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Author response to Anonymous Referee #1 review 

The authors thank referee #1 for this considered comments and constructive suggestions.  

Below we provide a detailed response in italic to each comment. 

The authors provide a detailed glimpse into the successes and struggles of global fire modeling 

efforts, and quantitatively try to isolate the most pressing challenges for both individual fire 

models and the fire modeling community as a whole by using a benchmarking method of 

comparisons with observations. Particularly interesting is that the authors highlight how 

sensitive the benchmarking results are to how vegetation (fuel load) is captured or simulated 

in any particular fire model. I think the paper should be published after a few minor revisions 

and/or author responses/clarifications to my concerns below.  

Comments  

Title: this is a confusing title because nowhere in the paper are the historical FireMIP simulation 

results discussed. Line 145 and essentially all the figures point out that only present day results 

are analysed. “Historical” in the CMIP framework usually refers to simulation periods that 

extend from about 1850 to present day. I would strongly suggest changing the title to better 

capture the scope of the analysis the authors undertook.  

 The simulations we examined are indeed historical, in the sense that they were run 
from 1700 CE to the present day, although we only evaluate them in the recent past because 
of the availability of data. But we agree the title might imply evaluation over a longer period, 
and we will change it to: “Quantitative assessment of fire and vegetation properties in 
simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project”.  

Lines 95-104: this paragraph is difficult to follow relative to the analysis of FireMIP output. Are 

the authors trying to say that benchmarking allows for a more systematic evaluation of models 

so that a hierarchy can be quantifiably justified? If so, I suggest that the authors add or clarify 

this in the text to make it clear to readers that this is why the authors chose to raise this 

discussion point. Alternatively, the authors could shorten or delete the paragraph altogether, 

because while they raise the point of ending model democracy, it stands in contrast with the 

conclusions of the study, where the authors say the “no model clearly outperforms all other 

models” which seems to be avoiding the issue of hierarchical treatment of the fire models. If 

this group of authors cannot ascribe a hierarchy to global fire models, then I think they miss 

the chance to advance the conversation from the perspective of their collective expertise. By 

this, I mean that I, as the reader, can walk away from the paper with useful benchmarks and 

metrics, but that I will also then evaluate model quality on my own because the authors did not. 

My conclusion is that while the benchmarks are great to have, the results in Figure 2 and Table 
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2 clearly show that GlobFIRM and MC2 output should not be considered equally alongside 

output from other models.  

 We agree that the GlobFIRM and MC2 simulations are poor and not comparable to the 
other simulations in the FireMIP ensemble, and indeed we state this (lines 369-370). The 
reviewer indeed interprets the objective of this paragraph correctly as we think that establishing 
a hierarchy of model's ability to simulate fire is important (and hence we would like to keep the 
paragraph explaining that this is one of the goals of benchmarking) and we should have made 
a stronger statement about this in the abstract and conclusion. We will modify the text as 
follows: 

- Line 57 et seq. “The two older fire models included in the FireMIP ensemble (LPJ-
GUESS-GlobFIRM, MC2) clearly perform less well globally than other models, but it is 
difficult to distinguish between the remaining ensemble members: some of these 
models are better at representing certain aspects of the fire regime, none clearly 
outperforms all other models across the full range of variables assessed.” 

- Line 319: “Our evaluation suggests that LPJ-GUESS-GlobFIRM and MC2 produce 
substantially poorer simulations of burnt area and its inter-annual variability than other 
models in the FireMIP ensemble. These are both older models, developed before the 
availability of global burnt area products (in the case of LPJ-GUESS-GlobFIRM) or 
calibrated regionally and not designed to run at global scale (MC2). While the other 
models perform better in simulating fire properties, there is no single model that 
outperforms other models across the full range of fire and vegetation benchmarks 
examined here. Model structure does not explain the differences in model 
performance.” 

- We furthermore included an extra paragraph at the end of the discussion to cover this 
point: "Our analysis demonstrates that benchmarking scores provide an objective 
measure of model performance and can be used to identify models that might 
negatively impact on a multi-model mean and so exclude these from further analysis 
(e.g. LPJ-GUESS-GlobFIRM, MC2). At the moment, a further ranking is more difficult 
because no model clearly outperforms all other models. Still, some FireMIP models are 
better at representing some aspects of the fire regime compared to others. Hence, 
when using FireMIP output for future analyses, one could weigh the different models 
based on the score for the variable of interest, thus giving more weight to models which 
perform better for these variables.” 

 

Paragraph at line 166: Certainly there are observational uncertainties, but the Global Fire Atlas 

and other studies about fire products (GFED papers and MODIS papers, at least) have made 

a solid effort to quantify uncertainties – what do the authors suggest is enough in terms of 

validation of the observations? Some specific problems I have with the paragraph: In line 169, 

saying “large uncertainties still remain for most variables” is too vague. Which variables? How 

large, or large compared with what? To me, it seems that fire models have larger uncertainty 

than the observations. I would argue that the results in this paper suggest that model 

uncertainty does not arise from a lack of observations, but rather, the model uncertainty is 

largely due to poor simulations of biomass. While this paragraph makes it sound like models 

are waiting for observations of bulk properties, it is more accurate to say that the fire models 

do not have the fuel process simulated correctly. These are two different issues that should 

not be about a lack of observational constraints. I suggest the paragraph be shortened a 
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sentence or two so that the focus of the paper remains on evaluation of model output, and not 

observations. The authors could simply point out that burnt area, biomass, and fire emissions 

estimates vary and uncertainty is still being characterized, and cite appropriate papers. To me, 

this paper is about the benchmarking results, and the fact that observations have weaknesses 

too should be relegated to a side note with citations.  

 We agree that the focus of this paper should be on the evaluation of the model results. 

Our intention in this paragraph was definitely not to critique the groups producing different fire 

datasets or to imply that they are not trying to provide both theoretical (Brennan et al., 2019) 

and practical uncertainty estimates (e.g. Giglio et al., 2013), but to explain why we do not take 

account of observational uncertainties in our comparisons. We agree with the reviewer that the 

uncertainty in model output exceeds the uncertainty of existing datasets and we agree that this 

paragraph might distract, and we will shorten it drastically and reduced it to its essence, 

rewriting it as follows: 

“Ideally, model benchmarking should take account of uncertainties in the observations, for 
example by down-weighting less reliable data sets (e.g. Collier et al. 2018). However, 
observational uncertainties are not reported for some of the data sets used here (e.g. 
vegetation carbon). Furthermore, some of the data sets (e.g. emissions) involve modelled 
relationships; there has been little formal assessment of the choice of model on the resultant 
observational uncertainty. While we use multiple datasets when available (e.g. for burnt area, 
where there are large differences between the products), in an attempt to integrate 
observational uncertainty in our evaluations, it seems premature to incorporate uncertainty in 
the benchmark data sets in a formal sense when calculating the benchmarking scores.” 

Table 3: Why are the benchmarking scores for the Mean null model often equal to 1? Is this 

an artifact of the calculation itself? If so, wouldn’t this detract from the utility of using the Mean 

null model as a point of comparison with fire model benchmark scores for those fire variables?  

 The normalized mean error (NME) is constructed in such a way as to normalize the 

scores against an objective background so that the mean null model results in a score = 1 

(Kelley et al., 2013, Biogeosciences 10: 3313-3340). This is not an artifact but a design feature 

of the metric to make the interpretation of the results more intuitive compared to other error 

metrics. All the values shown as less than 1 in Table 3 are for seasonal phase and are 

calculated using the mean Phase Difference metric, which is not constrained in the same way. 

Since our description of the metrics is not clear, and also in response to comments by the 

second reviewer, we have rewritten the section of text describing the metrics and the null 

models as follows: 

“To assess model ability to reproduce spatial patterns in a variable, we use the normalised mean error (NME): 
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where the difference between observations (obs) and simulation (sim) are summed over 

all cells (i) weighted by cell area (Ai) and normalized by the average distance from the mean 

of the observations (!"#$$$$$). Since NME is proportional to mean absolute errors, the smaller the 

NME value the better the model performance. A score of 0 represents a perfect match to 

observations. NME has no upper bound.  

NME can be sensitive to the simulated magnitude of the variable. To take this into account 

in comparisons, we removed the influence of biases in the mean and variance between model 

results and each reference dataset. This has the further desirable property of limiting the impact 

of observational uncertainties in the reference datasets on the comparisons. Although we focus 

on benchmarking results after removing biases in the mean and variance, the scores for 

comparisons before this procedure (and for comparisons after removing mean biases only) are 

given in Supplementary Information S2. 

