industrial, and agricul-
tural) water requirements: first from river channels and sur-
face reservoirs and then from groundwater; the lower thresh-
old of river discharge prescribed as the environmental flow
requirement is considered when extracting water from river
channels. While irrigation demand is simulated by the irri-
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gation module, domestic and industrial water uses are pre-
scribed based on the AQUASTAT database of the Food and
Agricultural Organization (FAO; see Pokhrel et al., 2012b).
We use the same prescribed values for domestic and indus-
trial water uses in both historical and future simulations, as
future projections of water withdrawal are not available.

3.2 Global crop growth model PRYSBI2

PRYSBI2 (Process-based Regional-scale crop Yield Simu-
lator with Bayesian Inference 2) (version 2.2) is a semi-
process-based global-scale crop growth model in which the
daily biomass growth and resulting crop yield are calcu-
lated for the same grid cell as HiGWMAT (1◦ in latitude
and longitude) (Sakurai et al., 2014). In MIROC-INTEG-
LAND, PRYSIB2 is used to calculate crop yields. The target
crops are maize, soybeans, wheat, and rice. Daily biomass
growth is calculated using daily meteorological data (precip-
itation, temperature, wind speed, humidity, solar radiation,
and atmospheric CO2 concentration) according to the photo-
synthetic rate calculated by a simple big leaf model (Monsi
and Saeki, 1953) and the enzyme kinetics model developed
by Farquhar et al. (1980). To determine the water stress,
the soil moisture and temperature calculated by HiGWMAT
(Sect. 3.1) are used. In PRYSBI2, the planting date is given
by using the data of Sacks et al. (2010). The harvesting date is
determined by when the crops accumulate their total number
of heat units (THU) up to the threshold values. Crop yields
for each year are calculated from the aboveground biomass
and harvest indexes (Sect. A2).

The process of fertilizer input is not included in this model.
Rather, parameters relating to technological factors that in-
clude the effect of fertilizer are set and input into the model
(Sect. A7). We call this model a semi-process-based model,
because some of the parameters, including the parameters
relevant to technological factors, are statistically estimated
using historical crop yield data (Iizumi et al., 2014) for each
grid cell by the DREAM (DiffeRential Evolution Adaptive
Metropolis) algorithm (Vrugt et al., 2009). The parameters
were estimated by Markov chain Monte Carlo (MCMC)
methods with 20 000 steps for each grid cell (Sakurai et al.,
2014). The parameter values of the technological factors in
future scenarios are estimated as a linear function of the gross
domestic product (GDP) of each shared socioeconomic path-
way (SSP) for each country (see details in Sect. A7).

In the original photosynthesis model by Farquhar et
al. (1980), the photosynthesis rate is directly stimulated by
the increase in CO2 concentration, which is called the CO2
fertilization effect. However, it is also known that the CO2
fertilization effect is downregulated by environmental lim-
itations such as sink–source balance and nitrogen supply
(Ainsworth and Long, 2005). In this model, the downregu-
lation of the CO2 fertilization effect is described as a func-
tion of atmospheric CO2 concentration, in which the poten-
tial photosynthesis rate (maximum carboxylation rate of Ru-

bisco and the potential rate of electron transport) gradually
decreases according to the increase in CO2 concentration
(see Sect. A6).

The crop model used in this study is an updated version
(version 2.2) of the model described in Sakurai et al. (2014)
(which gives a detailed description of PRYSBI2 version 2.0)
and Müller et al. (2017) (which gives a brief description
of version 2.1). The structure of the model is quite similar
to versions 2.0 and 2.1. However, there are some parts of
the version 2.2 structure that are slightly different. In Ap-
pendix A, we present a summary of the model and identify
the elements that differ from the earlier versions.

3.3 Global land ecosystem model VISIT

The functions of the natural land ecosystem and their envi-
ronmental responses are simulated by the submodel VISIT
(Vegetation Integrative SImulator for Trace gases) (Ito, 2010;
Ito et al., 2018). In MIROC-INTEG-LAND, VISIT is used to
calculate the carbon and nitrogen cycles. VISIT is a process-
based terrestrial biogeochemical model that simulates the
atmosphere–land-surface exchange of greenhouse gases such
as CO2 and CH4 and trace gases such as biogenic volatile or-
ganic compounds. Carbon, nitrogen, and associated water cy-
cles are fully simulated in the model using ecophysiological
relationships but in a simplified manner. The model operates
at the global scale with a spatial resolution of 0.5◦× 0.5◦.
The ecosystem carbon cycle is simulated using a box-flow
scheme composed of three plant carbon pools (leaf, stem,
and root) and two soil carbon pools (litter and humus). Pho-
tosynthetic carbon acquisition is a function of the leaf area
index, light absorptance, and photosynthetic capacity, which
respond to temperature, ambient CO2, and humidity. Soil car-
bon dynamics are simplified by the litter and humus scheme
but works well to simulate microbial decomposition and car-
bon storage. The model has two layers, i.e., natural vegeta-
tion and cropland, at each grid that are weighted by a land-
cover fraction to obtain the total grid-based budget. Impacts
of land-use change on the ecosystem carbon budget are taken
into account using a simple scheme by McGuire et al. (2001)
in which typical fractionation factors are applied to defor-
ested biomass (e.g., immediate emission, 1-, 10-, and 100-
year pools). The difference in carbon emissions from pri-
mary and secondary forests is included by using a different
biomass density; regrowth of abandoned croplands is also
simulated as the recovery of the mean biomass of the nat-
ural vegetation in the same grid. For brevity, croplands are
categorized into three types (rice paddy, other C3 crops such
as wheat, and C4 crops such as maize); the crop calendar and
management practices such as fertilizer input are simulated
within the VISIT model (i.e., independent of PRYSBI2) in
a conventional manner. Planting and harvest dates are deter-
mined by monthly mean temperature; country-specific fer-
tilizer inputs derived from the FAO country statistics (FAO-
STAT; FAO, 2019) are used. In PRYSBI2, the effects of fer-
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tilizer are included in the technological factors, and crop
yields are calibrated based on the technological factors, as
described in Sects. 3.2 and A7. On the other hand, VISIT has
been applied and validated at various scales from flux mea-
surement sites to the global scale (e.g., Ito et al., 2017) based
on the treatment of fertilizer input, as described above. The
consistent treatment of fertilizer processes in PRYSBI2 and
VISIT should be important future work.

3.4 Land-use model TeLMO

In the course of developing the integrated terrestrial model
MIROC-INTEG-LAND, we developed the Terrestrial Land-
use MOdel (TeLMO) for projecting global land use with
a resolution of 0.5◦× 0.5◦. TeLMO projects land use in
each grid cell based on socioeconomic data such as demand
for food and biofuel crops obtained from the AIM/CGE
(Fujimori et al., 2012, 2017b). In MIROC-INTEG-LAND,
TeLMO is used to estimate land-use change. For long-term
projections, TeLMO assumes that there is a preferential order
to land use by humans (i.e., urban, food cropland, bioenergy
cropland, pasture land, and managed forests). That is, it as-
sumes that land is used in the order of highest to lowest value
added per unit area. After allocating land use in this manner,
TeLMO calculates a transition matrix for each grid in order to
evaluate the impact of land-use change on terrestrial ecosys-
tems. Details of the five models comprising TeLMO – (1) the
Food Cropland Model, (2) the Bioenergy Cropland Model,
(3) the Pastureland Model, (4) the managed forest model, and
(5) the land-use Transition Matrix Model – are explained in
Appendix B.

4 Numerical procedure of model coupling

In MIROC-INTEG-LAND, submodels with different time
steps are executed simultaneously by exchanging variables
as shown in Fig. 1. The numerical procedure for exchang-
ing variables between the submodels is shown in Fig. 2. Ex-
changing variables among submodels is accomplished in one
of two ways: online coupling or offline coupling (Collins
et al., 2015). In online coupling, the values calculated by
a submodel are exchanged with other submodels via inter-
nal memory (i.e., the values calculated in one subroutine are
passed directly to other subroutines). In offline coupling, the
output of a particular submodel is written to a file; the other
submodels then read the file as needed. The far-right “Data”
box in Fig. 2 indicates the files used for saving submodel
output data. The arrows show the exchanges that are made.
The arrows between one submodel box and another indicate
online coupling; those between a submodel box and the data
box indicate offline coupling. The flow of submodel calcula-
tions is described below.

Figure 2. The numerical simulation procedure in MIROC-INTEG-
LAND. The order of the numerical integration is (1) TeLMO,
(2) HiGWMAT + PRYSIB2, and (3) VISIT as described in Sect. 4.
Boxes indicate the submodels and data. For the submodels, the
name and time step of the models are indicated in the boxes. In
the “Data” box, the name of the variable saved as a file is indicated.
In the “Input data” box, information regarding the input data is in-
dicated.

4.1 TeLMO

The land-use model TeLMO (Sect. 3.4) calculates the areal
fraction of each land use within a grid (natural vegetation,
cropland, pasture, etc.) and the transitions among them once
a year, using the decadal average of crop yields calculated
by PRYSBI2. The start year of TeLMO calculation is 2005.
Since the exchange of variables is not so frequent, TeLMO
is coupled to the other models via offline coupling (as shown
in Fig. 2). That is, the output of TeLMO (grid fraction of
land uses and transitions) is written to files, and the other
submodels read the files as necessary. As shown in the figure,
TeLMO reads the output files of PRYSBI2 (crop yields) for
its calculations.

4.2 HiGWMAT + PRYSBI2

HiGWMAT (Sect. 3.1), the global land surface model that
considers human water management, is used to calculate the
physical states (surface and soil temperature and moisture,
as well as energy and water fluxes) at hourly to daily time
steps. The crop model PRYSBI2 (Sect. 3.2) is used to cal-
culate crop yields at daily time steps using the soil moisture
and temperature values generated by HiGWMAT. Since the
exchange of variables between HiGWMAT and PRYSBI2 is
very frequent (i.e., daily), these two submodels are joined
through online coupling.

As shown in Fig. 2, in the future simulations, the MIROC-
INTEG-LAND calculations start with TeLMO (TeLMO is
switched off before 2004). After the output of TeLMO
is written to files, the online-coupled HiGWMAT and
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PRYSBI2 make their calculations using the land-use grid ra-
tio produced by TeLMO. Once the output of the HiGWMAT-
PRYSBI2 combination is written to files, TeLMO again starts
it calculations for the next year using the 10-year output. The
exchange continues in this fashion.

