Articles | Volume 13, issue 8
https://doi.org/10.5194/gmd-13-3475-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-3475-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE 2.0 model
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Victor Stepanenko
Lomonosov Moscow State University, Research Computing Center 119234 Moscow, Russia
Lomonosov Moscow State University, Faculty of Geography, 119234 Moscow, Russia
Moscow Center for Fundamental and Applied Mathematics, 119234 Moscow, Russia
Rui Salgado
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Department of Physics, ICT, University of Évora, 7000-671 Évora, Portugal
Miguel Potes
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Department of Physics, ICT, University of Évora, 7000-671 Évora, Portugal
Alexandra Penha
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Water Laboratory, University of Évora, P.I.T.E. Rua da Barba Rala Nº1, 7005-345 Évora, Portugal
Maria Helena Novais
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Water Laboratory, University of Évora, P.I.T.E. Rua da Barba Rala Nº1, 7005-345 Évora, Portugal
Gonçalo Rodrigues
Institute of Earth Sciences – ICT, University of Évora, 7000-671 Évora, Portugal
Related authors
No articles found.
Elena Shevnina, Timo Vihma, Miguel Potes, and Tuomas Naakka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1964, https://doi.org/10.5194/egusphere-2025-1964, 2025
Short summary
Short summary
The study first estimated the summertime evaporation over lakes located in coastal Antarctica with direct (eddy-covariance) measurements collected during two austral summers (December–January) in 2017–2018 and 2019–2020. The lake evaporation was on average 1.6 mm d-1 in the ice break-up period, and it doubled in the ice free period. The bulk aerodynamic method with a site-specific transfer coefficient of moisture well reproduced the observed day-to-day variations in evaporation over lakes.
Jason A. Clark, Elchin E. Jafarov, Ken D. Tape, Benjamin M. Jones, and Victor Stepanenko
Geosci. Model Dev., 15, 7421–7448, https://doi.org/10.5194/gmd-15-7421-2022, https://doi.org/10.5194/gmd-15-7421-2022, 2022
Short summary
Short summary
Lakes in the Arctic are important reservoirs of heat. Under climate warming scenarios, we expect Arctic lakes to warm the surrounding frozen ground. We simulate water temperatures in three Arctic lakes in northern Alaska over several years. Our results show that snow depth and lake ice strongly affect water temperatures during the frozen season and that more heat storage by lakes would enhance thawing of frozen ground.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Victor Lomov, Victor Stepanenko, Maria Grechushnikova, and Irina Repina
EGUsphere, https://doi.org/10.5194/egusphere-2022-329, https://doi.org/10.5194/egusphere-2022-329, 2022
Preprint withdrawn
Short summary
Short summary
We present the first mechanistic model LAKE2.3 for prediction of methane emissions from artificial reservoirs. Estimates of CH4 emissions from the Mozhaysk reservoir (Moscow region) provided by the model are demonstrated. Methane annual emissions through diffusion, ebullition and downstream degassing according to in situ measurements and model simulations are presented. The experiments with the model allowed to determine the most sensitive model parameters for calibration of methane fluxes.