To assess model ability to reproduce seasonal patterns in a variable, we focused on 

seasonal concentration (roughly equivalent to the inverse of season length) and seasonal 

phase (or timing). We calculated a mean seasonal “vector” for each observed and simulated 

location based on the monthly distribution of the variable through the year. The concentration 

is the length of this vector compared to the annual value, and ranges between 0 when the 

variable is distributed evenly throughout the year and 1 when the season is confined to a single 

month. The phase is indicated by the direction of the vector. Observed and modelled 

concentrations were compared using NME. Phase is compared using the Mean Phase 

Difference (MPD) metric (see Supplementary Information S2). Again, for NME, a score of 0 

represents a perfect match to observations and there is no upper bound. MPD has a maximum 

value of 1 when all cells have a maximum phase mismatch of 6 months. Seasonality metrics 

could not be calculated for three models (LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-

BLAZE, MC2), either because they do not simulate the seasonal cycle or because they did not 

provide these outputs. We did not use FireCC4.0 to assess seasonality or interannual 

variability (IAV) in burnt area because it has a much shorter times series than the other burnt 

area products.  

 Model scores are interpreted by comparing them to two null models (Kelley et al., 2013). 

The “mean” null model compares each benchmark dataset to a dataset of the same size 

created using the mean value of all the observations. The mean null model for NME always 

has a value of 1 because the metric is normalised by the mean difference. The mean null model 

for MPD is based on the mean direction across all observations, and therefore the value can 

vary and is always less than 1. The “randomly-resampled” null model compares the benchmark 

data set to these observations resampled 1000 times without replacement (Table 3). The 

“randomly-resampled” null model is normally worse than the mean null model for NME 

comparisons. For MPD, the mean will be better than the random null model when most grid 
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cells show the same phase. A detailed description of the benchmarking metrics is given in the 

Supplementary Information S2. “ 

 

Paragraph at line 229: The text discussion seems inconsistent with the results in Table 3. I 

may be misunderstanding the reason for the benchmarking scores for the Mean and Random 

null models, but my interpretation is that those Mean and Random null model benchmarking 

scores are the target to beat. If a fire model beats that benchmark score, then my interpretation 

is that that particular fire model performs better than the null model. Is that a correct 

interpretation? If so, then there seem to be some inconsistencies between the text and Table 

3 as follows.  

 Your interpretation is correct. We stated this in the original manuscript (lines 192-198) 

but we have now rewritten the section on the metrics and their interpretation (as described 

above) and hope this is now clearer. The confusions between the Table and the text are due 

to mistakes on our part in the description and we have now corrected these, as explained 

below.  

Paragraph at line 229: Specifically, one sentence states “The models capture the timing of the 

peak fire season reasonably well, with all of the models performing better than both null models 

for seasonal phase in burnt area” but many of the fire models have benchmark scores greater 

than the Random null model, so why do the authors say “all”?  

 This sentence should have read “The models capture the timing of the peak fire season 

reasonably well, with all of the models performing better than the mean null model for seasonal 

phase in burnt area”. And have added additionally: “The models also frequently perform better 

than the random null model, with all models performing better against GFED4.”. 

Paragraph at line 229: Another sentence states “all of the FireMIP models perform worse than 

both null models for seasonal concentration of burnt area, independent of the reference burnt 

area dataset” but looking at Table 3, almost all of the fire model benchmark scores are less 

than the benchmark scores for the Random null model, with the exception being JULES-

INFERNO vs FireCCI40. Wouldn’t this mean that the comparisons are all better than the 

Random null model?  

 This should have read “mean null model” instead of “both null models” and has been 

corrected. 
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Future model development section: I would suggest that the authors propose mechanisms that 

fire models should include (crops, prescribed biogeography), and reflect on both why some fire 

models do not include those mechanisms already, and whether the future of fire model 

development will include those mechanisms. Or perhaps this is discussed in other FireMIP 

papers already? Also, the authors might provide a broader perspective in this section by 

discussing whether there are global fire models currently in use that did not participate in 

FireMIP but do include features that the benchmarking results in this study highlight as 

particularly weak. For example, Pfeiffer et al’s LPJ-LMFire model https://www.geosci-model-

dev.net/6/643/2013/ includes representation of human use of fire in a novel way.  

 We agree that the title of this section is somewhat misleading, since we do not believe 

it is possible, as yet, to prescribe exactly the steps that would yield an improved fire model. 

Our intention here was to point to areas which need to be investigated further because the 

benchmarking identifies them as weaknesses in the current models. It would be possible, for 

example, to include crops into the models or human use of fire (as in LPJ-LMFire). However, 

the current parameterizations of agricultural fires are relatively simple and generally not based 

on rigorous data analysis. And indeed, as the ongoing discussion about the impacts of 

anthropogenic activity on fire trends shows, our understanding of human-fire interactions is 

very incomplete. Similarly, we have identified the ability to reproduce vegetation properties and 

hence fuel loads as an area where the models do not perform well -- but again, this is an active 

area of research and, as yet, there is no agreed way forward. However, we agree that it would 

be valuable to point out which processes are already implemented in different fire models not 

participating in FireMIP (including LPJ-LMFire) and will adapt the discussion section in different 

points accordingly. We will also re-title this section simply as: Discussion. 
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Author response to Sergey Venevsky’s review 

The authors thank Sergey Venevsky for his constructive comments.  Below we provide a 

detailed respond in italics to each comment and suggestion. 

The paper presents evaluation of historical simulations made for the nine FireMIP models with 

regard to fire and vegetation properties. This is very important and necessary inter comparison 

study aimed to support and move further global fire modelling activities. Both methods and 

results are clearly presented and scientifically sounded and proven. The only methodological 

weakness is a bit short period of comparison of the models with the observations which could 

be clearly longer. I think that Discussion in this paper is the weakest part and needs more effort 

to make conclusions from the model intercomparison to be stronger and more clear. In 

particularly 1. The part about relation of areas burnt to vegetation production (lines 387 -396 

and 405-411) should describe in more details why and how exactly fuel load influence burnt 

areas in the FIREmip nine models 2. Part on influence of areas burnt upon GPP/NPP is absent 

and should be added. 

The global fire models participating in FireMIP use output from the vegetation models 
as input (e.g. different fuel loads, fAPAR, etc.) to a range of fire processes, depending on the 
fire model parameterization and structure. A detailed description of the fire model structure, 
and he interactions with the vegetation model is outside the scope of this paper and has been 
described in Hantson et al. (2016) and Rabin et al. (2017). However, we acknowledge the need 
to indicate that this interaction is present and will now modify the text to make this clearer (line 
387):  

“Vegetation type and stocks are input variables for the fire models, influencing fire 
ignition and spread in the process-based models and determining simulated burnt area in the 
empirical models. The occurrence of fire can, in turn, affect the vegetation type, simulated 
vegetation productivity (i.e. GPP, NPP) and hence the amount and seasonality of fuel build up. 
Our results indicate that inter-model differences in burnt area are related to differences in 
simulated vegetation productivity and carbon stocks. Seasonal fuel build-up and senescence 
is an important driver of global burnt area. Furthermore, we find that models which are better 
at representing the seasonality of vegetation production are also better at representing the 
spatial pattern in burnt area." 

 

Comments/questions/suggestions:  

Line 66 – “Willdfires and anthropogenic fires” – how you define and classify these types of fires 

in global models? Further on no clarifications for this important question. . .  

 We make the distinction here between lightning-ignited fires and fires set by humans. 
Some models include human ignitions as a function of population density; one model (CLM) 
also includes cropland fires. The specific parameterizations included in the FireMIP models 
are discussed in the FireMIP protocol papers (Hantson et al., 2016; Rabin et al., 2017). Since 
we are not documenting the models here, but only evaluating their performance we do not 
think that a full discussion of these parameterizations is warranted. However, we will modify 
this sentence to clarify this point:  
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“However, the representation of both lightning-ignited fires and anthropogenic fires (including 
cropland fires) varies greatly in global fire models.” 

Line 126 Lightning data 1900-1920.population density and land use 1700 where do these data 

come from?  

 The source of the data sets is given in the FireMIP protocol, which we cite here (line 
133). However, we will modify this to make it clear that the information about all the drivers of 
the simulation are available there, as follows: “(see Rabin et al., 2017 for description of the 
modelling protocol and the sources of the input data for the experiments).”.  

Line 132 The baseline FireMIP simulation is a transient experiment starting in 1700 CE and 

continuing to 2013. Why simulation is only up to 2013 and comparison is only for 2002-2012? 

Can simulation be somehow extended to include recent years? Similarly, inter-comparison only 

for decade looks not so sounded, for example 1997/1998 El Ninio years are out. . . Which 

climate data was used?   

The simulation protocol was drawn up in 2016 and at that stage there was no readily 
available driving data post-2013. The choice of the interval 2002-2012 for benchmarking was 
motivated by two considerations. First, 2002 was the first year when both MODIS sensors were 
operative and hence a temporally coherent high quality global burnt area dataset is available. 
Before 2002, and especially before 2000, the quality of the GFED4 archive is much lower. 
Second, two modelling groups did not run the final year of the simulation (i.e. 2013). We 
therefore excluded this year in order to keep the evaluation between the models as consistent 
as possible. CRU-NCEP climate was used as forcing data for the simulations (see Rabin et al., 
2017). 

We agree that there are several other evaluations of fire models that could be made 
and certainly testing how well they emulate the response to El Nino variability would be an 
interesting case study. However, this is out of scope for the current round of FireMIP.   