4.3 VISIT

As shown in Fig. 2, VISIT (Sect. 3.3), the terrestrial ecosys-
tem model, calculates the carbon and nitrogen cycles us-
ing the output of the land-use model TeLMO. In MIROC-
INTEG-LAND, no variable exchange between HiGWMAT-
PRYSBI2 and VISIT is performed at this stage since the
structures of these two submodels differ significantly. In the
current version of MIROC-INTEG-LAND, we first calcu-
late the TeLMO-HiGWMAT-PRYSBI2 calculations until the
year 2100, and then perform the VISIT calculations from
preindustrial time (including spin-up simulations) to the end
of the 21st century by using the TeLMO output. (TeLMO is
used only for the future period, and LUH (Land Use Harmo-
nized) data are used for other periods.)

4.4 Model coupling

The proper choice of coupling method depends on the spe-
cific features of the variable exchange between submodels
(Collins et al., 2015). One of the advantages of offline cou-
pling is that the structure of the original model (e.g., the rela-
tionships between the main program and the subroutines) can
be preserved, at least to some extent, in the coupling. This is
not the case for online coupling. For example, for online cou-
pling, either the main program of the original model needs to
be modified in order for it to serve as a subroutine or a special
program for connecting stand-alone models (i.e., a coupler)
needs to be developed. In MIROC-INTEG, offline coupling
is suitable for coupling TeLMO since the model structure
of TeLMO is different from the other submodels (TeLMO
solves equations with various spatial resolutions: global 30 s,
0.5◦, and 17 regions; see Appendix B for details) and data
exchange occurs only once per year (so that the calculation
cost for the input/output procedure can be minimized). On
the other hand, online coupling is appropriate for connecting
HiGWMAT and PRYSBI2, since the structure of the two sub-
models is similar (spatial resolution with a global 1◦ grid),
and the exchange of variables is frequent (daily). In MIROC-
INTEG, some of the subroutines of the original PRYSBI2
models that calculate the crop growth processes are called
from HiGWMAT.

5 Experimental settings

Since MIROC-INTEG-LAND is based on a global land sur-
face model, atmospheric boundary data (hereafter “forcing”
data) are required to operate the model. The global land sur-
face model with human water management HiGWMAT uses

atmospheric temperature, humidity, wind, and surface pre-
cipitation as the forcing data to calculate the physical pro-
cesses. In this study, we use forcing data from the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP)
Fast Track (Hempel et al., 2013). In ISIMIP, historical and
future climate simulations by five global climate models
(GCMs) with bias correction are used as the distributed forc-
ing data. The methodology of bias correction is described in
Hempel et al. (2013). The five GCMs include GFDL-ES2M
(Dunne et al., 2012), HadGEM2-ES (Jones et al., 2011),
IPSL-CM5A-LR (Dufresne et al., 2012), Nor-ESM (Bentsen
et al., 2013), and MIROC-ESM-CHEM (Watanabe et al.,
2011). Uncertainties in the atmospheric predictions of the
model can be considered by using the output data from the
various GCMs. In ISIMIP data, correction for model bias is
based on historical observations (Hempel et al., 2013). Thus,
we can expect that over- and underestimation errors are re-
moved (at least to some extent).

Since the time interval in the original ISIMIP data is daily
and the time step in the land surface model HiGWMAT is
subdaily, we generated 3-hourly data from the ISIMIP Fast
Track daily data, based on the methods described in Debele
et al. (2007) and Willet et al. (2007), where diurnal variations
are generated based on the daily mean data.

In order to obtain a stable state of model variables, we
performed spin-up simulations following the procedure de-
fined in the ISIMIP Fast Track protocols. We first generated
detrended 20-year data using 1951–1970 forcing data. The
20-year dataset was then replicated and assembled back-to-
back to obtain an extended dataset. The order of years was
reversed in every other copy of the 20-year block in order
to minimize potential discontinuities in low-frequency vari-
ability. The time duration of the spin-up simulations was
400 years for the land surface model HiGWMAT and the
crop growth model PRYSBI2 and 3000 years (repeated 100
times using the first 30 years detrended climate) for the ter-
restrial ecosystem model VISIT. The spin-up time of VISIT
is longer than that for the other submodels, because it re-
quires more time to reach a stable state, especially in the case
of soil organic carbon.

After the spin-up simulations, we performed historical
(1951–2005) and future (2006–2100) simulations based on
the ISIMIP Fast Track protocols. For the future simulations,
we used the forcing data of the five global climate models
based on four RCPs (van Vuuren et al., 2011) – RCP2.6, 4.5,
6.0, and 8.5 – corresponding to radiative forcings of 2.6, 4.5,
6.0, and 8.5 W m−2 in the year 2100, respectively.

In the historical simulations of HiGWMAT, we used the
land-use data (grid ratio of natural vegetation, rainfed, and
irrigated cropland) provided by the Land Use Harmonized
(LUH) project (LUHv2h; Lawrence et al., 2016); TeLMO
was switched off. In the future simulations of HiGWMAT,
the rainfed and irrigation cropland area is varied according
to the output of TeLMO (Sect. 3.4). Since TeLMO projects
the future total cropland area (irrigated plus rainfed), the fu-
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ture irrigated area is calculated by multiplying the grid ir-
rigation ratio (irrigated / (rainfed+ irrigated)) and the total
cropland area calculated by TeLMO. The grid irrigation ratio
is calculated by using the irrigated and rainfed cropland area
determined by LUHv2h in 2005 and is fixed throughout the
future simulation period. Although TeLMO also calculates
the future bioenergy cropland area, we assume that bioen-
ergy cropland is all rainfed.

TeLMO starts its calculations in 2005. As input data for
TeLMO, we use the output variables based on the shared so-
cioeconomic pathways (SSPs; O’Neil et al., 2017) calculated
by an integrated assessment model (AIM/CGE; Fujimori et
al., 2017b). In this study, we use outputs of the SSP2 sce-
nario calculated by AIM/CGE (Fujimori et al., 2017b). Since
the RCP8.5 scenario is not available in SSP2, we use the out-
put of the baseline scenario by AIM/CGE for the calcula-
tion of RCP8.5. TeLMO uses future projections of GDP per
capita, demand for food and bioenergy crops, pasture, and
roundwood (Sect. 3.4, Appendix B). AIM/CGE calculates
the aggregated transactions associated with the activities of
economic actors; the energy system is represented in detail
by dividing the globe into 17 regions (Fujimori et al., 2012).

The terrestrial ecosystem model VISIT is forced by the
same ISIMIP forcing data used in HiGWMAT (Hempel et al.,
2013). In the historical simulations, VISIT uses the histori-
cal land-use data from LUHv2h (Lawrence et al., 2016), as
described above. In the VISIT future simulations, the output
variables calculated by TeLMO, such as land use (cropland,
pasture, forest) and the transition matrix describing transi-
tions from one use to another (see Sect. 3.4 for details) are
used as the forcing data.

It should be noted that the socioeconomic scenario that is
used in climate forcing data by ISIMIP Fast Track (Hempel et
al., 2013) does not match exactly the SSP scenarios (O’Neil
et al., 2017), because the former is based on CMIP Phase 5
(CMIP5; Taylor et al., 2012) and the latter on CMIP Phase
6 (CMIP6; Eyring et al., 2016). This should not be a serious
problem because the atmospheric processes are not coupled,
and the radiative forcing (i.e., the RCP scenarios) used in
ISIMIP Fast Track and the SSP scenarios is consistent. The
ISIMIP phase 3 (ISIMIP3; https://www.isimip.org/protocol/
#isimip3b, last access: 20 July 2020), which recently started
distributing the climate forcing data, uses CMIP6 GCM sim-
ulations based on the SSP scenarios and is consistent with
the present study.

6 Historical simulations and comparisons with
observations

6.1 HiGWMAT

Offline simulations from the original MATSIRO and HiGW-
MAT models have been extensively validated with ground-
and satellite-based observations of various hydrologic fluxes

and forms of storage (e.g., river discharge, irrigation water
use, water table depth, and terrestrial water storage (TWS))
at varying spatial domains and temporal scales in numerous
global-scale studies (Felfelani et al., 2017; Pokhrel et al.,
2016, 2017, 2015, 2012a, b; Veldkamp et al., 2018; Zaher-
pour et al., 2018; Zhao et al., 2017). For completeness, we
provide here a brief evaluation of TWS and irrigation simu-
lations, since TWS is an indicator of overall water availabil-
ity in a region and a primary determinant of terrestrial wa-
ter fluxes (e.g., evapotranspiration (ET) and river discharge),
and irrigation is an important component of the global fresh-
water systems that share the largest fraction of human water
use globally (Hanasaki et al., 2008a; Pokhrel et al., 2016).
Figure 3 plots the comparison of simulated TWS with ob-
servations by the Gravity Recovery and Climate Experiment
(GRACE) satellite for the 2002–2005 period. The results
shown are spatial averages over 18 major global river basins
selected by considering a wide coverage of geographical and
climate regions (Felfelani et al., 2017; Koirala et al., 2014).
For the GRACE data, we use the mean of mass concentra-
tion (mascon) products from the Center for Space Research
(CSR; Save et al., 2016) at the University of Texas at Austin
and the Jet Propulsion Laboratory (JPL; Watkins et al., 2015;
Wiese, 2016; Yuan et al., 2016) at the California Institute
of Technology. It is evident from Fig. 3 that the model ac-
curately captures the temporal variations as well as the sea-
sonal cycle of TWS in most basins. Certain differences be-
tween model and GRACE can be seen in basins such as the
Brahmaputra, Huang He, and Volga river basins, but such
disagreements have been commonly reported in the litera-
ture owing to limitations in model parameterizations in sim-
ulating TWS components (e.g., the representation of snow
physics and human activities) and inherent uncertainties in
GRACE data (Felfelani et al., 2017; Scanlon et al., 2018;
Chaudhari et al., 2019).

