Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4041-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4041-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
FLiES-SIF version 1.0: three-dimensional radiative transfer model for estimating solar induced fluorescence
Yuma Sakai
CORRESPONDING AUTHOR
Institute of Arctic Climate and Environment Research, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
Hideki Kobayashi
Institute of Arctic Climate and Environment Research, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Tomomichi Kato
Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
Global Station for Food, Land, and Water Resources, GI-Core, Hokkaido University, Sapporo, Japan
Related authors
No articles found.
Masahito Ueyama, Yuta Takao, Hiromi Yazawa, Makiko Tanaka, Hironori Yabuki, Tomo'omi Kumagai, Hiroki Iwata, Md. Abdul Awal, Mingyuan Du, Yoshinobu Harazono, Yoshiaki Hata, Takashi Hirano, Tsutom Hiura, Reiko Ide, Sachinobu Ishida, Mamoru Ishikawa, Kenzo Kitamura, Yuji Kominami, Shujiro Komiya, Ayumi Kotani, Yuta Inoue, Takashi Machimura, Kazuho Matsumoto, Yojiro Matsuura, Yasuko Mizoguchi, Shohei Murayama, Hirohiko Nagano, Taro Nakai, Tatsuro Nakaji, Ko Nakaya, Shinjiro Ohkubo, Takeshi Ohta, Keisuke Ono, Taku M. Saitoh, Ayaka Sakabe, Takanori Shimizu, Seiji Shimoda, Michiaki Sugita, Kentaro Takagi, Yoshiyuki Takahashi, Naoya Takamura, Satoru Takanashi, Takahiro Takimoto, Yukio Yasuda, Qinxue Wang, Jun Asanuma, Hideo Hasegawa, Tetsuya Hiyama, Yoshihiro Iijima, Shigeyuki Ishidoya, Masayuki Itoh, Tomomichi Kato, Hiroaki Kondo, Yoshiko Kosugi, Tomonori Kume, Takahisa Maeda, Shoji Matsuura, Trofim Maximov, Takafumi Miyama, Ryo Moriwaki, Hiroyuki Muraoka, Roman Petrov, Jun Suzuki, Shingo Taniguchi, and Kazuhito Ichii
Earth Syst. Sci. Data, 17, 3807–3833, https://doi.org/10.5194/essd-17-3807-2025, https://doi.org/10.5194/essd-17-3807-2025, 2025
Short summary
Short summary
The JapanFlux2024 dataset, created through collaboration across Japan and East Asia, includes eddy covariance data from 83 sites spanning 683 site-years (1990–2023). This comprehensive dataset offers valuable insights into energy, water, and CO2 fluxes, supporting research on land–atmosphere interactions and process models; fosters global collaboration; and advances research in environmental science and regional climate dynamics.
Marin Nagata, Astrid Yusara, Tomomichi Kato, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1885, https://doi.org/10.5194/egusphere-2025-1885, 2025
Short summary
Short summary
We developed maize version of process-based crop model coupled with a land surface model (MATCRO). It extends the original MATCRO-Rice by incorporating C4 photosynthesis and maize-specific parameters. The model was validated using field data from four sites and global yield data from FAOSTAT. MATCRO-Maize captured the interannual yield variability in global and county-level yield data, demonstrating its potential for climate impact assessments on maize production.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Astrid Yusara, Tomomichi Kato, Elizabeth A. Ainsworth, Rafael Battisti, Etsushi Kumagai, Satoshi Nakano, Yushan Wu, Yutaka Tsusumi-Morita, Kazuhiko Kobayashi, and Yuji Masutomi
EGUsphere, https://doi.org/10.5194/egusphere-2025-453, https://doi.org/10.5194/egusphere-2025-453, 2025
Short summary
Short summary
We developed a soybean model, an ecosystem model for crop yield (namely MATCRO-Soy), integrating crop response toward climate variable. It offers a detailed yield estimation. Parameter tuning in the model used literature and field experiments. The model shows a moderate correlation with observed yields at the global, national, and grid levels. Development of MATCRO-Soy enhances crop modeling diversity approaches, particularly in climate change impact studies.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Reza Kusuma Nurrohman, Tomomichi Kato, Hideki Ninomiya, Lea Végh, Nicolas Delbart, Tatsuya Miyauchi, Hisashi Sato, Tomohiro Shiraishi, and Ryuichi Hirata
Biogeosciences, 21, 4195–4227, https://doi.org/10.5194/bg-21-4195-2024, https://doi.org/10.5194/bg-21-4195-2024, 2024
Short summary
Short summary