Lines 150-159 What was the principle of selection of all these datasets? Why no global water 

cycle related datasets (e.g. runoff) where selected? Water status is obviously important for 

both fire and vegetation, I would compare at least also runoff for 2002-2012  

We agree that there are many other opportunities for evaluating fire models, and it 
would be possible to include data sets such as runoff. However, there are a number of issues 
that led us not to include runoff in our evaluation: (1) runoff data in the most fire-prone regions 
(e.g. the Sahel) are not very reliable; (2) gauged runoff is integrated property, and thus requires 
models to incorporate some form of hydrological routing scheme; and (3) it is not the most 
relevant hydrological variable for fire -- soil moisture or litter moisture would be useful but are 
very heterogenous and thus global evaluation would be difficult. We agree that we could 
usefully modify this sentence to explain our current focus and will modify the text to read: 
“Model performance was evaluated using site-based and remotely sensed global data sets of 
fire occurrence, fire-related emissions and vegetation properties (Figure 1; Figure S1). We 
include vegetation variables (e.g. GPP, NPP, biomass, LAI) because previous analyses have 
indicated that they are critical for simulating fire occurrence and behaviour (Forkel et al., 2019a; 
Teckentrup et al.,2019) and there are global data sets available. We did not consider 
parameters such as soil or litter moisture because, although these may have an important 
influence on fire behaviour, globally comprehensive data sets are not available.” 
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Line 173 “As model benchmarking techniques become more sophisticated it would be 

beneficial to better evaluate the datasets the models are compared against to ensure the 

models are being benchmarked appropriately” Please, delete or rephrase (shorten)  

 We have substantially shortened and modified this paragraph based on your 
feedback as well as the comments by the first reviewer (see response to reviewer 1 for 
detailed information regarding the changes made). 

Line 175-180. I think you should move formulae of NME from Supplementary back to the main 

text. You write in Supplementary that you applied NME for areas burnt, but it is clear from Table 

3 and S1 that you apply the same metrics for other variables for benchmarking, please, correct.  

Agreed. We have put the formula of NME to the main manuscript. Additionally, we have 

substantially rewritten the section on the benchmarking metrics to make the procedure clearer, 

including clarifying that NME is used for all the spatial variables. 

As well Table 3 is quite difficult to read, why not to use semaphore colors (not so good- red, 

OK –yellow, good –green) or any other color scheme?  

 We thank the reviewer for his suggestion. As the objective of this table is to present 
the numerical scores so that readers will be able to judge differences between the models 
based on the actual scores, we keep these in the table as well. However, we have now 
added background colors to identify large-scale differences between the scores. We will 
modify the caption to this table as follow: “Cell are coloured blue if the benchmarking score is 
lower than both null models, yellow if lower than 1 null model and red when higher than both 
null models.”.  

Figure 1p. Performance in fire emissions by the models is the worst from all variables. How 

you can explain it? How reliable is observation data set? Please, make more explanation in 

Discussion part.  

We discuss why the scores for emissions are worse than the scores for other aspects 

of fire already in the final paragraph of the Discussion. As we state there, errors in the 

emissions are a product of errors in burnt area, simulated biomass and combustion 

completeness. It is therefore natural that they are more difficult to predict accurately. 

Line 219 CLM (NME: 0.63-0.80) and ORCHIDEE-SPITFIRE (0.70-0.73) are the best 

performing models. What makes these models to be the best in burnt areas description (for 

CLM as I understood it is related to cropland fires, what about ORCHIDEE-SPITFIRE ?  

We focus on model structure and processes in this manuscript, and only focus on an 

individual model if it is the only one representing a certain process (e.g. CLM and cropland 

fires). In this case, both models prescribe vegetation cover, and we have shown that vegetation 
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is one of the variables influencing performance in simulated burnt area. In fact, both models 

have the best scores at simulated vegetation carbon.  

Line 326 to 334 “. . . the overall difference between the models (. . .JSBACH, LPJ-GUESS and 

ORCHIDEE..) reflect feedbacks between the fire and vegetation modules “ what are these 

feedbacks? Where lays difference in their descriptions of these three models (in DGVMs)?  

Fires in DGVMs combust biomass & grass and kill trees, hence exerting a strong impact 

on vegetation dynamics, which themselves drive fire occurrence and characteristics. The three 

models mentioned are completely different vegetation models. While fire can impact a large 

range of processes in LPJ-GUESS, ranging from carbon stocks, over distribution and structure. 

This is less the case for JSBACH and ORCHIDEE as these do not represent vegetation 

structure and prescribe vegetation distribution. We provide a very detailed description of each 

fire model in the FireMIP protocol paper (Rabin et al., 2017) and we also provide the key 

reference providing the description of each vegetation model. We feel that the description of 

the structure of each vegetation model is outside the scope of this manuscript. 

Lines 345-349 “there is a positive relationship between simulated burnt area scores and the 

seasonal concentration of GPP (R2 = 0.30-0.84) and, to a lesser extent, the seasonal phase 

of GPP (R2 = 0.09-0.24). This supports the idea that seasonal vegetation production and 

senescence, which have an important influence on fuel loads, drive the interactions between 

vegetation and fire within each model” – I doubt this statement. It is more likely that similar 

dynamics of burnt areas and the seasonal concentration of GPP/ the seasonal phase of GPP 

are related to dependence of both areas burnt and GPP variables from soil moisture in the fire 

models and DGVMs. Please, either prove, or delete this paragraph.  

We agree that soil moisture, vegetation productivity and fire occurrence are strongly 
linked to each other and it could be difficult to separate their individual influences. Some recent 
fire models explicitly represent fuel moisture (e.g. SPITFIRE; Thonicke et al., 2010), with the 
objective of diagnosing the role of fuel moisture on fire spread. However, soil moisture is only 
one of the multiple variables which drive fuel moisture, which results in a partial disconnection 
between soil moisture and fuel moisture in the models. Furthermore, the influence of 
differences in soil moisture dynamics between models is likely to be small in our experiments 
because the climate inputs controlling this (precipitation, temperature) were specified to be the 
same. Thus, we doubt that this feature is solely induced by soil moisture. Furthermore, in 
addition to this relationship between seasonal vegetation production and burnt area, we 
provide multiple other indicators that vegetation status impacts the performance of the fire 
module. This was also a conclusion from a previous study on FireMIP outputs (Forkel et al., 
2019). Hence, we believe that there is enough evidence to support our statement that our 
results stress the importance of the interactions between vegetation and fire within each model. 
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List of all relevant changes made 
 

 
1) Updated title in line with reviewer suggestion. 
2) Included an extra sentence regarding the performance of the two worst performing 

models, next to some minor rewriting.  
3) 2 minor changes of the introduction in line with reviewer suggestions. 
4) Indicated clearer what information can be found in the FireMIP protocol manuscript, 

based on reviewer questions.  
5) Added to the methods a clarification regarding the time period used for analysis, in line 

with reviewer comments.  
6) Section methods section 2.2: clarified what where the criteria for dataset inclusion in 

the benchmarking exercise, in line with reviewer comments.  
7) An overall adaptation of the benchmarking description in the methods to improve clarity, 

as requested by reviewers.  
8) Figure 2: added units in figure caption. 
9) Correct two small mistakes in the results section 3.1 which where pointed out by the 

reviewer.  
10)  Adapted two sentences to the results section 3.3 regarding the performance of the two 

worst performing models, as requested by the reviewers. We now also indicate in this 
section that fires can influence the seasonality in vegetation productivity, as requested 
by the reviewers.  

11) We have added and clarified multiple aspects of the discussion section in line with the 
multiple suggestions of both reviewers, including a final paragraph regarding the use 
of benchmarking scores for model ranking.  

12) Table 2: Values for JULES-INFERNO where from before correcting a small bug in the 
code when reading in the JULES-INFERNO landcover file and we have now corrected 
these. 

13) Table 3: we now included background colors to the table to easier differentiate between 
well and worse performing models. We chose to use blue instead of green to take into 
account colourblind readers.  
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Abstract. Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes 

and the carbon cycle, and to infer relationships between climate, land use, and fire. However, differences in model 

structure and parameterizations, in both the vegetation and fire components of these models, could influence 

overall model performance, and to date there has been limited evaluation of how well different models represent 

various aspects of fire regimes. The Fire Model Intercomparison Project (FireMIP) is coordinating the evaluation 

of state-of-the-art global fire models, in order to improve projections of fire characteristics and fire impacts on 

ecosystems and human societies in the context of global environmental change. Here we perform a systematic 

evaluation of historical simulations made by nine FireMIP models to quantify their ability to reproduce a range of 

fire and vegetation benchmarks. The FireMIP models simulate a wide range in global annual total burnt area (39-

536 Mha), and global annual fire carbon emission (0.91-4.75 Pg C a-1) for modern conditions (2002-2012), but 

most of the range in burnt area is within observational uncertainty (345-468 Mha). Benchmarking scores indicate 

that seven out of nine FireMIP models are able to represent the spatial pattern in burnt area. The models also 

reproduce the seasonality in burnt area reasonably well but struggle to simulate fire season length and are largely 

unable to represent inter-annual variations in burnt area. However, models that represent cropland fires see 

improved simulation of fire seasonality in the northern hemisphere. The three FireMIP models which explicitly 

simulate individual fires are able to reproduce the spatial pattern in number of fires, but fire sizes are too small in 

key regions and this results in an underestimation of burnt area. The correct representation of spatial and seasonal 

patterns in vegetation appears to correlate with a better representation of burnt area.  The two older fire models 

included in the FireMIP ensemble (LPJ-GUESS-GlobFIRM, MC2) clearly perform less well globally than other 

models, but it is difficult to distinguish between the remaining ensemble members: some of these models are better 

at representing certain aspects of the fire regime, none clearly outperforms all other models across the full range 

of variables assessed. 