Figure 4 compares the irrigation water demand simu-
lated by MIROC-INTEG-LAND with the results from offline
HIGWMAT simulation obtained from Pokhrel et al. (2015),
which is forced by the observed climate data. It is evident
from this comparison that the broad spatial patterns seen
in the offline simulations are clearly captured by MIROC-
INTEG-LAND. Certain disagreements are, however, appar-
ent. For example, MIROC-INTEG-LAND tends to overes-
timate irrigation demand over highly irrigated areas in the
central United States, northwestern India, parts of Pakistan,
and northern and eastern China, which is likely due to the
drier and warmer climate simulated by MIROC (Watanabe et
al., 2010) in these regions. The total global irrigation demand
simulated by MIROC-INTEG-LAND is 1750 km3, which is
greater than the 1238± 67 km3 from the offline simulations
but falls near the upper bound of estimates by various other
global studies (see Table 1 in Pokhrel et al., 2015). The over-
estimation comes primarily from the highly irrigated regions
noted above. Given that our meteorological forcing data are
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Figure 3. Comparison of historical terrestrial water storage (TWS) simulated by MIROC-INTEG-LAND with GRACE satellite data. For
each river basin, the panel to the right shows the seasonal cycle. The GRACE data shown are the mean of the mass concentration products
from two processing centers: CSR and JPL. Simulated results are the average of five climate model simulations. Grey shading indicates the
uncertainty range shown by 1 standard deviation from the mean.
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Figure 4. Comparison of irrigation demands simulated by MIROC-INTEG-LAND (a) with the results from offline simulations using HiG-
WMAT and (b) forced by observed climate forcing data (Pokhrel et al., 2015) for 1◦× 1◦ grids shown as the mean for the 1998–2002
period.

from GCM simulations, we consider our results for both
TWS and irrigation demand to be acceptable.

6.2 PRYSBI2

Figure 5 shows historical simulation results for crop yield
using ISIMIP forcing data as the baseline climate during the
period from 1981 to 2005. The historical simulation results
were compared with the gridded global dataset of historical
yield (Iizumi et al., 2013; Iizumi, 2017), which is a hybrid of
satellite-derived vegetation index data and FAOSTAT (FAO,
2019). The spatial aggregation to the country scale was con-
ducted by using the harvested area (Monfreda et al., 2008).
The area of wheat was separated into spring and winter wheat
by using their production proportions (United States Depart-
ment of Agriculture, 1994).

The results of the comparison of crop yields show that the
simulated yields in most countries were underestimated to
some degree (Fig. 5). Notably, using WATCH Forcing Data
as the reference data in the bias correction for the ISIMIP
dataset tends to underestimate solar radiation compared to
the observation data (Iizumi et al., 2014; Famien et al., 2018),
which in turn causes an underestimation of crop yields. The
uncertainty of the projected yields as measured by the differ-
ences in outcomes for the five climate forcings was relatively
small. The reason for this is that ISIMIP climate forcing data
were bias corrected using the same historical weather dataset
and the same method. For all crops, most of the correlations
between the simulated and reported data were distributed
along the 1 : 1 line. These results indicate that the model is
capable of capturing the relative spatial difference of long-
term average crop yield across countries.

6.3 VISIT

The VISIT model captured the spatial and temporal patterns
of terrestrial ecosystem productivity and carbon budget with
satisfactory accuracy. Figure 6 shows the latitudinal distri-
bution of gross primary production for the 2000–2010 pe-
riod in comparison to upscaled flux measurements (Beer et

Figure 5. Comparison of model estimation with reference data on
average yield during the period 1981–2005 for the top 10 countries
producing each crop. The box plots show the median and range of
model results estimated from the five GCM outcomes. The main
production countries were identified according to the country-based
harvested area for each crop.

al., 2010) and satellite observation (Zhao et al., 2005). High
productivity in the humid tropics and low productivity in
the arid middle latitudes and arid, cold high latitudes were
effectively reproduced by the model simulation, although
mean global total GPP was slightly higher than the obser-
vation (127.5 Pg C yr−1 by VISIT, 114.0 Pg C yr−1 by flux
upscaling, and 121.7 Pg C yr−1 by satellite). Global carbon
stocks in vegetation and soil organic matter were estimated
as 499 and 1308 Pg C, respectively, in 2010; this is compa-
rable to the contemporary synthesis (Ciais et al., 2013). Be-
cause of historical atmospheric CO2 rise, climate change, and
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Figure 6. Comparison of latitudinal distribution of gross primary
production (GPP) in 2000–2010 with upscaled flux measurements
(Model-Tree Ensemble (MTE); Beer et al., 2010) and satellite ob-
servation (MODIS; Zhao et al., 2005).

land-use change, substantial changes in terrestrial ecosys-
tem properties were simulated (not shown). As demonstrated
by model validation and intercomparison studies, the VISIT
model allows us to effectively capture the terrestrial ecosys-
tem functions under changing environmental conditions.

6.4 TeLMO

In Fig. 7, the cropland area simulated by TeLMO in MIROC-
INTEG-LAND is compared with the cropland area reported
in FAOSTAT (FAO, 2019) and to the area simulated by
AIM/CGE (Fujimori et al., 2017b), whose output of food de-
mand and GDP per capita is used as input in TeLMO. Output
of the TeLMO 0.5◦ grid data is aggregated by country to fa-
cilitate comparison with the FAOSTAT data. In order to also
compare the TeLMO 0.5◦ grid data with the AIM/CGE crop-
land area, we used 0.5◦ downscaled land-use data based on
the AIM/CGE calculation. (The methodology of downscal-
ing is described in Fujimori et al., 2017a.) With the adjust-
ment parameter Cj , the cropland area in TeLMO in 2005 is
the same as that of LUH (Lawrence et al., 2016). As shown
in Fig. 7, MIROC-INTEG-LAND roughly reproduces the
cropland area by country shown in FAOSTAT (FAO, 2019).
The differences in the five climate forcings given to MIROC-

INTEG-LAND cause variance in crop yields, which in turn
results in the variance in cropland area results shown in
Fig. 7.

In Russia, Brazil, and Australia, the recorded cropland
area (i.e., FAOSTAT) is within the range of the MIROC-
INTEG-LAND cropland area simulations using the differ-
ent climate forcings. In Brazil and Russia, the variations in
cropland area are mainly due to the difference in climate
forcings. In the United States, the reported cropland area in
FAOSTAT (FAO, 2019) is closely reproduced by MIROC-
INTEG-LAND until around 2010; however, the declining
trend of cropland area in the second half is not effectively re-
produced. The reason for the overestimation seen here may
be related to the underestimating of crop yield in PRYSBI2
(Sect. 6.3). The slight overestimation of the global cropland
area trend (Fig. 7h) may stem from the same cause. Also,
in China, although there is a declining trend of cropland
area in MIROC-INTEG-LAND, in reality the cropland area
remained nearly constant until 2014 and increased slightly
thereafter. The increase of cropland area in China is consid-
ered to be influenced by policy, which is not considered in
TeLMO.

In MIROC-INTEG-LAND, TeLMO uses the food de-
mand and GDP per capita calculated by AIM/CGE under
the socioeconomic scenario SSP2 (Fujimori et al., 2017b).
Therefore, the difference between TeLMO and AIM/CGE
is due to the difference in crop yield as well as the mech-
anism for the allocation of agricultural land. As explained
in Sect. B1, TeLMO can consider the spatial distribution of
crop yield when allocating agricultural land. On the other
hand, in AIM/CGE, land-use change is calculated by aggre-
gating crop yield information in the regions where the model
calculation is performed (AIM/CGE divides the world into
17 regions). In large countries such as Australia, Brazil, and
Russia, the allocation method in TeLMO shows good perfor-
mance.

Figure 8 shows a comparison of TeLMO, AIM, and LUH
data for pasture. Unlike cropland, pastures are compared with
LUH data, because there are no long-term global observa-
tion data. TeLMO calculates pasturelands such that the area
matches that in the AIM for the AIM calculation domain
(17 regions around the world). Because AIM treats China
and the United States as one region, the results of TeLMO
and AIM for China, the United States, and the globe are al-
most the same. On the other hand, in Australia, TeLMO is
closer to LUH. Similarly, Fig. 9 shows a comparison be-
tween TeLMO, AIM, and FAO data of forest area. TeLMO
refers to MODIS data and calculates forest area by taking
into account deforestation and changes in crop area. Some
differences can be seen between TeLMO and FAO, proba-
bly because TeLMO refers to MODIS and not to FAO; how-
ever, the differences are relatively small. Given that its per-
formance is similar to that of AIM/CGE, the TeLMO sub-
model in MIROC-INTEG-LAND can be considered useful
for future land-use prediction.
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Figure 7. Comparison of historical cropland area simulated by MIROC-INTEG-LAND (red), AIM/CGE (blue), and FAOSTAT (black),
using the ratio of cropland area to total area. For MIROC-INTEG-LAND simulations, the cropland area results for the five different climate
forcings are shown.

Figure 8. Same as Fig. 7 but for the comparison of historical pasture area simulated by MIROC-INTEG-LAND (red), AIM/CGE (blue), and
LUH (black), using the ratio of pasture area to total area.
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Figure 9. Same as Fig. 7 but for the historical forest area simulated by MIROC-INTEG-LAND (red), AIM/CGE (blue), and FAO (black),
using the ratio of forest area to total area.

Figure 10. Time series of changes in the climate system based on the forcings of the five climate models. Results shown are for (a) surface air
temperature (K); (b) soil moisture in the top 300 mm of the soil column (mm), shown as an anomaly from first 20-year average; (c) irrigation
water supply (km3 yr−1). Thin curves indicate the global average of results for each of the five climate model forcings. Thick curves show
the overall average of results based on the five forcings. The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5
(red).

7 Future simulations and interaction of submodels

In the MIROC-INTEG-LAND future simulations, the
RCP2.6, 4.5, 6.0, and 8.5 scenarios provided by ISIMIP1
(Hempel et al., 2013) serve as the climate scenario, while the
output of AIM/CGE (demand for food and bioenergy crops,
pasture, wood, etc.) according to the four RCPs under SSP2
(Fujimori et al., 2017b) serves as the socioeconomic sce-
nario. The results in this section provide an understanding
of the interactions between climate, water resources, crops,
ecosystems, and land use that MIROC-INTEG-LAND ac-
commodates.

Figure 10 shows the various time series related to climate
system change. Figure 10a depicts the change in surface air
temperature used as forcing data in MIROC-INTEG-LAND.
It is displayed as the deviation from the average value of the
10-year period around the start year of the future simula-
tions (2005). As shown in Fig. 10a, the increase in average
global land surface air temperature in 2100 is approximately
6 ◦C for RCP8.5, 3 ◦C for RCP6.0, 2.5 ◦C for RCP4.5, and
1 ◦C for RCP2.6. Figure 10b shows the change in soil mois-
ture calculated by MIROC-INTEG-LAND. Although the an-
nual variation of soil moisture is considerable, the global
land average soil moisture content tends to decrease in the
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Figure 11. Time series of changes in crop yield (unit: t ha−1) based on the forcings of the five climate models. Results shown are for
(a) winter wheat, (b) spring wheat, (c) maize, (d) soybean, (e) rice, and (f) grid maximum value for the five crop types. Thin curves indicate
the global average of results for each of the five climate model forcings. Thick curves show the overall average of results based on the five
forcings. The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red).