Malgorzata Golub, Wim Thiery, Rafael Marcé, Don Pierson, Inne Vanderkelen, Daniel Mercado-Bettin, R. Iestyn Woolway, Luke Grant, Eleanor Jennings, Benjamin M. Kraemer, Jacob Schewe, Fang Zhao, Katja Frieler, Matthias Mengel, Vasiliy Y. Bogomolov, Damien Bouffard, Marianne Côté, Raoul-Marie Couture, Andrey V. Debolskiy, Bram Droppers, Gideon Gal, Mingyang Guo, Annette B. G. Janssen, Georgiy Kirillin, Robert Ladwig, Madeline Magee, Tadhg Moore, Marjorie Perroud, Sebastiano Piccolroaz, Love Raaman Vinnaa, Martin Schmid, Tom Shatwell, Victor M. Stepanenko, Zeli Tan, Bronwyn Woodward, Huaxia Yao, Rita Adrian, Mathew Allan, Orlane Anneville, Lauri Arvola, Karen Atkins, Leon Boegman, Cayelan Carey, Kyle Christianson, Elvira de Eyto, Curtis DeGasperi, Maria Grechushnikova, Josef Hejzlar, Klaus Joehnk, Ian D. Jones, Alo Laas, Eleanor B. Mackay, Ivan Mammarella, Hampus Markensten, Chris McBride, Deniz Özkundakci, Miguel Potes, Karsten Rinke, Dale Robertson, James A. Rusak, Rui Salgado, Leon van der Linden, Piet Verburg, Danielle Wain, Nicole K. Ward, Sabine Wollrab, and Galina Zdorovennova
Geosci. Model Dev., 15, 4597–4623, https://doi.org/10.5194/gmd-15-4597-2022, https://doi.org/10.5194/gmd-15-4597-2022, 2022
Short summary
Short summary
Lakes and reservoirs are warming across the globe. To better understand how lakes are changing and to project their future behavior amidst various sources of uncertainty, simulations with a range of lake models are required. This in turn requires international coordination across different lake modelling teams worldwide. Here we present a protocol for and results from coordinated simulations of climate change impacts on lakes worldwide.
Cited articles
Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O.,
Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E.,
Weyhenmeyer, G. A., and Winder, M.: Lakes as sentinels of climate change,
Limnol. Oceanogr., 54, 2283–2297,
https://doi.org/10.4319/lo.2009.54.6_part_2.2283, 2009. a
Balsamo, G.: Interactive lakes in the Integrated Forecasting System, ECMWF
Newsletter, 137, 30–34, https://doi.org/10.21957/rffv1gir, 2013. a
Bonan, G. B.: Sensitivity of a GCM Simulation to Inclusion of Inland Water
Surfaces, J. Climate, 8, 2691–2704,
https://doi.org/10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2, 1995. a, b, c
Canuto, V. M., Howard, A., Cheng, Y., and Dubovikov, M. S.: Ocean Turbulence.
Part I: One-Point Closure Model-Momentum and Heat Vertical Diffusivities,
J. Phys. Oceanogr., 31, 1413–1426,
https://doi.org/10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2, 2001. a
Ekhtiari, N., Grossman-Clarke, S., Koch, H., Souza, W. M., Donner, R. V., and
Volkholz, J.: Effects of the Lake Sobradinho Reservoir (Northeastern Brazil)
on the Regional Climate, Climate, 5, 50, https://doi.org/10.3390/cli5030050, 2017. a
Hanson, P. C., Pollard, A. I., Bade, D. L., Predick, K., Carpenter, S. R., and
Foley, J. A.: A model of carbon evasion and sedimentation in temperate lakes,
Glob. Change Biol., 10, 1285–1298,
https://doi.org/10.1111/j.1529-8817.2003.00805.x, 2004. a
Heiskanen, J. J., Mammarella, I., Ojala, A., Stepanenko, V., Erkkilä, K.-M.,
Miettinen, H., Sandström, H., Eugster, W., Leppäranta, M., Järvinen, H.,
Vesala, T., and Nordbo, A.: Effects of water clarity on lake stratification
and lake-atmosphere heat exchange, J. Geophys. Res.-Atmos., 120, 7412–7428, https://doi.org/10.1002/2014JD022938, 2015. a, b
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P. C., Read, J. S., de Sousa, E., Weber, M., and Winslow, L. A.: A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON), Geosci. Model Dev., 12, 473–523, https://doi.org/10.5194/gmd-12-473-2019, 2019. a