 

1 Introduction 

Fire is a crucial ecological process that affects vegetation structure, biodiversity, and biogeochemical cycles in 

all vegetated ecosystems (Bond et al., 2005; Bowman et al., 2016) and has serious impacts on air quality, health, 

and economy (e.g. Bowman et al., 2009; Lelieveld et al., 2015; Archibald et al., 2013). In addition to naturally 

occurring wildland fires, fire is also used as a tool for pasture management and to remove crop residues. Because 

fire affects a large range of processes within the Earth system, modules which simulate burnt area and fire 

emissions are increasingly included in dynamic global vegetation models (DGVMs) and Earth System Models 

(ESMs) (Hantson et al., 2016; Kloster and Lasslop, 2017; Lasslop et al., 2019). However, the representation of 

both lightning-ignited fires and anthropogenic fires (including cropland fires) varies greatly in global fire models. 

This arises due to the lack of a comprehensive understanding of how fire ignitions, spread, and suppression are 

affected by weather, vegetation, and human activities, as well as the relative scarcity of long-term, spatially 

resolved data on the drivers of fires and their interactions (Hantson et al., 2016). As a result, model projections of 

future fire are highly uncertain (Settele et al., 2014; Kloster and Lasslop, 2017). Since vegetation mortality – 

including fire-related death – is one determinant of carbon residence time in ecosystems (Allen et al., 2015), 

differences in the representation of fire in DGVMs or ESMs also contributes to the uncertainty in trajectories of 

future terrestrial carbon uptake (Ahlström et al., 2015; Friend et al., 2014; Arora & Melton, 2018). Improved 

projections of wildfires and anthropogenic fires, their impact on ecosystem properties, and their socio-economic 
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impact will therefore support a wide range of global environmental change assessments, as well as the development 

of strategies for sustainable management of terrestrial resources. 

Although individual fire-enabled DGVMs have been evaluated against observations, comparisons of model 

performance under modern-day conditions tend to focus on a limited number of fire-related variables or specific 

regions (e.g. French et al., 2011; Wu et al., 2015; Ward et al., 2016; Kloster and Lasslop, 2017). Such comparisons 

do not provide a systematic evaluation of whether different parameterizations or levels of model complexity 

provide a better representation of global fire regimes than others. Likewise, none of the Coupled Model 

Intercomparison Projects that have been initiated to support the IPCC process (CMIP: Taylor et al., 2012; Eyring 

et al., 2016) focuses on fire, even though several of the CMIP models simulate fire explicitly. The Fire Model 

Intercomparison Project (FireMIP) is a collaborative initiative to systematically evaluate state-of-the-art global fire 

models (Hantson et al., 2016; Rabin et al., 2017).  

The FireMIP initiative draws on several different types of simulations, including a baseline historical simulation 

(1700-2013 CE) and sensitivity experiments to isolate the response of fire regimes to individual drivers, as well as 

simulations in which fire is deliberately excluded (Rabin et al., 2017). While the sensitivity and exclusion 

experiments provide valuable insights into model behaviour (Teckentrup et al., 2019; Li et al., 2019), the baseline 

historical simulation provides an opportunity to assess how well the models simulate modern conditions. Model-

model differences could reflect differences in the treatment of fire, of ecosystem processes, or how fire interacts 

with other aspects of the land surface in an individual model. Evaluation of the baseline simulations needs therefore 

to include evaluation of ecosystem processes and diagnosis of interactions between simulated vegetation and fire.  

Systematic model evaluation can also serve another purpose. The analysis of future climate and climate impacts 

is often based on results from climate and impact model ensembles (e.g. Kirtman et al., 2013; Collins et al., 2013; 

Warszawski et al. 2013) and these ensembles are also being used as a basis for impact assessments (e.g. Settele et 

al., 2014; Hoegh-Guldberg et al., 2019). However, there is increasing dissatisfaction with the idea of using the 

average behaviour of model ensembles without accounting for the fact that some models are less reliable than 

others (Giorgi and Mearns 2002; Knutti, 2010; Parker et al., 2013) and many have called for “the end of model 

democracy” (e.g. Held, 2005; Knutti, 2010). Although there is still considerable discussion about how to constrain 

models using observations, and then how to combine and possibly weight models depending on their overall 

performance or performance against a minimum set of specific criteria (e.g. Eyring et al., 2005; Tebaldi et al., 

2005; Gleckler et al., 2008; Weigel et al., 2008; Santer et al., 2009; Parker, 2013; Abramowitz et al., 2019), it is 

clear that results from systematic evaluations are central to this process. 

A number of papers have examined specific aspects of the FireMIP baseline simulations. Andela et al. (2017) 

showed that the FireMIP models do not reproduce the decrease in global burnt area over the past two decades 

inferred from analysis of version 4s of the Global Fire Emission Database (GFED4s) data product. In fact, four of 

the models show an increase in burnt area over the period 1997-2014. Although the remaining five models show 

a decrease, their mean decrease is only about one tenth of the observed rate (–0.13 ± 0.56% yr−1, compared to the 

observed trend of –1.09 ± 0.61% yr−1). However, the observed global decline of burnt area derived from satellite 

data is strongly dominated by African savanna ecosystems, the spatial pattern of trends is very heterogeneous, and 

the satellite record is still very short, which raises issues about the robustness of these trends (Forkel et al., 2019b). 

Li et al. (2019) compared modelled and satellite-based fire emissions and concluded that most FireMIP models 

fall within the current range of observational uncertainty. Forkel et al. (2019a) compared the emergent relationships 

between burnt area and multiple potential drivers of fire behaviour, including human caused ones, as seen in 
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observations and the FireMIP models. They show that, although all of the models capture the observed emergent 

relationships with climate variables, there are large differences in their ability to capture vegetation-related 

relationships. This is underpinned by a regional study using the FireMIP models over China, which showed that 

there are large differences in simulated vegetation biomass, and hence in fuel loads, between the models (Song et 

al., 2019). These results make a focus on benchmarking both simulated fire and vegetation particularly pertinent. 

Forkel et al. (2019a) showed that some of the FireMIP models, specifically those that include a relatively strong 

fire suppression associated with human activities (Teckentrup et al., 2019), were able to reproduce the emergent 

relationship with human population density. However, the treatment of the anthropogenic influence on burnt area 

has been identified as a weakness in the FireMIP models (Andela et al., 2017; Teckentrup et al., 2019; Li et al., 

2019; Forkel et al., 2019a), mainly due to a lack of process understanding. 

In this paper, we focus on quantitative evaluation of model performance using the baseline historical simulation 

and a range of vegetation and fire observational datasets. We identify (i) common weaknesses of the current 

generation of global fire-vegetation models, (ii) factors causing differences between the models, and (iii) discuss 

the implications for future model development. 

2 Methods 

2.1 Model Simulations 

The baseline FireMIP simulation is a transient experiment starting in 1700 CE and continuing to 2013 (see 

Rabin et al. (2017) for description of the modelling protocol and the sources of the input data for the experiments). 

Models were spun up until carbon stocks were in equilibrium for 1700 CE conditions (equilibrium was defined as 

<1% change over a 50 year time period for the slowest carbon pool in each grid cell) using land use and population 

density for 1700 CE, CO2 concentration for 1750 CE, and recycling climate and lightning data from 1901-1920 

CE. Although the experiment is fully transient after 1700 CE, annually varying values of all these forcings are not 

available until after 1900 CE.  Climate, land use, population and lightning were regridded to the native grid of each 

model. Global fire-vegetation models ran with either dynamic or prescribed natural vegetation (Table 1), but all 

used observed time-evolving cropland and pasture (if simulated) distribution.  

Nine coupled fire-vegetation models have performed the FireMIP baseline experiments. The models differ in 

complexity, representation of human impact and vegetation dynamics, and spatial and temporal resolution (Table 

1). A detailed description of each model is given in Rabin et al. (2017). Most of the models ran simulations for the 

full period 1700-2013, but CLASS-CTEM, JULES-INFERNO, MC2 and CLM simulated 1861-2013, 1700-2012, 

1902-2009 and 1850-2013 respectively. This slight deviation from the protocol does not affect the results all but 1 

model presented here as we only analyse data for present-day period (2002-2012). For MC2 the 2002-2009 time 

period was used for analysis which might influence the results for this model.  