21st century. The reduction in soil moisture is largest in the
RCP8.5 scenario, where the rise in surface air temperature is
substantial. Results for the irrigation water supply are shown
in Fig. 10c. As indicated in Sect. 3.1, water is supplied from
rivers to the soil through irrigation until the ratio of soil mois-
ture reaches a certain threshold. The irrigated area is cal-
culated by multiplying the cropland area (as calculated by
TeLMO) by the irrigation ratio, a fixed value correspond-
ing to the ratio of irrigation cropland area to the total crop-
land area in 2005. Therefore, the changes in irrigation water
supply in Fig. 10c reflect the changes in the irrigation area
and the irrigation water supplied from rivers to the soil to
compensate for the decrease in soil moisture. Although the
global total cropland area increases in the first half of the
21st century (Fig. 12), in regions with a high irrigation ra-
tio (e.g., India, China), cropland area decreases by the end of
the century (Fig. 12). As a consequence, the irrigation area
in MIROC-INTEG-LAND decreases, and, accordingly, the
irrigation water supply also decreases, as shown in Fig. 10c.

Changes in crop yield calculated for the various future
scenarios are shown in Fig. 11. The crop growth model
PRYSBI2 in MIROC-INTEG-LAND can calculate the yields
(t ha−1) of four crops (wheat, maize, soybean, rice), with a
clear distinction between winter and spring wheat (meaning
five crops in all). In Fig. 11f, the global average of the grid
maximum yield value among the crops, which is used in the
TeLMO calculation, is also shown. As described in Sect. 3.2,

the future simulations by PRYSBI2 take into account the ef-
fects of climate change, as well as the CO2 fertilization ef-
fects due to rising greenhouse gas concentrations (Sect. A6)
and the increase in technical coefficients due to future tech-
nological improvement (Sect. A7).

As shown in Fig. 11a–e, the yields of each of the crops
rise over the first half of the 21st century. This is due to the
CO2 fertilization effect and technological improvement. In
general, the increase in yield is more significant in the high-
GHG scenarios such as RCP8.5 than in the low-GHG scenar-
ios such as RCP2.6. Such differences can be considered to be
due to the fertilization effect and impact of climate change,
since all the RCPs feature the same technological coefficient
under the same SSP scenario (i.e., SSP2). On the other hand,
in the latter half of the 21st century, the negative impact of
climate change on crop yield is evident. In the RCP8.5 sce-
nario, in particular, crop yields decline sharply. PRYSBI2 re-
sults show that the crop type most sensitive to climate change
is maize: in 2100, the yield of maize under RCP2.6 is highest,
while the yield of maize under RCP8.5 is lowest.

Figure 12a shows the change in the food cropland area
calculated by TeLMO. As described in Sect. 3.4 and Ap-
pendix B, TeLMO uses the yield calculated by PRYSBI2
(grid maximum value as shown in Fig. 11f) and the food de-
mand output of AIM/CGE. As shown in the Fig. 12a, crop
area increases to meet the increase in food demand in the first
half of the 21st century. Compared to other RCP scenarios
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Figure 12. Time series of changes in cropland area based on the forcings of the five climate models. The vertical axis is the cropland area as a
fraction of total land area. The results are for (a) food cropland area and (b) food + bioenergy cropland area. Thin curves indicate the global
average of results for each of the five climate model forcings. Thick curves show the overall average of results based on the five forcings.
The colors indicate RCP2.6 (blue), RCP4.5 (green), RCP6.0 (orange), and RCP8.5 (red).

during this time period, the RCP2.6 scenario requires more
food cropland area, since the increase in crop yield is smaller
in the RCP2.6 scenario. In the second half of the 21st cen-
tury, the food cropland area tends to decrease as crop yield
increases more than food demand. The decrease is smallest
under RCP2.6 and largest under RCP6.0, and RCP8.5 actu-
ally requires an increase in food cropland area; as in this sce-
nario, crop yields decline late in the century. Although there
are differences among the results using the five different cli-
mate model forcings (the thin lines in Fig. 12a), using the
average value lines (the thick lines in the figure) for compar-
ison indicates that, by the end of the 21st century, the food
cropland area is largest under RCP8.5.

Figure 12b shows the time series of the sum of food and
bioenergy cropland area calculated by TeLMO. As described
in Sect. 3.4, TeLMO calculates the distribution of the global
bioenergy cropland area needed to meet the bioenergy de-
mand calculated by AIM/CGE. It is known that the future
bioenergy cropland area will change substantially depending
on crop yield, and it should be noted that the setting in which
crop yield is calculated can significantly affect the bioen-
ergy cropland area (Kato and Yamagata, 2014). As shown
in Fig. 12b, the bioenergy cropland area is significantly in-
creased under RCP2.6 and RCP4.5. These climate scenarios
require large areas of bioenergy crops for future climate mit-
igation. Although the food cropland area tends to decrease in
the late 21th century (except in the RCP8.5 scenario), more
cropland area will be needed if we consider both food crop-
land and bioenergy cropland.

Figure 13 shows the global distribution of changes in food
and bioenergy cropland areas, using the difference in 10-year
averages around 2100 and 2005. As described in Fig. 12a,
RCP2.6 tends to reduce the food cropland area in the latter
half of the 21st century. Figure 13a and b show that the food
cropland area decreases in Africa, India, and China. As is ex-

plained in Appendix B, TeLMO relies on the premise that the
distribution of food cropland area is determined by changes
in crop yield, food prices, wages (corresponding to changes
in GDP per capita), and the demand for food. Thus the de-
creases in food cropland area shown in Fig. 13a and b are
due to the increase in yield (meaning demand can be met with
less cropland area) and the increase in GDP per capita (which
means the population engaged in agriculture decreases due
to development) in the SSP2 scenario. It should be noted that
the change in cropland area at a particular grid is not de-
termined solely by food production (the product of cropland
area and crop yield) at that grid, as TeLMO considers the
food trade among the 17 regions. As shown in Fig. 12 and
noted earlier, the food cropland area will increase in the late
21st century in the RCP8.5 scenario. Accordingly, in com-
parison to the RCP2.6 scenario, the food cropland area in
South America and central Africa increases in the RCP8.5
scenario.

As shown in Fig. 13, bioenergy cropland areas increase in
various regions, especially in the RCP2.6 scenario. As dis-
cussed in Appendix B, TeLMO assumes that biofuel crop-
land is allocated based on the Agricultural Suitability In-
dex (Eq. B14), which is a function of the yield and price of
the bioenergy crop, GDP per capita, etc. At the same time,
TeLMO also assumes that regions with high biodiversity are
protected, and calculations are performed so as not to allocate
biofuel cropland to the protected areas as shown in Fig. B2
(Wu et al., 2019). As a result, bioenergy cropland area is allo-
cated to regions where the agricultural index is high – north-
west and southern South America, central Africa, and Aus-
tralia – but it cannot be allocated to protected areas such as
the Amazon.

Figures 14 and 15 show the effects of changes in food and
bioenergy cropland area on the terrestrial ecosystem calcu-
lated by VISIT in MIROC-INTEG-LAND. The impact of
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Figure 13. Spatial distribution of land-use change (units: a ratio of the grid box area). The results are for (a, b) food cropland area and
(c, d) bioenergy cropland area. Average of the five climate projection-based simulations under (a, c) RCP2.6 and (b, d) RCP8.5 scenarios in
the 2090s.

land-use change on terrestrial ecosystems is evaluated by
comparing the calculation with and without considering the
land-use change. The global time sequence (Fig. 14) shows
that the changes in food and bioenergy cropland area have
a significant impact on terrestrial ecosystems, especially in
RCP2.6, where the aboveground biomass will decrease by
approximately 50 Pg C (about 10 % of the present biomass
stock) by 2100 due to deforestation for land-use conver-
sion. The decrease in soil carbon after deforestation is much
smaller than the decrease in aboveground biomass, as the car-
bon supply from crop residue compensates for the soil carbon
loss. Consequently, this simulation implies that the impacts
of land-use change occur heterogeneously and differ in their
magnitude and direction between vegetation and soil. Fig-
ure 15 shows the global distribution of the effect of land-use
change on aboveground biomass and soil carbon. The impact
on aboveground biomass is projected to be greater in north-
west South America, central Africa, northeast North Amer-
ica, and Australia, where the bioenergy cropland area is ex-
panding. In these regions, even under the mitigation-oriented
scenario, considerable declines in ecosystem structure and
functions would occur, leading to deterioration, for exam-

ple, of habitats for natural organisms, water holding capac-
ity, and soil nutrients. Consequently, these functional degra-
dations would degrade ecosystem services such as biodiver-
sity, regulation, and provision. On the other hand, in Asia, the
decrease in food cropland area tends to increase the above-
ground biomass in both the RCP2.6 and RCP8.5 scenarios,
possibly leading to the enhancement of aboveground biomass
and thus ecosystem services.

Figure 16 shows the results of simulations to evaluate the
effects of climate change on crop yield, land use, and wa-
ter demand. In Fig. 16, the RCP8.5 simulations with cli-
matic factors (temperature, water vapor, wind speed, soil
moisture, soil temperature) and CO2 concentration fixed
at 2006 (noCL+ noFE), those with fixed climatic factors
(noCL+FE), and those with variable climatic factors and
CO2 concentrations (CL+FE) are compared. The CL+FE
simulations are the same as the RCP8.5 results shown in
Fig. 11f (crop yield), Fig. 12a (food cropland area), and
Fig. 10c (irrigation demand).

As shown in Fig. 16a, the crop yield is significantly larger
in the noCL+FE experiment than in the CL+FE experi-
ment. This result indicates that climate change can signifi-
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Figure 14. Temporal change in global carbon stock in (a, b) vegetation biomass and (c, d) soil organic carbon, with (red) and without (green)
land-use change under (a, c) RCP2.6 and (b, d) RCP8.5 scenarios. Thick lines show the median and light zones show the maximum to
minimum range of the five climate projection-based simulations.

cantly reduce crop yields. One of the reasons for the observed
reduction in crop yield in the CL+FE experiment is that the
growing season is shortened due to an increase in surface air
temperature, which adversely affects crop growth (Sakurai et
al., 2014). The impacts of climate change on crop growth in-
crease with increasing temperature, and in 2100, crop yields
in the CL+FE experiment are projected to decrease by ap-
proximately 60 % relative to the yields in the noCL+FE ex-
periments.

