Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4271-2020
https://doi.org/10.5194/gmd-13-4271-2020
Development and technical paper
 | 
16 Sep 2020
Development and technical paper |  | 16 Sep 2020

Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?

Nicola Bodini, Julie K. Lundquist, and Mike Optis

Viewed

Total article views: 4,161 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,046 1,001 114 4,161 371 130 175
  • HTML: 3,046
  • PDF: 1,001
  • XML: 114
  • Total: 4,161
  • Supplement: 371
  • BibTeX: 130
  • EndNote: 175
Views and downloads (calculated since 21 Apr 2020)
Cumulative views and downloads (calculated since 21 Apr 2020)

Viewed (geographical distribution)

Total article views: 4,161 (including HTML, PDF, and XML) Thereof 3,810 with geography defined and 351 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 08 Jan 2026
Download
Short summary
While turbulence dissipation rate (ε) is an essential parameter for the prediction of wind speed, its current representation in weather prediction models is inaccurate, especially in complex terrain. In this study, we leverage the potential of machine-learning techniques to provide a more accurate representation of turbulence dissipation rate. Our results show a 30 % reduction in the average error compared to the current model representation of ε and a total elimination of its average bias.
Share