2.2) Model Evaluation and Benchmarking  

Model performance was evaluated using site-based and remotely sensed global data sets of fire occurrence, 

fire-related emissions and vegetation properties (Figure 1; Figure S1). We include vegetation variables (e.g. GPP, 

NPP, biomass, LAI) because previous analyses have indicated that they are critical for simulating fire occurrence 

and behaviour (Forkel et al., 2019a; Teckentrup et al., 2019) and there are global data sets available. We did not 

consider parameters such as soil or litter moisture because, although these may have an important influence on fire 
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behaviour, globally comprehensive data sets are not available. We used multiple datasets as targets for variables 

where they were available in order to take into account observational uncertainty. We used the GFED4 (Giglio et 

al., 2013), GFED4s (Randerson et al., 2012), MCD45 (Roy et al., 2008), FireCC4.0 (Alonso-Canas and Chuvieco, 

2015) and FireCCI5.1 (Chuvieco et al., 2018) burnt area datasets; the Global Fire Assimilation System (GFAS) 

fire emissions (Kaiser et al., 2012); fire size and number from Hantson et al. (2015); site-level net primary 

productivity (NPP) and gross primary productivity (GPP) from Luyssaert et al. (2007), as well as NPP from the 

Ecosystem Model/Data Intercomparison (EMDI; Olson et al., 2001), from Michaletz et al. (2014) and upscaled 

fluxnet GPP data (Jung et al., 2017; Tramontana et al., 2017); aboveground vegetation biomass from Carvalais et 

al. (2014) and Avitabile et al. (2016); and Leaf Area Index (LAI) from MODIS MCD15 (Myneni et al., 2002) and 

AVHRR (Claverie et al., 2016). A complete description of the reference data sets used for benchmarking is given 

in the Supplementary Information S1 and all datasets are plotted in Figure S1. For comparison and application of 

the benchmark metrics, all the target datasets and model outputs were resampled to a 0.5° grid. Although some 

models were run at a coarser resolution, the spatial resolution at which the benchmarking was performed had only 

a limited impact on the scores (Figure S2), which does not affect conclusions drawn here. Each model was 

compared to each reference dataset except in the few cases where the appropriate model output was not provided 

(e.g. LAI in ORCHIDEE, GPP in MC2). Only the models which incorporate the SPITFIRE fire module provided 

fire size and number results.  

Ideally, model benchmarking should take account of uncertainties in the observations, for example by down-

weighting less reliable data sets (e.g. Collier et al. 2018). However, observational uncertainties are not reported for 

some of the data sets used here (e.g. vegetation carbon). Furthermore, some of the data sets (e.g. emissions) involve 

modelled relationships; there has been little assessment of the impact of the choice of model on the resultant 

observational uncertainty. While we use multiple datasets when available (e.g. for burnt area, where there are large 

differences between the products), in an attempt to integrate observational uncertainty in our evaluations, it seems 

premature to incorporate uncertainty in the benchmark data sets in a formal sense in calculating the benchmarking 

scores. 

To assess model ability to reproduce spatial patterns in a variable, we use the normalised mean error (NME): 

!"# = ∑"!|$%&!'&()!|
∑ "!|$%&!'$%&*****|

          (1) 

where the difference between observations (obs) and simulation (sim) are summed over all cells (i) weighted 

by cell area (Ai) and normalized by the average distance from the mean of the observations (%&'(((((). Since NME is 

proportional to mean absolute errors, the smaller the NME value the better the model performance. A score of 0 

represents a perfect match to observations. NME has no upper bound.  

NME can be sensitive to the simulated magnitude of the variable. To take this into account in comparisons, 

we removed the influence of biases in the mean and variance between model results and each reference dataset. 

This has the further desirable property of limiting the impact of observational uncertainties in the reference datasets 

on the comparisons. Although we focus on benchmarking results after removing biases in the mean and variance, 

the scores for comparisons before this procedure (and for comparisons after removing mean biases only) are given 

in Supplementary Information S2. 

To assess model ability to reproduce seasonal patterns in a variable, we focused on seasonal concentration 

(roughly equivalent to the inverse of season length) and seasonal phase (or timing). We calculated a mean seasonal 

“vector” for each observed and simulated location based on the monthly distribution of the variable through the 

year. The concentration is the length of this vector compared to the annual value, and ranges between 0 when the 
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variable is distributed evenly throughout the year and 1 when the season is confined to a single month. The phase 

is indicated by the direction of the vector. Observed and modelled concentrations were compared using NME. 

Phase is compared using the Mean Phase Difference (MPD) metric (see Supplementary Information S2). Again, 

for NME, a score of 0 represents a perfect match to observations and there is no upper bound. MPD has a maximum 

value of 1 when all cells have a maximum phase mismatch of 6 months. Seasonality metrics could not be calculated 

for three models (LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, MC2), either because they do not 

simulate the seasonal cycle or because they did not provide these outputs. We did not use FireCC4.0 to assess 

seasonality or interannual variability (IAV) in burnt area because it has a much shorter times series than the other 

burnt area products.  

 Model scores are interpreted by comparing them to two null models (Kelley et al., 2013). The “mean” 

null model compares each benchmark dataset to a dataset of the same size created using the mean value of all the 

observations. The mean null model for NME always has a value of 1 because the metric is normalised by the mean 

difference. The mean null model for MPD is based on the mean direction across all observations, and therefore the 

value can vary and is always less than 1. The “randomly-resampled” null model compares the benchmark data set 

to these observations resampled 1000 times without replacement (Table 3). The “randomly-resampled” null model 

is normally worse than the mean null model for NME comparisons. For MPD, the mean will be better than the 

random null model when most grid cells show the same phase. A detailed description of the benchmarking metrics 

is given in the Supplementary Information S2.  
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Figure 1: Reference datasets, the mean of all models, and the % of models for which the estimate falls within 50-200% 
of the (mean) reference data are presented for a set of fire relevant variables. Results for the following variables are 
given: a) fraction burnt area; b) seasonal timing of burnt area (as measured by mean phase); c) burnt area season length 
(as measured by seasonal concentration); d) fire C emissions (g C m-2 yr-1); e) vegetation carbon (Mg/ha); and f) Leaf 
Area Index (LAI) (m2/m2). Stippling in the 2nd column indicates where variance between models is less than the FireMIP 
model ensemble mean. Purple in the 3rd column indicates cell where the majority of the FireMIP models produce poor 
simulations of the variable, while green areas indicate that the majority of the FireMIP models perform well for that 
aspect of the fire regime.  
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Figure 2: Simulated versus observed burnt fraction (% yr-1) for the present day (2002-2012), where “combined” 
indicates the mean of the different burnt area datasets considered. Stippling indicates where variance between burnt 
area datasets is less than the observed ensemble mean. 

3 Results  

3.1 Modern day model performance: burnt area and fire emissions 

The simulated modern (2002-2012) total global annual burnt area is between 39 and 536 Mha (Table 2). Most 

of the FireMIP models are within the range of the remotely sensed observed burnt area (354 to 468 Mha a–1). With 

the exception of MC2 and LPJ-GUESS-GlobFIRM, the models realistically capture the spatial patterns in burnt 

area (Figures 1 & 2) and perform better than either of the null models irrespective of the reference burnt area 

dataset (Table 3). CLM (NME: 0.63-0.80) and ORCHIDEE-SPITFIRE (0.70-0.73) are the best performing models. 

All the FireMIP models correctly simulate most burnt area in the tropics (24-466 Mha a–1) compared to observed 
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values in the range 312-426 Mha a–1 (Table 2). The simulated contribution of tropical fires to global burnt area is 

in the range of 56% to 92%, with all models except ORCHIDEE-SPITFIRE simulating a lower fraction than 

observed (89-93%). This follows from FireMIP models tending to underestimate burnt area in Africa and Australia, 

although burnt area in South American savannas is usually overestimated (Table 2). All of the FireMIP models, 

except LPJ-GUESS-GlobFIRM, capture a belt of high burnt area in central Eurasia. However, the models 

overestimate burnt area across the extratropics on average by 180% to 304%, depending on the reference burnt 

area dataset. This overestimation largely reflects the fact that the simulated burnt area over the Mediterranean basin 

and western USA is too large (Table 2, Figure 2).  