As shown in Fig. 16a, the crop yield was much smaller
in the noCL+ noFE simulations than that in the CL+FE
simulations. The reason for the yield in the noCL+ noFE
experiment being smaller than that in the CL+FE experi-
ment is because the crop yield increases due to the CO2 fer-
tilization effect in the latter. The increase in crop yield in
the noCL+ noFE experiment is due to technological devel-
opments (Sects. 3.2 and A7). Although there is a great deal
of uncertainty regarding the treatment of CO2 fertilizer ef-
fects in crop models (Sakurai et al., 2014), the increase in

crop yields due to the CO2 fertilizer effect is significant in
the simulations of MIROC-INTEG-LAND.

Due to the changes in crop yields resulting from the
changes in climate and fertilization effects, future cropland
area and irrigation demand will also change significantly. In
the CL+FE experiment, the food cropland area (Fig. 16b)
and irrigation demands (Fig. 16c) become larger than those
in the noCL+FE experiments because of the larger decrease
in crop yields due to the impacts of climate change (Fig. 16a).
On the other hand, the noCL+ noFE experiment requires
more food cropland area (Fig. 16b) and irrigation demand
(Fig. 16c) compared to the CL+FE experiment because of
the smaller increase in crop yields, mainly due to the ab-
sence of CO2 fertilization effects (Fig. 16a). In summary, the
changes in climate and CO2 fertilization effects are expected
to have marked impacts on crop yields, land use, and water
demands in the future.
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Figure 15. Spatial distribution of land-use-induced changes in terrestrial ecosystem carbon stock. Results are for (a, b) vegetation biomass
and (c, d) soil carbon stock. Average of the five climate projection-based simulations under (a, c) RCP2.6 and (b, d) RCP8.5 scenarios in the
2090s.

8 Implications and future research

With MIROC-INTEG-LAND, it is possible to calculate the
interaction between climate, water resources, crops, land use,
and ecosystems. The discussion in Sect. 7 suggests the type
of feedback processes that can occur. As shown in Fig. 11, fu-
ture climate change can affect crop yields. Especially under a
scenario of large temperature increases (RCP8.5), crop yields
will decrease in the latter half of the 21st century (Fig. 11).
Here, the influence of the CO2 fertilization effect is also a
very important factor affecting future changes in crop yields
(Fig. 16a). Changes in crop yields due to climate change also
have a large impact on cropland area (Figs. 12, 16b). Fu-
ture cropland area may increase in response to an increase
in food demand due to population growth, as well as due
to increases in biofuel crop cultivation in response to global
warming countermeasures. Such an increase in cropland area
will cause a concomitant increase in water demand due to an
increase in irrigated cropland area (Figs. 10, 16c). In addi-
tion, an increase in cropland area can affect carbon uptake in
terrestrial ecosystems (Fig. 14). Increased human water use
and changes in terrestrial carbon uptake can further affect the

water, crop yields, and carbon budgets on the land surface. A
real novelty of MIROC-INTEG-LAND is that the availability
of both water and agricultural land can be consistently con-
sidered in conjunction with changes in climate conditions.

While this study showed only the results of the SSP2 sce-
nario, in the SSP3 scenario, where the world is divided, the
demand for food will be greater and more cropland area will
be needed (O’Neill et al., 2017). Investigating the impacts of
various natural and socioeconomic factors (climate, irriga-
tion, fertilization effects, population, food demands, etc.) on
land-use change and land ecosystems is an important future
research direction as an extension of the present study.

In addition to analyzing interactions, it is crucial to ana-
lyze the impacts of climate change and the effectiveness of
countermeasures using MIROC-INTEG-LAND. The com-
bined impacts of climate change on water resources, crops,
land use, and ecosystems can be mitigated by enhancing var-
ious adaptation measures. For example, the use of water re-
sources to control crop yield loss, changes in cropping calen-
dars, and breeding can reduce the adverse effects of climate
change on food and land use. With MIROC-INTEG-LAND,
it is possible to assess the efficiency of adaptation measures

https://doi.org/10.5194/gmd-13-4713-2020 Geosci. Model Dev., 13, 4713–4747, 2020



4732 T. Yokohata et al.: MIROC-INTEG-LAND version 1

Figure 16. Time series of changes in (a) cropland yield (maximum across five crops in each grid, t ha−1), (b) food cropland area (a fraction of
total land area), and irrigation demand (km3 yr−1) based on the forcings of the five climate models under the RCP8.5 scenario. Simulations
with climatic factors and CO2 concentrations fixed at 2006 (light green, noCL+ noFE), those with climatic factors fixed (cyan, noCL+FE),
and those with varying climate and CO2 concentrations (red, CL+FE).

designed to address the impacts of climate change on wa-
ter resources, crops, land use, and ecosystems (Alexander et
al., 2018). With consistent consideration of climate change,
water resources, and land use, the competition between wa-
ter, food, and bioenergy use can be analyzed (e.g., Smith et
al., 2010). The model also provides useful insights into the
trade-offs of biodiversity loss from land-use change and the
benefits of climate mitigation.

MIROC-INTEG-LAND provides a way to integrate var-
ious human activity models based on the global climate
model as shown in Sect. 4. This paper introduced illustrative
simulation results produced by our application of MIROC-
INTEG-LAND as a land surface model driven by meteo-
rological forcing data. We plan to extend the model by en-
abling it to consider the physical processes and carbon and
nitrogen cycles in the atmosphere and ocean. The MIROC
community has developed MIROC-ES2L, an earth system
model for CMIP6 (Hajima et al., 2020). By incorporating
the water resource model (HiGWMAT), the crop growth
model (PRYSBI2), and the land-use model (TeLMO) used
in MIROC-INTEG-LAND into MIROC-ES2L, we are devel-
oping an integrated earth system model that we call MIROC-
INTEG-ES. In MIROC-INTEG-ES, the interactions between
the earth system and human activities are consistently con-
sidered. By using this integrated earth system model, the im-
pact of land-use changes on the climate system, including
biogeophysical and biogeochemical effects (Lawrence et al.,
2016), can be more consistently investigated.
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Appendix A: Description of crop model PRYSBI2
version 2.2

In the following description, we present a summary of the
crop model used in MIROC-INTEG-LAND (PRYSBI2 ver-
sion 2.2) and identify the elements that differ from the earlier
versions (version 2.0, Sakurai et al., 2014, and version 2.1,
Müller et al., 2017).

A1 Input data

As input data, PRYSIB2 version 2.2 uses the cropping pe-
riod based on the planting and harvesting date by Sacks et
al. (2010). Soil field capacity (Scholes and Brown de Col-
stoun, 2011) and atmospheric data (average, maximum, and
minimum daily temperature; daily shortwave and longwave
radiation; daily humidity; and CO2 concentration) are also
used as input data. We use the same atmospheric data as HiG-
WMAT described in Sect. 5 (i.e., ISIMIP Fast Track data by
Hempel et al., 2013).

A2 Growing period, maturity, and harvest

The time of seedling emergence after the planting date is
determined by a parameter relevant to the average period
between planting and emergence (lemerge). The period from
emergence to maturity is determined by the total number of
heat units (THU) (Neitsch et al., 2005). The crop is mature
when THU is equal to a threshold value (thutotal), at which
point it is harvested. THU thresholds were estimated for each
grid by performing calibration between 1980 and 2006, so
that harvest dates fit the data from Sacks et al. (2010). If
future projections are performed using this threshold value,
then the harvest date will deviate from Sacks et al. (2010) be-
cause of the temperature rise in future climates (i.e., harvest
dates become earlier due to the increase in temperature). Us-
ing the biomass values obtained at the time of crop maturity,
the yield is calculated as follows:

Yield= hibase ·BIOabove(maturity), (A1)

where “Yield” is the crop yield (kg ha−1), hibase is the harvest
index, and BIOabove(maturity) (kg ha−1) is the aboveground
biomass at the time of crop maturity. Although the harvest
index changes according to atmospheric CO2 concentration
in version 2.0, in version 2.2, for simplicity, it is fixed.

A3 Photosynthesis

The photosynthesis processes in version 2.2 are the same
as in the previous versions. The photosynthesis rate is cal-
culated according to the daily meteorological data. The in-
stantaneous global radiation and temperature at time (t) of
the day are estimated from the daily global radiation and
daily maximum and minimum temperature on a given day
(td) according to the method described by Goudriaan and van

Laar (1994). The amount of photosynthetically active radia-
tion, PARt,td (MJ m−2 s−1), intercepted by the leaf at time
t on a given day td, is calculated using Beer’s law (Monsi
and Saeki, 1953). We used the model described by Baldoc-
chi (1994) to calculate the photosynthetic rate.

A4 Temperature stress

The equations for the effects of temperature on the maxi-
mum carboxylation rate of Rubisco and dark respiration rate
are changed from those in version 2.0. The influence of tem-
perature on the maximum carboxylation rate of Rubisco and
the potential rate of electron transport is given as follows
(Kaschuk et al., 2012; Medlyn et al., 2002):

Cvcmax (t,td) = exp
[(

TMt,td − 25
)
·

epvcmax

298 ·R · (273+TMt,td)

]
,

(A2)

Cjmax(t,td) = exp

[
Ejmax

(
TMt,td − 25

)
298 ·R ·

(
TMt,td + 273

)]

·
1+ exp 298·Sjmax−Hjmax

298·R

1+ exp
(
TMt,td+273

)
·Sjmax−Hjmax(

TMt,td+273
)
·R

, (A3)

where Cvcmax (t,td) and Cjmax(t,td) represent the effect of tem-
perature on the maximum carboxylation rate of Rubisco and
the potential rate of electron transport, respectively; TMt,td

is the air temperature (◦C) at time t on day td; epvcmax , Ejmax ,
Sjmax , andHjmax are parameters that describe the shape of the
curve (Kaschuk et al., 2012; Medlyn et al., 2002); and R is
the universal gas constant (8.314 J mol−1 K−1).

The influence of temperature on the dark respiration of
leaves is given as

Cdark(t,td) = exp
[(

TMt,td − 25
)
·

eprd

298 ·R · (273+TMt,td)

]
,

(A4)

where Cdark(t, td) represents the effect of temperature on
dark respiration at time t on day td, and eprd is the parameter
that describes the shape of the curve (Kaschuk et al., 2012).

