Articles | Volume 13, issue 9
Geosci. Model Dev., 13, 4271–4285, 2020
https://doi.org/10.5194/gmd-13-4271-2020
Geosci. Model Dev., 13, 4271–4285, 2020
https://doi.org/10.5194/gmd-13-4271-2020
Development and technical paper
16 Sep 2020
Development and technical paper | 16 Sep 2020

Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?

Nicola Bodini et al.

Related authors

Can reanalysis products outperform mesoscale numerical weather prediction models in modeling the wind resource in simple terrain?
Vincent Pronk, Nicola Bodini, Mike Optis, Julie K. Lundquist, Patrick Moriarty, Caroline Draxl, Avi Purkayastha, and Ethan Young
Wind Energ. Sci., 7, 487–504, https://doi.org/10.5194/wes-7-487-2022,https://doi.org/10.5194/wes-7-487-2022, 2022
Short summary
The Sensitivity of the Fitch Wind Farm Parameterization to a Three-Dimensional Planetary Boundary Layer Scheme
Alex Rybchuk, Timothy W. Juliano, Julie K. Lundquist, David Rosencrans, Nicola Bodini, and Mike Optis
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-127,https://doi.org/10.5194/wes-2021-127, 2021
Preprint under review for WES
Short summary
Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble
Nicola Bodini, Weiming Hu, Mike Optis, Guido Cervone, and Stefano Alessandrini
Wind Energ. Sci., 6, 1363–1377, https://doi.org/10.5194/wes-6-1363-2021,https://doi.org/10.5194/wes-6-1363-2021, 2021
Short summary
Extreme wind shear events in US offshore wind energy areas and the role of induced stratification
Mithu Debnath, Paula Doubrawa, Mike Optis, Patrick Hawbecker, and Nicola Bodini
Wind Energ. Sci., 6, 1043–1059, https://doi.org/10.5194/wes-6-1043-2021,https://doi.org/10.5194/wes-6-1043-2021, 2021
Short summary
Approaches for predicting wind turbine hub-height turbulence metrics
Hannah Livingston, Nicola Bodini, and Julie K. Lundquist
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2021-68,https://doi.org/10.5194/wes-2021-68, 2021
Preprint withdrawn
Short summary

Related subject area

Atmospheric sciences
Order of magnitude wall time improvement of variational methane inversions by physical parallelization: a demonstration using TM5-4DVAR
Sudhanshu Pandey, Sander Houweling, and Arjo Segers
Geosci. Model Dev., 15, 4555–4567, https://doi.org/10.5194/gmd-15-4555-2022,https://doi.org/10.5194/gmd-15-4555-2022, 2022
Short summary
Simulated microphysical properties of winter storms from bulk-type microphysics schemes and their evaluation in the Weather Research and Forecasting (v4.1.3) model during the ICE-POP 2018 field campaign
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022,https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
A novel method for objective identification of 3-D potential vorticity anomalies
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Roderick van der Linden, Michael Maier-Gerber, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 15, 4447–4468, https://doi.org/10.5194/gmd-15-4447-2022,https://doi.org/10.5194/gmd-15-4447-2022, 2022
Short summary
Multiple same-level and telescoping nesting in GFDL's dynamical core
Joseph Mouallem, Lucas Harris, and Rusty Benson
Geosci. Model Dev., 15, 4355–4371, https://doi.org/10.5194/gmd-15-4355-2022,https://doi.org/10.5194/gmd-15-4355-2022, 2022
Short summary
Global, high-resolution mapping of tropospheric ozone – explainable machine learning and impact of uncertainties
Clara Betancourt, Timo T. Stomberg, Ann-Kathrin Edrich, Ankit Patnala, Martin G. Schultz, Ribana Roscher, Julia Kowalski, and Scarlet Stadtler
Geosci. Model Dev., 15, 4331–4354, https://doi.org/10.5194/gmd-15-4331-2022,https://doi.org/10.5194/gmd-15-4331-2022, 2022
Short summary

Cited articles

Albertson, J. D., Parlange, M. B., Kiely, G., and Eichinger, W. E.: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer, J. Geophys. Res.-Atmos., 102, 13423–13432, 1997. a
Arcos Jiménez, A., Gómez Muñoz, C., and García Márquez, F.: Machine learning for wind turbine blades maintenance management, Energies, 11, 13, 2018. a
Babić, K., Bencetić Klaić, Z., and Večenaj, Ž.: Determining a turbulence averaging time scale by Fourier analysis for the nocturnal boundary layer, Geofizika, 29, 35–51, 2012. a
Barlow, R. J.: Statistics: a guide to the use of statistical methods in the physical sciences, vol. 29, John Wiley & Sons, 1989. a
Berg, L. K., Liu, Y., Yang, B., Qian, Y., Olson, J., Pekour, M., Ma, P.-L., and Hou, Z.: Sensitivity of Turbine-Height Wind Speeds to Parameters in the Planetary Boundary-Layer Parametrization Used in the Weather Research and Forecasting Model: Extension to Wintertime Conditions, Bound.-Lay. Meteorol., 170, 507–518, 2018. a
Download
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.