Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4271-2020
https://doi.org/10.5194/gmd-13-4271-2020
Development and technical paper
 | 
16 Sep 2020
Development and technical paper |  | 16 Sep 2020

Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?

Nicola Bodini, Julie K. Lundquist, and Mike Optis

Related authors

Meteorological Impacts of Offshore Wind Turbines as Simulated in the Weather Research and Forecasting Model
Daphne Quint, Julie K. Lundquist, Nicola Bodini, and David Rosencrans
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-53,https://doi.org/10.5194/wes-2024-53, 2024
Preprint under review for WES
Short summary
The 2023 National Offshore Wind data set (NOW-23)
Nicola Bodini, Mike Optis, Stephanie Redfern, David Rosencrans, Alex Rybchuk, Julie K. Lundquist, Vincent Pronk, Simon Castagneri, Avi Purkayastha, Caroline Draxl, Raghavendra Krishnamurthy, Ethan Young, Billy Roberts, Evan Rosenlieb, and Walter Musial
Earth Syst. Sci. Data, 16, 1965–2006, https://doi.org/10.5194/essd-16-1965-2024,https://doi.org/10.5194/essd-16-1965-2024, 2024
Short summary
Observations of wind farm wake recovery at an operating wind farm
Raghavendra Krishnamurthy, Rob Newsom, Colleen Kaul, Stefano Letizia, Mikhail Pekour, Nicholas Hamilton, Duli Chand, Donna M. Flynn, Nicola Bodini, and Patrick Moriarty
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-29,https://doi.org/10.5194/wes-2024-29, 2024
Preprint under review for WES
Short summary
Offshore low-level jet observations and model representation using lidar buoy data off the California coast
Lindsay M. Sheridan, Raghavendra Krishnamurthy, William I. Gustafson Jr., Ye Liu, Brian J. Gaudet, Nicola Bodini, Rob K. Newsom, and Mikhail Pekour
Wind Energ. Sci., 9, 741–758, https://doi.org/10.5194/wes-9-741-2024,https://doi.org/10.5194/wes-9-741-2024, 2024
Short summary
Seasonal variability of wake impacts on US mid-Atlantic offshore wind plant power production
David Rosencrans, Julie K. Lundquist, Mike Optis, Alex Rybchuk, Nicola Bodini, and Michael Rossol
Wind Energ. Sci., 9, 555–583, https://doi.org/10.5194/wes-9-555-2024,https://doi.org/10.5194/wes-9-555-2024, 2024
Short summary

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Albertson, J. D., Parlange, M. B., Kiely, G., and Eichinger, W. E.: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer, J. Geophys. Res.-Atmos., 102, 13423–13432, 1997. a
Arcos Jiménez, A., Gómez Muñoz, C., and García Márquez, F.: Machine learning for wind turbine blades maintenance management, Energies, 11, 13, 2018. a
Babić, K., Bencetić Klaić, Z., and Večenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012. a
Barlow, R. J.: Statistics: a guide to the use of statistical methods in the physical sciences, vol. 29, John Wiley & Sons, 1989. a
Berg, L. K., Liu, Y., Yang, B., Qian, Y., Olson, J., Pekour, M., Ma, P.-L., and Hou, Z.: Sensitivity of Turbine-Height Wind Speeds to Parameters in the Planetary Boundary-Layer Parametrization Used in the Weather Research and Forecasting Model: Extension to Wintertime Conditions, Bound.-Lay. Meteorol., 170, 507–518, 2018. a
Download
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.