The maximum carboxylation rate of Rubisco, the potential
rate of electron transport, and the dark respiration rate are
modified by temperature effects:

Vcmax(t,td) =2 · ξV ·Cvcmax (t,td) · vcmax ·Wstress(td), (A5)
Jmax(t,td) =2 · ξJ ·Cjmax(t,td) · jmax ·Wstress(td), (A6)

where Vcmax(t,td) is the maximum carboxylation rate of Ru-
bisco, Jmax(t,td) is the potential rate of electron transport,
and vcmax and jmax are the potential maximum carboxyla-
tion rate and the potential rate of electron transport, respec-
tively. Wstress(td) represents water stress, which is explained
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in Sect. A5. 2 is the compensation variable (0–1) that rep-
resents the discrepancy between the ideal photosynthetic po-
tential and the actual one. ξV and ξJ are photosynthesis com-
pensation variables that change according to CO2 concentra-
tion. These variables (2, ξV , and ξJ ) are described in the
following section. The dark respiration rate is calculated as
follows:

Rd(t,td) = rd ·Cdark(t,td) · vcmax, (A7)

whereRd(t,td) is the dark respiration rate (µmol m−2 s−1), and
rd is the leaf respiration factor (Collatz et al., 1991; Sellers et
al., 1996a, b). The maintenance respiration and growth res-
piration are also considered. The formulations of the respira-
tion models are also the same as those of the previous ver-
sions.

A5 Soil water balance and water stress

In PRYSBI2, the calculation of water stress follows the
SWAT (Neitsch et al., 2005) algorithm. In SWAT, the daily
water stress is calculated according to soil water, soil charac-
teristics (field capacity and water content at saturation), root
depth, and crop field evapotranspiration. PRYSBI2 uses the
soil water calculated in HiGWMAT as explained in Sect. 3.2.
The crop field evapotranspiration is calculated in SWAT ac-
cording to the leaf area index.

A6 Correction of parameters according to CO2
concentration

The correction of parameters based on CO2 concentration is
included in the model using the following equations:

ξV =

1−
rφ1

(
ca − cbase

)
+ rmax1 −

√(
rφ1

(
ca − cbase

)
+ rmax1

)2
− 4rθ rφ1rmax1

(
ca − c1

)
2rθ

,

(A8)
ξJ =

1−
rφ2

(
ca − cbase

)
+ rmax2 −

√(
rφ1

(
ca − cbase

)
+ rmax2

)2
− 4rθ rφ1rmax2

(
ca − cbase

)
2rθ

,

(A9)

rφ1 =
drvcmax

cbase
, (A10)

rφ2 =
drjmax

cbase
, (A11)

rmax1 = drvcmax

(
600
cbase
− 1

)
, (A12)

rmax2 = drjmax

(
600
cbase
− 1

)
, (A13)

where ξV and ξJ are photosynthesis compensation variables,
drvcmax and drjmax describe the parameters, ca is atmospheric
CO2 concentration (mol mol−1), and cbase is the baseline at-
mospheric CO2 concentration (mol mol−1). In this model, if

drvcmax and drjmax > 0, ξV and ξJ decrease linearly with in-
creasing atmospheric CO2. If drvcmax and drjmax = 0, ξV and
ξJ do not depend on atmospheric CO2. In these equations,
rmax1 and rmax2 are the respective asymptotic lines. rθ is the
parameter that determines the curvature of the lines; we set
rθ = 0.99. The parameters drvcmax and drjmax are based on the
results of Ainsworth and Long (2005).

A7 Time trend of the parameter relevant to
agricultural management

When using historical yield data to calibrate model param-
eters, we need to consider temporal trends in the effects of
non-climatic factors. Crop yield should improve from year
to year because of agricultural factors, such as the decrease
in harvest loss and the use of improved crop cultivars and
pesticides. We, therefore, assumed the following linear trend
in non-climatic effects when evaluating the long-term yield
data:

2= θbase+ θtrend (Year− ybase) , (A14)

where 2 is the compensation variable (0–1) that represents
the discrepancy between the ideal photosynthetic potential
and the actual one, which is used in Eqs. (A5) and (A6); θbase
is the value of2 in year ybase and must be calibrated for each
cell of the grid; θtrend is the annual increase in 2 due to non-
climatic factors (which also must be calibrated for each cell
of the grid); “Year” is the year; and ybase is the criterion year
(2006). In this study, we analyzed the relationship between
θbase and GDP for each crop and used the estimated relation-
ship for future prediction.

Appendix B: Description of land-use model TeLMO

B1 Food Cropland Model

For each grid, TeLMO first allocates the area for urban use;
it then allocates the area for food cropland. For the alloca-
tion of the urban area, we use the Land Use Harmonization
phase 2 future data that are used in Coupled Model Intercom-
parison Project Phase 6 (CMIP6) (LUH2f; Lawrence et al.,
2016). It is generally expected that the food cropland area
is determined by the balance between the supply and de-
mand for food crops. The estimation of the supply potential
of food crops requires the spatial distribution of crop pro-
duction, which is related to the natural environment. On the
other hand, the balance between the supply and demand for
food crops is influenced by socioeconomic factors (e.g., pop-
ulations, crop prices) related to international food trade. For
this reason, TeLMO projects future land-use change by al-
lowing the Food Cropland Down-scale Module (Sect. B1.1),
which projects the global cropland distribution at a resolution
of 0.5◦ by considering environmental factors, to interact with
the International Trade Module (Sect. B1.2), which describes
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food supply and demand based on the General Equilibrium
Model by dividing the world into 17 countries/regions. The
primary objective of using TeLMO is to describe the long-
term trend in land-use change and not the detailed year-to-
year variations in land-use change. Therefore, we use 10-year
average values as input to the model.

A major feature of TeLMO is that it does not project the
local cropland distribution by unidirectionally downscaling
the total cropland area for countries/regions obtained by inte-
grated assessment models. This is because the total cropland
area for each country/region depends on the local distribution
of the cropland area. Therefore, TeLMO consistently treats
the cropland distribution calculated by the Food Cropland
Down-scale Module and the total cropland area for coun-
tries/regions obtained from the International Trade Module
to project future land-use change. The Food Cropland Down-
scale Module and International Trade Module are explained
below.

B1.1 Food Cropland Down-scale Module

The Food Cropland Down-scale Module divides the earth
into 0.5◦× 0.5◦ (latitude× longitude) grid cells (hereinafter
“0.5◦ cells”) and calculates the percentage of each cell occu-
pied by cropland. The percentage of cropland is estimated by
calculating the probability that each 30′′×30′′ grid cell (here-
inafter “30′′ cell”) is used as cropland and averaging these
probabilities over the entire 0.5◦ cell. A 30′′ cell allocated to
urban use is not used for cropland. The probability ri of a
given 30′′ cell being used as cropland is calculated as

ri =
1

1+ exp
(
1.228+ 0.237φi − 0.206pkyj/wk

)Cj , (B1)

where φ is the slope, y is the yield per unit area (t ha−1), p
is the price of food crops, w is the wage, and C is an ad-
justment parameter. The subscript i identifies the 30′′ cell, j
identifies the 0.5◦ cell containing the ith grid cell, and k iden-
tifies the country/region containing the ith and j th grid cell.
The definition of countries/regions is the same as that used
in AIM/CGE (Fujimori et al., 2012, 2017b). Equation (B1)
is formulated based on the fact that the cropland area is de-
termined as a function of slope, crop price, yield, and the
wages of farmers. The first term of Eq. (B1) is defined as
the agricultural suitability index (ASI), which represents the
relationship between cropland area and the explanatory vari-
ables. The adjustment parameter Cj is used to reproduce the
cropland area of LUH (Lawrence et al., 2016) in the base
year 2005 and to connect the future TeLMO projection with
the historical simulation.

The ASI is derived from a logistic regression analysis us-
ing past statistical data. We use the global 0.5◦ MODIS crop-
land area (Friedl et al., 2010) as the objective variable, and
the Global 30 Arc-Second Elevation (GTOPO30; Verdin and
Greenlee 1996), the FAOSTAT food crop yield and price

(FAO, 2019), and GDP per capita as the explanatory vari-
ables. GDP per capita rather than the wages of farmers is
used for the reason indicated in the discussion of Eq. (B4)
below. The logistic regression coefficient was derived from
23 000 data values that were randomly selected from the
set of global 0.5◦ grids at year 2005. A comparison of the
MODIS cropland areas and the calculated ASI values is
shown in Fig. B1. The 23 000 randomly selected cropland
area values were sorted in descending order and divided into
10 categories, and the average MODIS cropland area and the
average ASI-based cropland area in each category were com-
pared. As shown in Fig. B1, the values calculated by the lo-
gistic regression effectively reproduce the distribution of the
MODIS cropland area data.

In the MIROC-INTEG simulations, GTOPO30 (Verdin
and Greenlee, 1996) is used for the slope φi , and the food
price pk and wage wk are obtained in the International Trade
Module as explained in Sect. B1.2. PRYSBI2 results (1.0◦

resolution, Sect. 3.2), converted to a resolution of 0.5◦, are
used for the yield yj . In TeLMO, total food cropland area is
projected by using the maximum yield across the five cereal
types (winter and spring wheat, maize, soybean, and rice).
The reason for this formulation is explained in Sect. B1.2.
yj in Eq. (B1) is calculated from the yields of the five ce-
real types by PRYSBI2. As discussed above, TeLMO is a
model that evaluates the long-term trend in land-use change.
Therefore, the crop yield and wage wk in Eq. (B1) is the av-
erage value of 10 years (using the data from the 1 year to the
10 years before the calculation year).

The 0.5◦ cell cropland area (Rj ) is calculated by averag-
ing the cropland probability in each of the 30′′ cells (ri) as
follows:

Rj =

Ji∑
i

ri

Ji
, (B2)

where Ji is the number of i cells (3600) in each 0.5◦ cell.
The adjustment parameter Cj in Eq. (B1) is set so that the
cropland area in the first year of calculation equals the data
from LUH2f (Lawrence et al., 2016).

As explained above, the cropland distributionRj projected
at a spatial resolution of 0.5◦ by the Food Cropland Down-
scale Module is used in calculations in the International
Trade Module (Sect. B1.2).