SPITFIRE (SPread and InTensity of FIRE) was integrated into a spatially explicit individual-based dynamic global vegetation model to improve the accuracy of depicting Siberian forest fire frequency, intensity, and extent. Fires showed increased greenhouse gas and aerosol emissions in 2006–2100 for Representative Concentration Pathways. This study contributes to understanding fire dynamics, land ecosystem–climate interactions, and global material cycles under the threat of escalating fires.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.:
Spatiotemporal patterns of terrestrial gross primary production: A review,
Rev. Geophys., 53, 785–818, 2015. a
Baldocchi, D. and Harley, P.: Scaling carbon dioxide and water vapour exchange
from leaf to canopy in a deciduous forest. II. Model testing and application,
Plant Cell Environ., 18, 1157–1173, 1995. a
Bunn, A. G. and Goetz, S. J.: Trends in satellite-observed circumpolar
photosynthetic activity from 1982 to 2003: the influence of seasonality,
cover type, and vegetation density, Earth Interact., 10, 1–19, 2006. a
Canadell, J. G., Kirschbaum, M. U., Kurz, W. A., Sanz, M.-J., Schlamadinger,
B., and Yamagata, Y.: Factoring out natural and indirect human effects on
terrestrial carbon sources and sinks, Environ. Sci. Policy, 10,
370–384, 2007. a
Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M., and Plummer, S.: Leaf
area index of boreal forests: Theory, techniques, and measurements, J. Geophys. Res.-Atmos., 102, 29429–29443, 1997. a
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agric.
Forest Meteorol., 54, 107–136, 1991. a
Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang,
Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., and Moya, I.: Canopy structure explains the
relationship between photosynthesis and sun-induced chlorophyll fluorescence
in crops, Remote Sens. Environ., 241, 111733, 2020. a
Gastellu-Etchegorry, J.-P., Lauret, N., Yin, T., Landier, L., Kallel, A., Malenovsk, Z., Al Bitar, A., Aval, J., Benhmida, S., Qi, J., Medjdoub, G., Guilleux, J., Chavanon, E., Cook, B., Morton, D., Chrysoulakis, N., and Mitraka, Z.:
DART: recent advances in remote sensing data modeling with atmosphere,
polarization, and chlorophyll fluorescence, IEEE J. Sel. Top. Appl., 10, 2640–2649, 2017. a, b, c
Genty, B., Briantais, J.-M., and Baker, N. R.: The relationship between the
quantum yield of photosynthetic electron transport and quenching of
chlorophyll fluorescence, Biochim. Biophys. Ac., 990, 87–92, 1989. a
Guanter, L., Alonso, L., Gómez-Chova, L., Meroni, M., Preusker, R.,
Fischer, J., and Moreno, J.: Developments for vegetation fluorescence
retrieval from spaceborne high-resolution spectrometry in the O2-A and O2-B
absorption bands, J. Geophys. Res.-Atmos., 115, D19303,
https://doi.org/10.1029/2009JD013716, 2010. a
Hapke, B.: Theory of reflectance and emittance spectroscopy, Cambridge
University Press, 2012. a
Hernández-Clemente, R., North, P. R., Hornero, A., and Zarco-Tejada, P. J.:
Assessing the effects of forest health on sun-induced chlorophyll
fluorescence using the FluorFLIGHT 3-D radiative transfer model to account
for forest structure, Remote Sens. Environ., 193, 165–179, 2017. a
Iwabuchi, H.: Efficient Monte Carlo methods for radiative transfer modeling,
J. Atmos. Sci., 63, 2324–2339, 2006. a
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013. a, b
Kobayashi, H.: Directional effect of canopy scale sun-induced chlorophyll
fluorescence: Theoretical Consideration in A3-D radiative transfer model, in:
2015 IEEE Int. Geosci. Remote Se., pp.
3413–3415, 2015a. a
Kobayashi, H.: FLiES version 2.9, Zenodo, https://doi.org/10.5281/zenodo.3586814,
2019. a
Kobayashi, H. and Sakai, Y.: FLiES-SIF version 1.0, Zenodo,
https://doi.org/10.5281/zenodo.3584099, 2019. a, b
Kobayashi, H., Delbart, N., Suzuki, R., and Kushida, K.: A satellite-based
method for monitoring seasonality in the overstory leaf area index of
Siberian larch forest, J. Geophys. Res.-Biogeo., 115, G01002,
https://doi.org/10.1029/2009JG000939,
2010. a, b
Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., and
Landgraf, J.: Global retrievals of solar-induced chlorophyll fluorescence
with TROPOMI: First results and intersensor comparison to OCO-2, Geophys.