The FireMIP models that include a sub-annual time-step for fire calculations (CLM, CLASS-CTEM, JULES-

INFERNO, JSBACH-SPITFIRE, LPJ-GUESS-SPITFIRE, ORCHIDEE-SPITFIRE) generally reproduce the 

seasonality of burnt area (Figure 3), particularly in the tropics. The models capture the timing of the peak fire 

season reasonably well, with all of the models performing better than mean null model for seasonal phase in burnt 

area (Table 3). The models also frequently perform better than the random null model, with all models performing 

better against GFED4. However, all of the FireMIP models perform worse than mean null model for seasonal 

concentration of burnt area, independent of the reference burnt area dataset. The observations show a unimodal 

pattern in burnt area in the tropics, peaking between November through February in the northern tropics and 

between June through October in the southern tropics (Figure 3). The models also show a unimodal pattern in both 

regions. However, all the FireMIP models except ORCHIDEE-SPITFIRE show a ~2-month delay in peak burnt 

area in the northern tropics, and the period with high burnt area is also less concentrated than observed. Some 

models (ORCHIDEE-SPITFIRE, LPJ-GUESS-SPITFIRE) estimate peak burnt area ~1-2 months too early in the 

southern tropics, while others simulate a peak ~1 month too late (JULES-INFERNO, CLM, CLASS-CTEM) or 

have a less concentrated peak (JSBACH-SPITFIRE, JULES-INFERNO) than observed. The seasonality of burnt 

area in the northern extratropics shows a peak in spring and a second peak in summer. Only CLM reproduces this 

double peak, while all of the other FireMIP models show a single summer peak. Most of the models simulate the 

timing of the summer peak well. The only exception is LPJ-GUESS-SPITFIRE, which simulates the peak ~2-3 

months too late. The observations show no clear seasonal pattern in burnt area over the southern extratropics, 

although the most prominent peak occurs in December and January. All the FireMIP models, except LPJ-GUESS-

SPITFIRE, reproduce this mid-summer peak. LPJ-GUESS-SPITFIRE shows little seasonality in burnt area in this 

region.  

The FireMIP models have problems representing IAV in global burnt area, with some models (CLASS-CTEM, 

MC2) worse than the random model and most models performing worse than the mean for most of the target data 

sets (Table 3). However, there is considerable uncertainty in the observed IAV in burnt area (Figure 4), and the 

scores are therefore dependent on the reference dataset considered, with generally worse scores for FireCCI5.1 and 

GFED4s compared to the other datasets. Observational uncertainty is most probably underestimated as the burnt 

area products are not independent, since they all rely on MODIS satellite imagery. Despite the failure to reproduce 

IAV in general, most of the models show higher burnt area in the early 2000s and a low in 2009-2010 after which 

burnt area increased again (Figure 4). 

The spatial patterns in simulated fire-related carbon emissions are in line with the reference data, with most 

FireMIP models except LPJ-GUESS-GlobFIRM, MC2 and LPJ-GUESS-SPITFIRE performing better than the 

mean null model. CLM, JULES-INFERNO and JSBACH-SPITFIRE are the best performing models with NME 

scores < 0.8. Seasonality in fire emissions mimics the results for burnt area with good scores for seasonal phase, 
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but all models perform worse than the mean null model for seasonal concentration. CLM is the only FireMIP 

model to explicitly include peatland, cropland and deforestation fires, which contribute 3%, 3% and 20% 

respectively of the global total emissions annually (van der Werf et al., 2010), but it nevertheless does not perform 

better than JULES-INFERNO and JSBACH-SPITFIRE in representing the spatial pattern of fire carbon emissions. 

Only three models (JSBACH-SPITFIRE, LPJ-GUESS-SPITFIRE, ORCHIDEE-SPITFIRE) provided 

information about simulated numbers and size of individual fires. All three models performed better than the mean 

null model in representing the spatial pattern in number of fires but worse than the mean model for fire size (Table 

3). While the spatial pattern in simulated fire number is in agreement with observations over large parts of the 

globe, models tend to overestimate fire numbers in dryland areas such as Mexico and the Mediterranean basin 

(Figure 5). None of the three models simulate cropland fires and so they do not capture the high number of cropland 

fires (Hall et al., 2016) in central Eurasia (Table 2). Models simulate smaller fires than observed in areas where 

burnt area is large and where models tend to underestimate burnt area, especially in the African savanna regions 

(Figure 5). 

 

 
Figure 3: Simulated and observed seasonality (2002-2012) of burnt area (% of annual burnt area per month) for a) 
northern extratropics (> 30°N), b) northern tropics (0-30°N), c) southern tropics (0-30°S) and d) southern extratropics 
(> 30°S). The mean of all the remotely sensed burnt area datasets is shown as a black line, with the minimum and 
maximum range shown in light grey. 
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3.2. Present day model performance: Vegetation properties  

Fire spread and hence burnt area is strongly influenced by fuel availability, which in turn is affected by 

vegetation primary production and biomass. Simulated spatial patterns of GPP compare well with estimates of 

GPP upscaled from Fluxnet data (Jung et al., 2017), with scores (0.39-0.67) considerably better than both null 

models. However, performance against site-based estimates of GPP (Luyssaert et al., 2007) are considerably poorer 

(1.09-1.49) and worse than the mean null model. Only LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE 

and ORCHIDEE-SPITFIRE perform better than the random null model. There is no clear relationship between 

model scores for the two datasets: models performing better when compared to the Jung dataset do not necessarily 

show a higher score when compared to the Luyssaert GPP dataset. The two GPP datasets are very different: The 

upscaled FLUXNET dataset is a modelled product but has global coverage (see Supplementary Information S1) 

while the Luyssaert dataset has local measurements but only at a limited number of sites, largely concentrated 

across the northern extratropics. Thus, the better match between the FireMIP models and the upscaled FLUXNET 

dataset may reflect the broader spatial coverage or the fact that climate and landcover data are used for upscaling.   

Only the upscaled Fluxnet data provides monthly data and can thus be used to asses GPP seasonality.  The 

FireMIP models are able to represent the seasonal peak timing in GPP, with all models performing better than the 

mean and random null models. However, models have difficulty in representing the length of the growing season, 

with the scores for seasonal concentration in GPP (1.08-1.23) above the mean null model but below the random 

null model for all FireMIP models.  

Model performance is better for site-level NPP than site-level GPP. All of the FireMIP models perform better 

than the mean null model, independent of the choice of reference data set (Table 3), except for CLASS-CTEM 

against the Luyssaert data set. JULES-INFERNO, JSBACH-SPITFIRE and MC2 are the best-performing models.  

The FireMIP models generally capture the spatial pattern in LAI, with all models performing better than the 

mean null model (0.44-0.81), independent of the reference dataset considered. JULES-INFERNO has the best 

score for both reference datasets. Although the overall global pattern in LAI is well represented in all the FireMIP 

models, they have more trouble representing LAI in agricultural areas such as central USA or areas with low LAI 

such as drylands and mountain areas (Figure 1). 

The FireMIP models perform well in representing the spatial pattern carbon in vegetation (Table 3). All nine 

models perform better than the mean null model, independent of reference dataset, with ORCHIDEE-SPITFIRE 

having the best scores. Generally, the models are able to simulate carbon in tropical vegetation and the forested 

regions in the temperate and boreal region reasonably well, but struggle across most dryland systems (Figure 1).  
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Figure 4: The range in inter-annual variability in burnt area for the years 2001-2012 for all models and burnt area 
datasets which span the entire time period (GFED4, GFED4s, MCD45, FireCCI51). Results from the individual 
FireMIP models, as well as the observational minimum-maximum values, are plotted. 

 

3.3 Overall assessment 

Our evaluation suggests that LPJ-GUESS-GlobFIRM and MC2 produce substantially poorer simulations of 

burnt area and its inter-annual variability than other models in the FireMIP ensemble. These are both older models, 

developed before the availability of global burnt area products (in the case of LPJ-GUESS-GlobFIRM) or 

calibrated regionally and not designed to run at global scale (MC2). While the other models perform better in 

simulating fire properties, there is no single model that outperforms other models across the full range of fire and 

vegetation benchmarks examined here. Model structure does not explain the differences in model performance. 

Process-based fire models (see table 1) appear to be slightly better able to represent the spatial pattern in burnt area 

than empirical models (mean score 0.87 and 0.94 respectively), but this difference is largely the result of including 

GlobFIRM in the empirical model ensemble; removing this model results in a mean score of 0.87 for these models. 

The inter-model spread in scores within each group is much larger than the difference between the two types of 

model. Only one empirical model simulates fire seasonality, but this model performs worse than each of the 

process-based models, independent of reference dataset considered. There is no difference in the performance of 

process-based and empirical models with respect to IAV in burnt area, seasonal phase in burnt area or fire 

emissions.  

The FireMIP simulations include three models in which versions of the same process-based fire module 

(SPITFIRE) are coupled to different vegetation models. These three models produce a wide range of benchmarking 

scores for burnt area, with mean benchmarking scores of 0.79, 0.85 and 0.72 for JSBACH, LPJ-GUESS and 

ORCHIDEE respectively. There are also large differences between these models in terms of other aspects of the 

fire regime (Table 3). As there are only moderate differences between the different SPITFIRE implementations 

(Rabin et al., 2017), this suggests that the overall difference between the models reflect interactions between the 

fire and vegetation modules. 
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Models using prescribed vegetation biogeography (CLM, CLASS-CTEM, JSBACH-SPITFIRE, ORCHIDEE-

SPITFIRE) represent the spatial pattern of burnt area better than models with dynamic vegetation (JULES-

INFERNO, LPJ-GUESS-SPITFIRE, LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, MC2), with 

respective mean benchmarking scores across all burnt area data sets of 0.79 and 0.97. This difference is still present 

even when LPJ-GUESS-GlobFIRM and MC2 are not included (0.90). It seems likely that models using prescribed 

vegetation biogeography have a better representation of fuel loads and flammability. This can also partially be seen 

in the positive relationship between the benchmarking scores of vegetation carbon and burnt area spatial patterns 

for at least the GFED4, FireCCI4.0 and FireCCI5.1 burnt area reference datasets (mean R2 = 0.31, range 0.19-

0.38). Areas where the FireMIP models represent vegetation carbon poorly coincide with some of the regions 

where models have trouble representing the spatial pattern of burnt area such as dryland regions (Figure 1). 

