Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4271-2020
https://doi.org/10.5194/gmd-13-4271-2020
Development and technical paper
 | 
16 Sep 2020
Development and technical paper |  | 16 Sep 2020

Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?

Nicola Bodini, Julie K. Lundquist, and Mike Optis

Viewed

Total article views: 3,166 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,271 804 91 3,166 253 89 88
  • HTML: 2,271
  • PDF: 804
  • XML: 91
  • Total: 3,166
  • Supplement: 253
  • BibTeX: 89
  • EndNote: 88
Views and downloads (calculated since 21 Apr 2020)
Cumulative views and downloads (calculated since 21 Apr 2020)

Viewed (geographical distribution)

Total article views: 3,166 (including HTML, PDF, and XML) Thereof 2,835 with geography defined and 331 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 14 Nov 2024
Download
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.