Hondzo, M. and Stefan, H. G.: Lake Water Temperature Simulation Model, J. Hydraul. Eng., 119, 1251–1273,
https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1251), 1993. a
Iakunin, M., Salgado, R., and Potes, M.: Breeze effects at a large artificial lake: summer case study, Hydrol. Earth Syst. Sci., 22, 5191–5210, https://doi.org/10.5194/hess-22-5191-2018, 2018. a, b, c, d
Iakunin, M., Stepanenko, V., Salgado, R., Potes, M., Rodrigues, G., Penha, A., and Novais, M. H.: Atmospheric forcing dataset for Numerical study of the seasonal thermal and gas regimes of the large artificial lake in Western Europe using LAKE2.0 [Data set], Zenodo, https://doi.org/10.5281/zenodo.3608230, 2020. a
Imberger, J. and Patterson, J. C.: A dynamic reservoir simulation model-DYRESM:
5, in: Transport Models for Inland and Coastal Waters, edited by: Fischer, H. B.,
Academic Press, New York, 310–361, 1981. a
Le Moigne, P., Colin, J., and Decharme, B.: Impact of lake surface temperatures
simulated by the FLake scheme in the CNRM-CM5 climate model, Tellus A, 68, 31274,
https://doi.org/10.3402/tellusa.v68.31274, 2016. a, b
Lopes, F., Silva, H. G., Salgado, R., Potes, M., Nicoll, K. A., and Harrison,
R. G.: Atmospheric electrical field measurements near a fresh water reservoir
and the formation of the lake breeze, Tellus A, 68, 31592, https://doi.org/10.3402/tellusa.v68.31592, 2016. a
Mironov, D.: Parameterization of lakes in numerical weather prediction.
Description of a lake model, COSMO Technical Report, Deutscher Wetterdienst,
11, 41 pp., 2008. a
Monin, A. S. and Obukhov, A. M.: Basic regularity in turbulent mixing in the
surface layer of the atmosphere, U.S.S.R. Academy of Science, Works of the
Geophysical Institute, 151, 163–187, 1954. a
Novais, M. H., Penha, A., Morales, E., Potes, M., Salgado, R., and Morais, M.:
Vertical distribution of benthic diatoms in a large reservoir (Alqueva,
Southern Portugal) during thermal stratification, Sci. Total
Environ., 659, 1242–1255, https://doi.org/10.1016/j.scitotenv.2018.12.251, 2018. a
Patterson, J. C., Hamblin, P. F., and Imberger, J.: Classification and dynamic
simulation of the vertical density structure of lakes, Limnol.
Oceanogr., 29, 845–861, https://doi.org/10.4319/lo.1984.29.4.0845, 1984. a
Penha, A. M., Chambel, A., Murteira, M., and Morais, M.: Influence of different
land uses on groundwater quality in southern Portugal, Environ. Earth
Sci., 75, 622, https://doi.org/10.1007/s12665-015-5038-7, 2016. a, b
Pereira, H., Figueira, J. R., and Marques, R. C.: Multiobjective Irrigation
Model: Alqueva River Basin Application, J. Irrig. Drain.
E., 145, 05019006, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001396, 2019. a
Policarpo, C., Salgado, R., and Costa, M. J.: Numerical Simulations of Fog
Events in Southern Portugal, Adv. Meteorol., 2017, 1276784, https://doi.org/10.1155/2017/1276784, 2017. a
Potes, M., Costa, M. J., da Silva, J. C. B., Silva, A. M., and Morais, M.:
Remote sensing of water quality parameters over Alqueva Reservoir in the
south of Portugal, Int. J. Remote Sens., 32, 3373–3388,
https://doi.org/10.1080/01431161003747513, 2011. a
Potes, M., Costa, M. J., and Salgado, R.: Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling, Hydrol. Earth Syst. Sci., 16, 1623–1633, https://doi.org/10.5194/hess-16-1623-2012, 2012. a, b, c
Potes, M., Salgado, R., Costa, M. J., Morais, M., Bortoli, D., Kostadinov, I.,
and Mammarella, I.: Lake–atmosphere interactions at Alqueva reservoir: a