Although there is no relationship between GPP/NPP and burnt area benchmarking scores, there is a positive 

relationship between simulated burnt area scores and the seasonal concentration of GPP (R2 = 0.30-0.84) and, to a 

lesser extent, the seasonal phase of GPP (R2 = 0.09-0.24). This supports the idea that seasonal vegetation 

production and senescence, which have an important influence on fuel loads, drive the interactions between 

vegetation and fire within each model. However, since fires combust some of the vegetation, fire occurrence also 

influences the seasonality in vegetation productivity.  

Fire carbon emission benchmarking scores are strongly related to the burnt area performance (R2 > 0.85 for 

GFED4s and MCD45 and >0.45 for FireCCI4.0 and GFED4). This indicates that simulated burnt area is the main 

driver of fire emissions, overriding spatial patterns in fuel availability and consumption. However, the 

benchmarking scores for the spatial pattern in burnt area are better overall than those for fire carbon emissions.  

Models that explicitly simulate the impact of human suppression on fire growth or burnt area (CLM, CLASS-

CTEM, JSBACH-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE) are better at representing the spatial pattern in 

burnt area compared to models which do not include this effect (0.85 and 0.93 respectively). In the case of the 

three process-based models (CLM, CLASS-CTEM, JSBACH-SPITFIRE) this is most probably because the spatial 

pattern in fire size is better represented (Table 3). 

CLM is the only model that incorporates cropland fires (Table 1) and it is also the only model which captures 

the spring peak in burnt area in the northern extratropics associated with crop fires (e.g. Le Page et al., 2010; Magi 

et al., 2012, Hall et al., 2016). This might also contribute to the good overall score of CLM for spatial pattern of 

burnt area. 
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Figure 5: Reference datasets and mean of three models for number of fires and mean fire size. Model output is adapted 
so that mean and variance coincide with observations as the total values are not directly comparable (See Supplementary 
Information S1). Stippling indicates where variance between models is less than the model ensemble mean. 

4 Discussion 

There are large differences in the total burnt area between the FireMIP models, with two models (LPJ-GUESS-

GlobFIRM and MC2) falling well outside the observed range in burnt area for the recent period. In the case of 

LPJ-GUESS-GlobFIRM, this is because GlobFIRM was developed before global burnt area products were 

available, resulting in a general poor performance (Kloster and Lasslop, 2017), in combination with the fact that 

structural changes were made to the vegetation model without a commensurate development of the fire module. In 

the case of MC2, this probably reflects the fact that MC2 was developed for regional applications but was applied 

globally here without any refinement of the fire model. The other FireMIP models used the burned area datasets 

to develop and tune their models. They therefore capture the global spatial patterns of burnt area reasonably well, 

although no model simulates the very high burnt area in Africa and Australia causing a general underestimation of 

burnt area in tropical regions and overestimation in extratropical regions. The analysis of a limited number of 

models suggests that process-based fire models do not simulate the spatial patterns in fire size well (Table 3). In 

particular they fail to represent fire size in tropical savannas (Figure 5), most probably because they assume a fixed 

maximum fire duration of less than one day (Hantson et al., 2016) while savanna fires are often very long-lived 

(e.g. Andela et al., 2019). Our results suggest that process-based fire models could be improved by a better 

representation of fire duration. Although none of the FireMIP models simulate multi-day fires, there are fire models 

that do (e.g. Pfeifer et al., 2013; Le Page et al., 2015) and which could therefore provide a template for future 

model development. New parameterizations would need to incorporate aspects of natural and anthropogenic 

landscape fragmentation which limit fire growth (e.g. Pfeifer et al., 2013; Le Page et al., 2015; Kelley et al. 2019). 

Indeed, our results show that models that include a human limitation on fire growth represent the global spatial 

pattern in burnt area and fire size better.  The recently generated Global Fire Atlas (Andela et al., 2019) includes 
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aspects of the fire behaviour (e.g., fire spread rate and duration), which offer new opportunities to examine and 

parameterize fire. 

Vegetation type and stocks are input variables for the fire models, influencing fire ignition and spread in the 

process-based models and determining simulated burnt area in the empirical models. The occurrence of fire can, 

in turn, affect the vegetation type, simulated vegetation productivity (i.e. GPP, NPP) and hence the amount and 

seasonality of fuel build up. Our results indicate that inter-model differences in burnt area are related to differences 

in simulated vegetation productivity and carbon stocks. Seasonal fuel build-up and senescence is an important 

driver of global burnt area. Furthermore, we find that models which are better at representing the seasonality of 

vegetation production are also better at representing the spatial pattern in burnt area. These results are consistent 

with the analysis of emergent relationships in FireMIP models, which shows the need to improve processes related 

to plant production and biomass allocation to improve model performance in simulating burnt area (Forkel et al., 

2019a). While there are spatially explicit global estimates regarding carbon stocks in live vegetation, there is 

limited information about carbon stocks of different fuel types and how these change between seasons and over 

time (van Leeuwen et al., 2014; Pettinari & Chuvieco, 2016). Furthermore, fuel availability could be substantially 

affected by livestock density and pasture management (Andela et al., 2017). While improved representation of 

land management practices could improve the representation of fire, the lack of high-quality fuel availability data 

currently limits our ability to constrain simulated fuel loads. 

The FireMIP models generally do not simulate the timing of peak fire occurrence accurately and tend to 

simulate a fire season longer than observed. This might be related to the representation of seasonality in vegetation 

production and fuel build up. However, human activities can also change the timing of fire occurrence (e.g. Le 

Page et al., 2010; Rabin et al., 2015), and so an improved representation of the human influence on fire occurrence 

and timing could also help to improve the simulated fire seasonality. The importance of the anthropogenic impact 

on fire seasonality is especially clear in the northern extratropics (e.g. Archibald et al., 2009; Le Page et al., 2010; 

Magi et al., 2012), where the only model that explicitly includes crop fires (CLM) is also the only model that shows 

the bimodal seasonality. Thus, the inclusion of anthropogenic fires could help to improve model simulations. 

However, this requires a better understanding of how fire is used for land management under different socio-

economic and cultural conditions (Pfeiffer et al., 2013; Li et al., 2013). 

Global inter-annual variability in burnt area is largely driven by drought episodes in high biomass regions and 

fuel buildup after periods of increased rainfall in dryland areas (e.g. Chen et al., 2017). Previous analysis has shown 

that the FireMIP models are relatively good at representing emergent climate-fire relationships (Forkel et al., 

2019a); hence it seems plausible that fuel build up and its effect on subsequent burnt area is not well represented 

in the models and that this is the reason for the poor simulation of IAV in burnt area. This is in line with our 

findings and the findings of Forkel et al. (2019a) that fire models are not sensitive enough to previous previous-

season vegetation productivity.  

The spread in simulated global total fire emissions is even larger than for burnt area, but fire emissions largely 

follow the same spatial and temporal patterns as burnt area (Figure 1, table 3). However, the benchmark scores for 

emissions are worse than those for burnt area. This reflects the fact that emissions are the product of both errors in 

simulated vegetation and burnt area. Furthermore, spatial and temporal uncertainties in the completeness of 

biomass combustion will affect the emissions. While improvements to vegetation and fuel loads are likely to 

produce more reliable estimates of emissions, an improved representation of the drivers of combustion 

completeness in models will also be required for more accurate fire emission estimates. Only one of the FireMIP 
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models (CLM) includes cropland, peatland, and deforestation fire explicitly, albeit in a rather simple way. Our 

analyses suggest that this does not produce an improvement in the simulation of either the spatial pattern or timing 

of carbon emissions. However, given that together these fires represent a substantial proportion of annual carbon 

emissions, a focus on developing and testing robust parameterisations for these largely anthropogenic fires could 

also help to provide more accurate fire emission estimates. 

Our analysis demonstrates that benchmarking scores provide an objective measure of model performance and 

can be used to identify models that might negatively impact on a multi-model mean and so exclude these from 

further analysis (e.g. LPJ-GUESS-GlobFIRM, MC2). At the moment, a further ranking is more difficult because 

no model clearly outperforms all other models. Still, some FireMIP models are better at representing some aspects 

of the fire regime compared to others. Hence, when using FireMIP output for future analyses, one could weigh the 

different models based on the score for the variable of interest, thus giving more weight to models which perform 

better for these variables. 
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Table 1: Brief description of the global fire m
odels that ran the FireM

IP baseline experim
ents. Process indicates m

odels w
hich explicitly sim

ulate ignitions and fire spread. A
 detailed overview

 can 
be found in R

abin et al. (2017).  