B1.2 International Trade Module

Our model was developed by extending one of the simplest
of the basic models – the Ricardian model. The Ricardian
model is a one-production-factor (productivity per capita),
two-country/two-commodity (food and non-food) model that
attempts to describe the essence of free trade behavior based
on the theory of comparative advantage. Because of its sim-
ple structure, the Ricardian model can be extended to a multi-
country and multi-commodity model (Ejiri, 2008). In the In-
ternational Trade Module, we extend the Ricardian model to
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Figure B1. Comparison of the global MODIS cropland area and the
calculated area using the agricultural suitability index (ASI). Here,
23 000 randomly selected cropland area values are arranged in de-
scending order and divided into 10 categories; the average value of
MODIS (black) and ASI values calculated by TeLMO (red) in each
category are compared. The horizontal axis is the higher percentile
of cropland area data that is randomly selected from the global 0.5◦

grids at year 2005.

be a multi-country (the entire world)/two-commodity (food
and non-food) general equilibrium model. In addition, we ac-
count for decreasing returns in terms of production efficiency
following the approach of Ejiri (2008). That is to say, we as-
sume that agricultural production efficiency declines with in-
creasing cropland area (and, conversely, that agricultural pro-
duction efficiency increases as cropland area decreases). For
this reason, industrial specialization, which has been pointed
out as a problem of the Ricardian model, is unlikely to occur.

In order to construct a multi-country/two-commodity
model, the subscript k was used to indicate country/region
(the same 17 countries/regions defined in AIM/CGE), and
subscripts 1 and 2 were added to indicate agricultural and
nonagricultural sectors, respectively. The prices and wages in
Eq. (B1) are those in the agricultural sector, which are repre-
sented by p1,k and w1,k , respectively.

First, wages in the agricultural sector, w1,k , are defined
by using labor input and gross domestic production (GDP).
In the International Trade Module, economic variables (e.g.,
food prices, wages, labor, and GDP) are described as the rel-
ative ratio to the base year (2005), which is the first year of
calculation. Here, we assume that the total labor population
ratio (relative to the base year) equals the total population
ratio (relative to the base year).

l1,k + l2,k = Lk, (B3)

where l1,k , and l2,k are the labor input of the agricultural and
nonagricultural sectors, respectively, and Lk is the total labor
population (Murakami and Yamagata, 2019). GDP can then

be described as total domestic income:

GDPk = w1,k · l1+w2,k · l2, (B4)

where the value calculated by AIM/CGE is used for GDPk
(units: USD). If we assume that the wage (ratio relative to
the base year) for the nonagricultural sector is the same as
that of the agricultural sector, the agricultural worker wage
w1,k is calculated as

w1,k =
GDPk
l1,k + l2,k

=
GDPk
Lk

. (B5)

In other words, it is assumed that the change in agricul-
tural worker wage (relative to the base year) is equal to the
change in per capita GDP. It is known that the employment
rate have changed by a small percentage in the past. How-
ever, it is difficult to project the future changes in the em-
ployment rate, and thus the employment rate is assumed to
be constant in the standard CGE (Computable General Equi-
librium) models (e.g., Fujimori et al., 2012). Similarly, it is
not easy to confirm the historical changes in wages for each
country nor to estimate their future change; thus, similar to
that for employment rate, the future changes in wages are
usually kept constant in the CGE models (e.g., Fujimori et
al., 2012). It should be noted that a small increase in employ-
ment rate (compared to the base year) can slightly decrease
the wages as indicated in Eq. (B4), possibly leading to an
increase in cropland area (Eq. B1).

Next, the price for agricultural sector p1,k is calculated
using the multi-country/two-commodity general equilibrium
model. The prices for agricultural and nonagricultural sectors
are calculated using Eqs. (B5) and (B6), respectively:

p1,k = w1,k
l1,k

x1,k
, (B6)

p2,k = w2,k
l2,k

x2,k
, (B7)

where x1,k and x2,k are the production index in the agricul-
tural and nonagricultural sectors, respectively. Here, the pro-
duction index in the agricultural sector in region k (x1,k) can
be calculated as the sum of the products of 0.5◦ crop yield yj
and cropland area Rj using Eq. (7):

x1,k =

Kj∑
j

yjRj , (B8)

whereKj indicates the number of 0.5◦ cells within the coun-
try/region k (3600). As described above, the cropland dis-
tribution Rj generated by the Food Cropland Down-scale
Module (Sect. B1.1) is used in Eq. (B7). The domestic price
p in Eqs. (B6) and (B7) is expressed in terms of the local
currency unit (LCU). This is converted to the international
price P (USD) using the exchange rate π (LCU per USD) in
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Figure B2. Global distribution of areas protected from bioenergy production.

Eqs. (B8) and (B9):

p1,k = πk ·P1,k, (B9)
p2,k = πk ·P2,k. (B10)

The price p and production index x can then be connected
using a relational equation for the trade budget as follows.
Imposing the condition that the international budget for any
country is zero results in Eq. (B10) for the international bal-
ance of payments:

p1,k ·
(
x1,k −X1,k

)
+p2,k ·

(
x2,k −X2,k

)
= 0, (B11)

where X1,k and X2,k are the demands for each good in each
region. As described previously, the output generated by
AIM/CGE based on the socioeconomic scenario is used for
food demandX1,k . In this study, livestock feed demand is not
included in X1,k . The international balance of payments as
shown in Eq. (B10) consists of the current, capital, and finan-
cial accounts. The imbalance in the international budget cor-
responds to foreign exchange reserve. The foreign exchange
reserve changes over periods longer than 10 years, but it is
not possible to predict its future variation and thus is not con-
sidered in the standard CGE models (e.g., Ejiri, 2008). In the
real world, if foreign exchange reserve increases, the amount
of import goods tends to be decreased, because money is not
used for them. Consequently, in food importing countries,
food production tends to be increased, possibly leading to an
increase in cropland area.

In addition, the price p and product index x can be related
through Eq. (B11) by expressing economic growth in terms
of GDP:

GDPk = P1,k · x1,k +P2,k · x2,k. (B12)

In Eq. (B3) and Eqs. (B5)–(B11) above, the eight unknown
values are p1,k , p2,k , x1,k , x2,k , l1,k , l2,k , πk , and X2,k . Of
these, because the reference for the international price P is
the United States (region index k = 1), P1,1 and P2,1 (along
with p1,1, p2,1) cannot be set. For this reason, the condition
is imposed that total global net exports and imports are equal
to zero:

Kall∑
k=1

(
x1,k −X1,k

)
= 0, (B13)

Kall∑
k=1

(
x2,k −X2,k

)
= 0. (B14)

As explained above, TeLMO uses 10-year averages as in-
put to the model to represent long-term trends in land-use
change (Sect. B1.1). We assumed that the global total pro-
duction is equal to consumption, i.e., the total global net
exports and imports equal to zero. In reality, there are cer-
tainly stock changes in various goods, but it would not be
counterfactual to assume that they are net zero at longer
timescale. The unknown values for p1,k , p2,k , x1,k , x2,k , l1,k ,
l2,k , πk , and X2,k are calculated by simultaneously solving
eight equations, Eq. (B3) and Eqs. (B5)–(B11), for all 17
regions (k = 1− 17) subject to the conditions imposed by
Eqs. (B12) and (B13). The p1,k , and w1,k values obtained
from Eq. (B4) are entered into Eq. (B1). Finally, the share of
cropland for each 0.5◦ cell Rj can then be calculated using
Eq. (B2).

As explained in Sect. B1.1, TeLMO uses the maximum
yield of five cereal types to project the total cropland area.
Alternatively, it is possible to increase the number of agri-
cultural sectors in Eqs. (B3)–(B12), solve the prices for each
crops, and allocate the cropland area according to the ASI
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values for each crop. Although we attempted this formulation
in the course of our development of TeLMO, it was found
that the results were similar to those obtained from the cur-
rent formulation. On the other hand, the solution of general
equilibrium models did not converge in some cases, because
the number of sectors increases in the equations. For this rea-
son, we decided to adopt the current formulation while rec-
ognizing that calculating cropland areas for each crop is an
important future work.

B2 Bioenergy Cropland Model

The Bioenergy Cropland Model uses 30′′ cells that are not
assigned to urban use or food cropland use. Whereas adjust-
ment parameter Cj in the Food Cropland Model (Eq. B1)
could be set using observed cropland area for the first year
of the TeLMO calculation (the base year 2005), there is no
corresponding adjustment parameter in the case of bioen-
ergy cropland, because sufficient cropland devoted to biofuel
crops did not exist in the base year. Accordingly, the Bioen-
ergy Cropland Model allocates bioenergy cropland around
the globe so that the global total biofuel crop production
equals the global total biofuel crop demand obtained by
AIM/CGE. The Bioenergy Cropland Model uses the same
formularization to that in the Food Cropland Down-scale
Module (Sect. B1.1) to evaluate the probability of bioenergy
cropland in 30′′ cells using the following equation:

rbio,i =
Cbio

1+ exp
(
1.228+ 0.237φi − 0.206pbio,kybio,j/w1,k

) ,
(B15)

where φi is the slope in 30′′ cell i, pbio,k is the biofuel crop
price in region k, ybio,j is the yield (t ha−1) of biofuel crops
in 0.5◦ cells, and w1,k is the agricultural sector wage in re-
gion k. For the biofuel crop price pbio,k , the values gener-
ated by AIM/CGE are used. For biofuel crop yield ybio,j , the
yield for miscanthus or switchgrass, whichever is greater in
a given cell, is calculated for the entire globe by using the
biofuel crop model developed in Kato and Yamagata (2014).
The biofuel crop model in Kato and Yamagata (2014) consid-
ers the future changes in climate based on the RCP scenarios.
In this study, we also consider the future changes in fertilizer
input based on the SSPs adopted in Mori et al. (2018). Be-
cause of the uncertainty in future fertilizer application for
crop management, we set the high end of the N fertilizer in-
put threshold according to Tilman et al. (2011). The nitro-
gen fertilizer application was set to increase from the current
level according to the increasing rate of GDP in the SSP2 sce-
nario up to 160 kg(N) ha−1 yr−1 if the fertilizer input at the
country level was below 160 kg(N) ha−1 yr−1 in the 2000s.
Also, the phosphorus fertilizer input in each country was set
to follow the same annual increase rate as the nitrogen fertil-
izer application.

Our use of the same formularization for the Food Cropland
Model and the Bioenergy Cropland Model is based on the

assumption that the factors determining both cropland areas
are similar.