Res. Lett., 45, 10–456, 2018. a
Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr,
A., Stoy, P., and Wohlfahrt, G.: Separation of net ecosystem exchange into
assimilation and respiration using a light response curve approach: critical
issues and global evaluation, Global Change Biol., 16, 187–208, 2010. a
Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, I., Noe, S. M., Ortiz, P. S., Ray-Sanchez. A. C., Rocha, A. V., and Varlagin, A.: Solar-induced
chlorophyll fluorescence is strongly correlated with terrestrial
photosynthesis for a wide variety of biomes: First global analysis based on
OCO-2 and flux tower observations, Global Change Biol., 24, 3990–4008,
2018. a
Liu, X., Guanter, L., Liu, L., Damm, A., Malenovskỳ, Z., Rascher, U., Peng,
D., Du, S., and Gastellu-Etchegorry, J.-P.: Downscaling of solar-induced
chlorophyll fluorescence from canopy level to photosystem level using a
random forest model, Remote Sens. Environ., 231, 110772,
https://doi.org/10.1016/j.rse.2018.05.035, 2019. a
Louis, J., Cerovic, Z. G., and Moya, I.: Quantitative study of fluorescence
excitation and emission spectra of bean leaves, J. Photoch.
Photobiol. B, 85, 65–71, 2006. a
Marchuk, G. I., Mikhailov, G. A., Nazareliev, M., Darbinjan, R. A., Kargin,
B. A., and Elepov, B. S.: The Monte Carlo methods in atmospheric optics,
vol. 1, Springer, 1980. a
Norton, A. J., Rayner, P. J., Koffi, E. N., Scholze, M., Silver, J. D., and Wang, Y.-P.: Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model, Biogeosciences, 16, 3069–3093, https://doi.org/10.5194/bg-16-3069-2019, 2019. a
Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J. G., Cong, N., Huntingford, C., Jung, M. Levis, S., Levy, P. E., Li, J., Lin, X., Lomas, M. R., Lu, M., Luo, Y., Ma, Y., Myneni, R. B., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., and Zeng, N.: Evaluation of
terrestrial carbon cycle models for their response to climate variability and
to CO2 trends, Global Change Biol., 19, 2117–2132, 2013. a
Richardson, A. D., Hollinger, D. Y., Dail, D. B., Lee, J. T., Munger, J. W.,
and O'Keefe, J.: Influence of spring phenology on seasonal and annual carbon
balance in two contrasting New England forests, Tree Physiol., 29,
321–331, 2009. a
Romero, J. M., Cordon, G. B., and Lagorio, M. G.: Modeling re-absorption of
fluorescence from the leaf to the canopy level, Remote Sens.
Environ., 204, 138–146, 2018. a
Schimel, D.: Carbon cycle conundrums, P. Natl. Acad.
Sci., 104, 18353–18354, 2007. a
Smolander, S. and Stenberg, P.: A method to account for shoot scale clumping in
coniferous canopy reflectance models, Remote Sens. Environ., 88,
363–373, 2003. a
Smolander, S. and Stenberg, P.: Simple parameterizations of the radiation
budget of uniform broadleaved and coniferous canopies, Remote Sens.
Environ., 94, 355–363, 2005. a
Teubner, I. E., Forkel, M., Camps-Valls, G., Jung, M., Miralles, D. G.,
Tramontana, G., van der Schalie, R., Vreugdenhil, M., Mösinger, L., and
Dorigo, W. A.: A carbon sink-driven approach to estimate gross primary
production from microwave satellite observations, Remote Sens.