M
odel 

Dynam
ic Biogeography 

Fire m
odel type 

Hum
an suppression of fire spread/ 

burnt area 
Spatial resolution (lon x lat) 

Tem
poral resolution 

Reference 

CLM
 

No 
Process 

Yes 
2.5° x  1.9°  

Half hourly 
Li et al., 2013 

CLASS-CTEM
 

No 
Process 

Yes 
2.8125° x 2.8125° 

Daily 
M

elton and Arora, 2016 

JULES-INFERNO 
Yes, but w

ithout fire feedback 
Em

pirical 
No 

1.875° x 1.245°  
Half hourly 

M
angeon et al., 2016 

JSBACH-SPITFIRE 
No 

Process 
Yes 

1.875°  x 1.875° 
Daily 

Lasslop et al., 2014 

LPJ-GUESS-SPITFIRE 
 Yes 

Process 
No 

0.5° x 0.5° 
Daily 

Lehsten et al., 2009 

LPJ- GUESS-GlobFIRM
 

Yes 
Em

pirical 
No 

0.5° x 0.5° 
Annual 

Sm
ith et al., 2014 

LPJ-GUESS-SIM
FIRE-BLAZE 

Yes 
Em

pirical 
Yes 

0.5° x 0.5° 
Annual 

Knorr et al., 2016 

M
C2 

Yes 
Process 

No 
0.5° x 0.5° 

M
onthly 

Bachelet et al., 2015 

ORCHIDEE-SPITFIRE 
No 

Process 
No 

0.5° x 0.5° 
Daily 

Yue et al., 2014 
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Table 2: Simulated and observed burnt area (Mha) for the period 2002-2012 for the globe and for key regions including the northern extratropics (NET, > 30°N), the southern extratropics 
(SET, > 30°S), the tropics (30°N - 30°S), the savanna regions of Africa (18°W-40°E & 13°N-20°S), the savanna region of South America (42°-68°W & 9°S-25°S), Australian Savanna (120°E-5 
155°E & 11°S-20°S), the agricultural band of central Eurasia (30°E-85°E & 50°N-58°N), the Mediterranean basin (10°W-37°E & 31°N-44°N), and the western USA (100°-125°W & 31°N-
43°N). Data availability for FireCCI40 is limited to 2005-2011 and for MC2 to 2002-2009. 

  Global NET Tropics SET 
S-American 

savanna 

African 

savanna 

Australian 

savanna 
Central Eurasia 

Mediterranean 

basin 
western USA 

GFED4s 468 39 426 4 18 295 35 8.5 1.3 1.0 

GFED4 349 27 319 3 14 218 34 5.2 0.8 0.9 

MCD45 348 33 312 4 13 232 25 7.0 2.0 0.9 

FireCCI40 345 23 320 2 8 237 25 6.8 1.1 0.8 

FireCCI51 387 37 347 3 14 230 38 10.2 1.3 1.1 

CLM 454 77 362 15 36 194 15 7.9 9.3 3.4 

CLASS-CTEM 536 41 466 28 46 172 20 2.0 4.3 9.5 

JULES-INFERNO 381 76 292 13 26 128 23 5.0 11.0 7.7 

JSBACH-SPITFIRE 457 114 318 25 21 166 17 15.5 9.5 9.7 

LPJ-GUESS-GlobFIRM 39 14 24 1 3 7 3 0.6 0.6 0.5 

LPJ-GUESS-SPITFIRE 393 99 280 14 51 135 2.8 12.5 14.5 6.1 

LPJ-GUESS-SIMFIRE-

BLAZE 
482 86 381 15 72 146 27 3.4 7.9 14.9 

MC2 97 40 54 3 2 17 2 0.9 5.0 2.2 

ORCHIDEE-SPITFIRE 471 16 435 19 13 246 81 2.4 2.4 0.3 
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Table 3: Benchmarking scores after removing the influence of differences in the mean and variance for each individual 
global fire model for key fire and vegetation variables. A lower score is “better”, with a perfect score equal to 0. The 
full table with all benchmarking scores is presented in Table S1. Dataset information can be found in Supplementary 25 
Information S1. LPJ-G = LPJ-GUESS. Cell are coloured blue if the benchmarking score is lower than both null models, 
yellow if lower than 1 null model and red when higher than both null models.  

 
Dataset Mean rando

m 
CLM CLASS

-
CTEM 

JULES 
INFERN
O 

JSBACH 
SPITFIRE 

LPJ-G 
GlobFIRM 

LPJ-G 
SPITFIR
E 

SIMFIRE 
-BLAZE 

MC2 ORCHIDE
E 
SPITFIRE 

Burnt area 
            

spatial GFED4s 1 1.07 0.63 0.79 0.72 0.70 1.06 0.94 0.88 1.00 0.72  
GFED4 1 1.14 0.80 0.93 0.85 0.86 1.08 0.98 0.88 1.07 0.71  
MCD45 1 1.16 0.65 0.81 0.72 0.69 1.12 0.93 0.92 1.02 0.70  
FireCCI40 1 1.13 0.77 0.98 0.89 0.92 1.09 0.93 0.97 1.13 0.73 

 FireCCI51 1 1.11 0.83 1.01 0.91 0.93 1.11 0.96 0.97 1.23 0.70 
             

seasonal GFED4s 0.56 0.22 0.12 0.12 0.13 0.12 
 

0.31 
  

0.31 
phase GFED4 0.49 0.47 0.34 0.35 0.41 0.42 

 
0.33 

  
0.31  

MCD45 0.56 0.26 0.12 0.11 0.12 0.12 
 

0.30 
  

0.30  
FireCCI40 0.60 0.12 0.16 0.43 0.17 0.16 

 
0.33 

  
0.32 

 FireCCI51 0.55 0.25 0.26 0.28 0.33 0.32  0.32   0.31 
             

seasonal GFED4s 1 1.36 1.16 1.15 1.24 1.15 
 

1.13 
  

1.22 
concentration GFED4 1 1.35 1.19 1.12 1.25 1.11 

 
1.18 

  
1.19  

MCD45 1 1.36 1.14 1.08 1.26 1.13 
 

1.12 
  

1.20  
FireCCI40 1 1.34 1.31 1.26 1.36 1.25 

 
1.29 

  
1.30 

 FireCCI51 1 1.36 1.25 1.22 1.33 1.21  1.20   1.27 
             

IAV GFED4s 1 1.46 1.17 0.65 1.18 1.09 0.66 1.36 0.76 1.66 1.44  
GFED4 1 1.27 0.98 1.62 1.23 0.89 1.04 1.08 1.00 1.41 1.25  
MCD45 1 1.32 0.93 1.34 1.11 0.84 0.73 0.97 1.27 1.67 1.22 

 FireCCI5.1 1 1.42 1.18 1.53 1.24 1.27 1.73 1.27 1.23 1.87 1.12 
  

fire emission  
spatial GFAS 1 1.08 0.78 0.85 0.73 0.74 1.13 1.03 0.91 1.06 0.86 
 

            

seasonal 
phase 

GFAS 0.78 0.18 0.16 0.20 0.17 0.15 
 

0.37 
  

0.34 

 
            

seasonal 
concentration 

GFAS 1 1.36 1.20 1.22 1.30 1.17 
 

1.27 
  

1.25 
            

IAV GFAS 1 1.36 0.77 1.70 1.28 1.09 1.42 1.42 1.11 1.41 1.49 
             

Fire number             
spatial Hantson 1 1.19 

   
0.96 

 
0.83 

  
0.76 

             

Fire size             
Spatial Hantson 1 1.31 

   
1.03 

 
1.22 

  
1.12 

             

GPP 
            

spatial Luyssaert 1 1.39 1.49 1.41 1.46 1.39 1.41 1.24 1.37 
 

1.09 
spatial Jung 1 1.30 0.64 0.46 0.39 0.42 0.46 0.67 0.43 

 
0.49 

             

seasonal 
phase 

Jung 0.42 0.65 0.18 0.23 0.19 0.23 
 

0.22 
  

0.22 

             

seasonal 
concentration 

Jung 1 1.65 1.08 1.19 1.14 1.21 
 

1.19 
  

1.09 

             

NPP 
            

spatial Michaletz 1 1.39 0.82 0.79 0.77 0.75 0.96 0.86 0.89 0.88 0.99 
spatial Luyssaert 1 1.33 0.90 1.01 0.53 0.76 0.82 0.87 0.79 0.68 0.84 
spatial EMDI 1 1.30 0.91 0.87 0.58 0.66 0.79 0.83 0.81 0.65 0.80 
             

LAI             
spatial MCD15 1 1.29 0.60 0.53 0.44 0.78 0.70 0.61 0.57 0.63  
spatial AVHRR 1 1.29 0.81 0.71 0.49 0.65 0.74 0.62 0.61 0.64  
             

Carbon in 
vegetation 

 
           

spatial Avitabile 1 1.32 0.69 0.88 0.76 0.78 0.76 0.76 0.74 0.80 0.70 
spatial Carvalhais 1 1.32 0.66 0.66 0.58 0.64 0.62 0.66 0.58 0.67 0.54 
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