The adjustment parameter Cbio is set so that the global
total biofuel crop production volume (product of yield and
cropland area) equals the global total biofuel crop demand
calculated by AIM/CGE:

Kall∑
k

Xbio,k =

Jall∑
j

ybio,jRbio,j , (B16)

where Xbio,k is the biofuel crop demand for region k calcu-
lated by AIM/CGE and Kall and Jall are the total number
of regions (17) and the total number of 0.5◦ cells (259 200),
respectively. Rbio,j is the average percentage of bioenergy
cropland for all 30′′ cells in a given 0.5◦ cell, where the indi-
vidual 30′′ cell percentages are determined by Eq. (B14).

If bioenergy cropland were allocated based on the prin-
ciple described above, a massive development of bioenergy
cropland would occur in regions with high ecosystem pro-
duction such as the Amazon. For this reason, the model ac-
counts for protected areas that cannot be allocated as bioen-
ergy cropland as shown in Fig. B2. Two sources were used
for protected areas (Wu et al., 2019): the World Database for
Protected Areas (WDPA) (IUCN and UNEP-WCMC, 2018)
and the World Database of Key Biodiversity Areas (KBA)
(BirdLife International, 2017). As of 2018, the WDPA cov-
ered an area of 33.6×106 km2, and the KBA covered an area
of 19.9×106 km2. In this study, we did not consider the pro-
tected area for the calculation of the food cropland and pas-
ture under the assumption that food has a higher priority than
ecosystem protection.

B3 Pastureland Model

Whereas the Food Cropland Model uses statistical relation-
ships between cropland area, yield, and economic variables,
because reliable statistical data do not exist for pastureland, a
simpler approach is taken to estimate pastureland. The prob-
ability of pastureland in each 30′′ cell is determined based on
net primary production (NPP) and slope, which is given by

rpast,i =
Cpast,j ×NPPj
(1+φ/20)

. (B17)

The denominator in Eq. (B16) reflects the fact that the use
of land as pasture decreases with the angle of inclination,
as is shown in the LUH2f data (Lawrence et al., 2016). The
results of an offline simulation by VISIT (Ito and Inatomi
2012), assuming the entire world to be grassland, are used
here for NPPj . The boundary condition of the VISIT of-
fline simulations is fixed at year 2005. Cpast,j is the adjust-
ment parameter for 0.5◦ cells. The value of Cpast,j changes
from year to year. The adjustment parameter for the base
year, Cpast,j (t = 0), is set so that the pastureland distribu-
tion equals that of LUH2f (Lawrence et al., 2016) for the
base year (2005). Adjustment parameters for years other than
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the base year, Cpast,j (t), are set by applying a proportionality
factor, α(t), to the base-year parameter:

Cpast,j (t)= α(t)×Cpast,j (t = 0), (B18)

where α(t) is set so that regional total pastureland area
equals the regional total pastureland demand calculated by
AIM/CGE. In other words, α(t) is set so that the condition

Spast,k(t)=

Jk∑
j

Rpast,j (t) (B19)

is met, where Spast,k(t) is the pastureland demand calculated
by AIM/CGE for region k; Rpast,j (t) is the average of per-
centage of pastureland for all 30′′ cells (from Eq. B16) in a
given 0.5◦ cell; and Jk is the total number of 0.5◦ cells in
each region k.

B4 Managed Forest Model

In the Managed Forest Model, satellite data are used to de-
termine forest area; the share of forest area where timber har-
vesting occurs is allocated as managed forest in the manner
described below. The distribution of managed forests in 0.5◦

cells, Rmfr,j (t), is formularized in terms of the area of man-
aged forests in the base year and the population density:

Rmfr,j = Afr,j ×
ρj∗

Cmanfr,k + ρj∗
, (B20)

where Afr,j is the area of managed forest in the 0.5◦ cells in
the base year (2005) and ρj∗ is the mean population den-
sity in the 5× 5 grid (2.5◦ cell) of cells centered on the
0.5◦ cell in question. Larger 2.5◦ cells were used instead
of 0.5◦ cells based on the assumption that harvested tim-
ber is transported within an approximately 100 km radius
and that the amount of harvested timber is determined by
the population density in each 2.5◦ cell. The 100 km ra-
dius is estimated from the distance where the transporta-
tion cost of timber (∼USD 1 km−1 t−1) is balanced with the
price of timber (∼USD 100 t−1). Here, the transportation
cost and price of timber are estimated using the FAOSTAT
data (FAO, 2019). Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite data (Friedl et al., 2010) are
used for the base-year forest area (2005), and data from Mu-
rakami and Yamagata (2019) are used for the population den-
sity (ρj∗ ). Cmfr,k is an adjustment parameter that is set for
each of the 17 regions (k) so that the managed forest area
conforms to the roundwood demand Xmfr,k (kg yr−1) calcu-
lated by AIM/CGE. We use the region-level adjustment fac-
tors for managed forest (Cmfr,k), because the grid-level ref-
erence data are not available. In other words, Cmfr,k is set so
that the total regional amount of harvested timber equals the
regional total roundwood demand:

Xmfr,k =

Jk∑
j

Rmfr,j ×
Bj

Lj
, (B21)

where Bj is the distribution of forest biomass (kg m−2) in
0.5◦ cells, calculated by VISIT (Ito and Inatomi, 2012) of-
fline simulations assuming the entire world to be forest with
the fixed boundary conditions (2005). Jk is the total number
of 0.5◦ cells in each region k. Lj is the harvesting period
(years), which is estimated as follows, based on theNPPj for
0.5◦ cells obtained from VISIT (Ito and Inatomi, 2012).

Lj =

 ∞ NPPj < 4
500/NPPj 4≤ NPPj ≤ 25
20 25< NPPj

(B22)

Lj reflects the fact that the harvesting period decreases
with increases in net primary production, as is shown in
the LUH2v data (Lawrence et al., 2016). The amount of
forest harvested in a given year can also be calculated as
Rmfr,j ×Bj/Lj (kg yr−1) based on the distribution of man-
aged forests Rmfr,j , forest biomass Bj , and the felling period
Lj for 0.5◦ cells.

B5 Formulation of the Transition Matrix Model

Evaluating the impact of land-use change on terrestrial
ecosystems requires not only the spatial distribution of land
use but also information on the land-use transition. For ex-
ample, in areas where shifting cultivation is practiced, a par-
ticular area may be cleared as cropland while another area
is abandoned even though the overall cropland area within
a cell does not change. In such cases, there is a transition
from cropland to secondary land, which impacts the above-
ground biomass and carbon budget. Thus, matrix information
regarding the transition from one land use to another land use
is essential.

For the land-cover types used in the transition matrix,
we use the five classes (urban, cropland, pasture, sec-
ondary/primary land) used in the VISIT terrestrial ecosystem
model (Ito and Inatomi, 2012). TeLMO forecasts eight land-
cover types, including the previously described urban, crop-
land (food and bioenergy), pasture, managed forest, and un-
managed forest classes as well as “grassland” (obtained from
MODIS satellite data, Friedl et al., 2010) and “other” land-
cover types that are not used by humans (e.g., glaciers, lakes,
and marshes, as defined by MODIS satellite data; Friedl et
al., 2010). The correspondence between the land-cover types
used in TeLMO and those used in the land-use transition ma-
trix is presented in Table B1.

The primary/secondary land classes in the land-use Tran-
sition Matrix Model are defined as land that has never been
used by humans or land that has been used at least once by
humans, respectively. Here, unmanaged forest and grassland
are classified as primary or secondary land based on data
from LUH2f supplied by LUH2v (Lawrence et al., 2016).
Unmanaged forest or grassland areas that are classified as
secondary land in the base year (2005) remain classified as
secondary land in subsequent years. In the case in which un-
managed forest or grassland area is classified as primary land
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Table B1. Correspondence of land-cover type in land-use model
and transition matrix.

Land-cover type in Land-cover type in
land-use model transition matrix

Urban Urban

Cropland (food)
Cropland

Cropland (biofuel crop)

Pasture Pasture

Managed forest Secondary land

Unmanaged forest
Primary land
Secondary land

Grassland
Primary land
Secondary land

Other –

in the base year, it is classified as secondary land if the area
is converted to cropland or pasture and then later returned to
being unmanaged forest or grassland. In TeLMO, land clas-
sified as other is considered the land that cannot be used by
humans and is therefore not included in the land-use transi-
tion matrices.

The method used to create the land-use transition matrices
is shown in Fig. B3. As explained above, TeLMO assumes
that land is used in order of highest to lowest value added per
unit area (i.e., urban, food cropland, bioenergy cropland, pas-
tureland, managed forest, and unmanaged forest). Aligning
these land-use classes with corresponding classes in the tran-
sition matrix (Table B1), the preferential order of the latter
becomes urban, cropland (food + bioenergy), pasture, sec-
ondary land, and primary land. To calculate land-use tran-
sition matrices, the percent areas of the different land-cover
types in each 0.5◦ cell in a given year are first sorted in or-
der of preference (“Pre” in Fig. B3). In Fig. B3, the length
of each colored bar represents the percent area of a given
land-cover type. The sum of the percent areas for all land-use
classes is 100 %. Next, the percent areas of different land-
cover types in each 0.5◦ cell in the following year are again
sorted in order of preference (“Post” in Fig. B3).

As shown in Fig. B3, the percent areas of transitioned land
defined in transition matrices can be calculated by compar-
ing the percent areas for each land-cover type in a given year
and the next year. For example, the area indicated in column
“a” in Fig. B3 corresponds to the percent area of land that
transitioned from pasture to cropland. Similarly, the area in-
dicated in column “b” in Fig. B3 corresponds to the percent
area of land that transitioned from secondary land to pasture.
In this manner, it is possible to calculate the transition be-
tween land-cover types by assuming a preferential order to
land use.

Figure B3. Schematic diagram of land-cover transition. Details are
explained in the main text.

Shifting cultivation is taken into account when making the
land-use transition matrices. We assume that the share of cul-
tivated land does not change over time on the larger (i.e.,
0.5◦ cell) scale. Data from Butler (1980) are used for the
global allocation of shifting cultivation on this larger scale.
Furthermore, in regions where shifting cultivation is prac-
ticed, we assume that cropland is used sequentially with a
fixed rotation (Butler, 1980). Under this assumption, in ar-
eas where shifting cultivation is practiced, 1/15 of the crop-
land area is newly cultivated, and 1/15 of the cropland area
is abandoned each year. Thus, 1/15 of the cropland area is
transitioned from secondary land to cropland, and 1/15 of
the cropland area is transitioned from cropland to secondary
land. These transitions are added to the transition matrices
for areas where shifting cultivation is practiced.
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