Environ., 229, 100–113, 2019. a
van der Tol, C., Verhoef, W., Timmermans, J., Verhoef, A., and Su, Z.: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance, Biogeosciences, 6, 3109–3129, https://doi.org/10.5194/bg-6-3109-2009, 2009. a, b, c, d
van der Tol, C., Vilfan, N., Dauwe, D., Cendrero-Mateo, M. P., and Yang, P.:
The scattering and re-absorption of red and near-infrared chlorophyll
fluorescence in the models Fluspect and SCOPE, Remote Sens. Environ.,
232, 111292,
https://doi.org/10.1016/j.rse.2019.111292, 2019. a
Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J., and Samson, R.:
Bidirectional sun-induced chlorophyll fluorescence emission is influenced by
leaf structure and light scattering properties-A bottom-up approach, Remote
Sens. Environ., 158, 169–179, 2015. a
Waring, R., Landsberg, J., and Williams, M.: Net primary production of forests:
a constant fraction of gross primary production?, Tree Physiol., 18,
129–134, 1998. a
Widlowski, J.-L., Pinty, B., Clerici, M., Dai, Y., De Kauwe, M., De Ridder, K., Kallel, A., Kobayashi, H., Lavergne, T., Ni-Meister, W., Olchev, A., Quaife, T., Wang, S., Yang, W., Yang, Y., and Yuan, H: RAMI4PILPS:
An intercomparison of formulations for the partitioning of solar radiation in
land surface models, J. Geophys. Res.-Biogeo., 116, G02019,
https://doi.org/10.1029/2010JG001511,
2011. a
Widlowski, J.-L., Pinty, B., Lopatka, M., Atzberger, C., Buzica, D., Chelle, M., Disney, M., Gastellu-Etchegorry, J.-P., Gerboles, M.,
Gobron, N., Grau, E., Huang, H., Kobayashi, H., Lewis, P. E., Qin, W., Schlerf, M., Stuckens, J., and Xie, D.:
The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency
testing of canopy reflectance models with ISO-13528, J. Geophys. Res.-Atmos., 118, 6869–6890, 2013. a
Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J.-F., Eenmäe, A., Essery , R., Gastellu-Etchegorry, J.-P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt, L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P. E., Lovell, J. L., Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M., Ni-Meister, W., Pinty, B., Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete, M. M., Yang. W., Zhao, F., and Zenone, T.: The fourth
phase of the radiative transfer model intercomparison (RAMI) exercise: Actual
canopy scenarios and conformity testing, Remote Sens. Environ., 169,
418–437, 2015. a
Wieneke, S., Burkart, A., Cendrero-Mateo, M., Julitta, T., Rossini, M.,
Schickling, A., Schmidt, M., and Rascher, U.: Linking photosynthesis and
sun-induced fluorescence at sub-daily to seasonal scales, Remote Sens.
Environ., 219, 247–258, 2018. a
Wu, J., Kobayashi, H., Stark, S. C., Meng, R., Guan, K., Tran, N. N., Gao, S., Yang, W., Restrepo-Coupe, N., Miura, T., Oliviera, R. C., Rogers, A., Dye, D. G., Nelson, B. W., Serbin, S. P., Huete, A. R., and Saleska, S. R.: Biological processes
dominate seasonality of remotely sensed canopy greenness in an Amazon
evergreen forest, New Phytol., 217, 1507–1520, 2018. a
Yang, P. and van der Tol, C.: Linking canopy scattering of far-red sun-induced
chlorophyll fluorescence with reflectance, Remote Sens. Environ.,
209, 456–467, 2018. a
Zarco-Tejada, P. J., Suárez, L., and González-Dugo, V.: Spatial
resolution effects on chlorophyll fluorescence retrieval in a heterogeneous
canopy using hyperspectral imagery and radiative transfer simulation, IEEE
Geosci. Remote Sens. Lett., 10, 937–941, 2013. a
Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., and Berry, J. A.: A
practical approach for estimating the escape ratio of near-infrared
solar-induced chlorophyll fluorescence, Remote Sens. Environ., 232,
111209,
https://doi.org/10.1016/j.rse.2019.05.028, 2019. a
Zhang, Y., Guanter, L., Joiner, J., Song, L., and Guan, K.: Spatially-explicit
monitoring of crop photosynthetic capacity through the use of space-based
chlorophyll fluorescence data, Remote Sens. Environ., 210, 362–374,
2018. a
Short summary
Chlorophyll fluorescence is one of the energy release pathways of excess incident light in the photosynthetic process. The canopy-scale Sun-induced chlorophyll fluorescence (SIF), which potentially provides a direct pathway to link leaf-level photosynthesis to global GPP, can be observed from satellites. We develop the three-dimensional Monte Carlo plant canopy radiative transfer model to understand the biological and physical mechanisms behind SIF emission from complex forest canopies.
Chlorophyll fluorescence is one of the energy release pathways of excess incident light in the...