case study in the summer of 2014, Tellus A, 69, 1272787, https://doi.org/10.1080/16000870.2016.1272787, 2017. a
Potes, M., Rodrigues, G., Penha, A. M., Novais, M. H., Costa, M. J., Salgado, R., and Morais, M. M.: Use of Sentinel 2 – MSI for water quality monitoring at Alqueva reservoir, Portugal, Proc. IAHS, 380, 73–79, https://doi.org/10.5194/piahs-380-73-2018, 2018. a
Silva, A., De Lima, I., Santo, F., and Pires, V.: Assessing changes in drought
and wetness episodes in drainage basins using the Standardized Precipitation
Index, Bodenkultur, 65, 31–37, 2014. a
Stefan, H. and Fang, X.: Dissolved Oxygen Model for Regional Lake Analysis,
Ecol. Model., 71, 37–68, https://doi.org/10.1016/0304-3800(94)90075-2, 1994. a
Stepanenko, V., Jöhnk, K. D., Machulskaya, E., Perroud, M., Subin, Z.,
Nordbo, A., Mammarella, I., and Mironov, D.: Simulation of surface energy
fluxes and stratification of a small boreal lake by a set of one-dimensional
models, Tellus A, 66, 21389,
https://doi.org/10.3402/tellusa.v66.21389, 2014. a
Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., and Vesala, T.: LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes, Geosci. Model Dev., 9, 1977–2006, https://doi.org/10.5194/gmd-9-1977-2016, 2016. a, b, c
Stepanenko, V. M., Repina, I. A., Ganbat, G., and Davaa, G.: Numerical
Simulation of Ice Cover of Saline Lakes, Izvestiya, Atmos. Ocean.
Phys., 55, 129–138, https://doi.org/10.1134/S0001433819010092, 2019. a
Su, D., Hu, X., Wen, L., Lyu, S., Gao, X., Zhao, L., Li, Z., Du, J., and Kirillin, G.: Numerical study on the response of the largest lake in China to climate change, Hydrol. Earth Syst. Sci., 23, 2093–2109, https://doi.org/10.5194/hess-23-2093-2019, 2019. a, b
Subin, Z. M., Riley, W. J., and Mironov, D.: An improved lake model for climate
simulations: Model structure, evaluation, and sensitivity analyses in CESM1,
J. Adv. Model. Earth Sy., 4, M02001, https://doi.org/10.1029/2011MS000072,
2012. a
Thiery, W., Martynov, A., Darchambeau, F., Descy, J.-P., Plisnier, P.-D., Sushama, L., and van Lipzig, N. P. M.: Understanding the performance of the FLake model over two African Great Lakes, Geosci. Model Dev., 7, 317–337, https://doi.org/10.5194/gmd-7-317-2014, 2014.
a
Tomaz, A., Patanita, M., Guerreiro, I., Boteta, L., and Palma, J. F.: Water use
and productivity of maize-based cropping systems in the Alqueva Region
(Portugal), Cereal Res. Commun., 45, 1–11,
https://doi.org/10.1556/0806.45.2017.036, 2017. a
Twine, T., Kustas, W. P., Norman, J., Cook, D., Houser, P., Teyers, T. P.,
Prueger, J. H., Starks, P., and Wesely, M.: Correcting Eddy-Covariance Flux
Underestimates over a Grassland, Agr. Forest Meteorol., 103,
https://doi.org/10.1016/S0168-1923(00)00123-4, 2000. a
Walter, K. M., Smith, L. C., and Chapin, F. S.: Methane bubbling from northern
lakes: present and future contributions to the global methane budget, Philos.
T. Roy. Soc. A, 365, 1657–1676, https://doi.org/10.1098/rsta.2007.2036, 2007. a
Short summary
The Alqueva reservoir, located in the southeast of Portugal, is the largest artificial reservoir in western Europe. It was established in 2002 to provide water and electrical resources to meet regional needs. Complex research of this reservoir is an essential scientific task in the scope of meteorology, hydrology, biology, and ecology. Two numerical models (namely, LAKE 2.0 and FLake) were used to assess the thermodynamic and biogeochemical regimes of the reservoir over 2 years of observations.
The Alqueva reservoir, located in the southeast of Portugal, is the largest artificial reservoir...