Articles | Volume 13, issue 7
Model evaluation paper
17 Jul 2020
Model evaluation paper |  | 17 Jul 2020

Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project

Stijn Hantson, Douglas I. Kelley, Almut Arneth, Sandy P. Harrison, Sally Archibald, Dominique Bachelet, Matthew Forrest, Thomas Hickler, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Lars Nieradzik, Sam S. Rabin, I. Colin Prentice, Tim Sheehan, Stephen Sitch, Lina Teckentrup, Apostolos Voulgarakis, and Chao Yue


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Stijn Hantson on behalf of the Authors (08 May 2020)  Author's response    Manuscript
ED: Publish subject to minor revisions (review by editor) (27 May 2020) by Julia Hargreaves
AR by Stijn Hantson on behalf of the Authors (06 Jun 2020)  Author's response    Manuscript
ED: Publish as is (22 Jun 2020) by Julia Hargreaves

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Global fire–vegetation models are widely used, but there has been limited evaluation of how well they represent various aspects of fire regimes. Here we perform a systematic evaluation of simulations made by nine FireMIP models in order to quantify their ability to reproduce a range of fire and vegetation benchmarks. While some FireMIP models are better at representing certain aspects of the fire regime, no model clearly outperforms all other models across the full range of variables assessed.