
Author response to Anonymous Referee #1 review 

The authors thank referee #1 for this considered comments and constructive suggestions.  

Below we provide a detailed response in italic to each comment. 

The authors provide a detailed glimpse into the successes and struggles of global fire modeling 
efforts, and quantitatively try to isolate the most pressing challenges for both individual fire models 
and the fire modeling community as a whole by using a benchmarking method of comparisons 
with observations. Particularly interesting is that the authors highlight how sensitive the 
benchmarking results are to how vegetation (fuel load) is captured or simulated in any particular 
fire model. I think the paper should be published after a few minor revisions and/or author 
responses/clarifications to my concerns below.  

Comments  

Title: this is a confusing title because nowhere in the paper are the historical FireMIP simulation 
results discussed. Line 145 and essentially all the figures point out that only present day results 
are analysed. “Historical” in the CMIP framework usually refers to simulation periods that extend 
from about 1850 to present day. I would strongly suggest changing the title to better capture the 
scope of the analysis the authors undertook.  

 The simulations we examined are indeed historical, in the sense that they were run from 
1700 CE to the present day, although we only evaluate them in the recent past because of the 
availability of data. But we agree the title might imply evaluation over a longer period, and we will 
change it to: “Quantitative assessment of fire and vegetation properties in simulations with fire-
enabled vegetation models from the Fire Model Intercomparison Project”.  

Lines 95-104: this paragraph is difficult to follow relative to the analysis of FireMIP output. Are the 
authors trying to say that benchmarking allows for a more systematic evaluation of models so that 
a hierarchy can be quantifiably justified? If so, I suggest that the authors add or clarify this in the 
text to make it clear to readers that this is why the authors chose to raise this discussion point. 
Alternatively, the authors could shorten or delete the paragraph altogether, because while they 
raise the point of ending model democracy, it stands in contrast with the conclusions of the study, 
where the authors say the “no model clearly outperforms all other models” which seems to be 
avoiding the issue of hierarchical treatment of the fire models. If this group of authors cannot 
ascribe a hierarchy to global fire models, then I think they miss the chance to advance the 
conversation from the perspective of their collective expertise. By this, I mean that I, as the reader, 
can walk away from the paper with useful benchmarks and metrics, but that I will also then 
evaluate model quality on my own because the authors did not. My conclusion is that while the 
benchmarks are great to have, the results in Figure 2 and Table 2 clearly show that GlobFIRM 
and MC2 output should not be considered equally alongside output from other models.  

 We agree that the GlobFIRM and MC2 simulations are poor and not comparable to the 
other simulations in the FireMIP ensemble, and indeed we state this (lines 369-370). The reviewer 
indeed interprets the objective of this paragraph correctly as we think that establishing a hierarchy 
of model's ability to simulate fire is important (and hence we would like to keep the paragraph 
explaining that this is one of the goals of benchmarking) and we should have made a stronger 
statement about this in the abstract and conclusion. We will modify the text as follows: 



- Line 57 et seq. “The two older fire models included in the FireMIP ensemble (LPJ-GUESS-
GlobFIRM, MC2) clearly perform less well globally than other models, but it is difficult to 
distinguish between the remaining ensemble members: some of these models are better 
at representing certain aspects of the fire regime, none clearly outperforms all other 
models across the full range of variables assessed.” 

- Line 319: “Our evaluation suggests that LPJ-GUESS-GlobFIRM and MC2 produce 
substantially poorer simulations of burnt area and its inter-annual variability than other 
models in the FireMIP ensemble. These are both older models, developed before the 
availability of global burnt area products (in the case of LPJ-GUESS-GlobFIRM) or 
calibrated regionally and not designed to run at global scale (MC2). While the other models 
perform better in simulating fire properties, there is no single model that outperforms other 
models across the full range of fire and vegetation benchmarks examined here. Model 
structure does not explain the differences in model performance.” 

- We furthermore included an extra paragraph at the end of the discussion to cover this 
point: "Our analysis demonstrates that benchmarking scores provide an objective 
measure of model performance and can be used to identify models that might negatively 
impact on a multi-model mean and so exclude these from further analysis (e.g. LPJ-
GUESS-GlobFIRM, MC2). At the moment, a further ranking is more difficult because no 
model clearly outperforms all other models. Still, some FireMIP models are better at 
representing some aspects of the fire regime compared to others. Hence, when using 
FireMIP output for future analyses, one could weigh the different models based on the 
score for the variable of interest, thus giving more weight to models which perform better 
for these variables.” 

 

Paragraph at line 166: Certainly there are observational uncertainties, but the Global Fire Atlas 
and other studies about fire products (GFED papers and MODIS papers, at least) have made a 
solid effort to quantify uncertainties – what do the authors suggest is enough in terms of validation 
of the observations? Some specific problems I have with the paragraph: In line 169, saying “large 
uncertainties still remain for most variables” is too vague. Which variables? How large, or large 
compared with what? To me, it seems that fire models have larger uncertainty than the 
observations. I would argue that the results in this paper suggest that model uncertainty does not 
arise from a lack of observations, but rather, the model uncertainty is largely due to poor 
simulations of biomass. While this paragraph makes it sound like models are waiting for 
observations of bulk properties, it is more accurate to say that the fire models do not have the fuel 
process simulated correctly. These are two different issues that should not be about a lack of 
observational constraints. I suggest the paragraph be shortened a sentence or two so that the 
focus of the paper remains on evaluation of model output, and not observations. The authors 
could simply point out that burnt area, biomass, and fire emissions estimates vary and uncertainty 
is still being characterized, and cite appropriate papers. To me, this paper is about the 
benchmarking results, and the fact that observations have weaknesses too should be relegated 
to a side note with citations.  

 We agree that the focus of this paper should be on the evaluation of the model results. 
Our intention in this paragraph was definitely not to critique the groups producing different fire 
datasets or to imply that they are not trying to provide both theoretical (Brennan et al., 2019) and 
practical uncertainty estimates (e.g. Giglio et al., 2013), but to explain why we do not take account 
of observational uncertainties in our comparisons. We agree with the reviewer that the uncertainty 
in model output exceeds the uncertainty of existing datasets and we agree that this paragraph 
might distract, and we will shorten it drastically and reduced it to its essence, rewriting it as follows: 



“Ideally, model benchmarking should take account of uncertainties in the observations, for 
example by down-weighting less reliable data sets (e.g. Collier et al. 2018). However, 
observational uncertainties are not reported for some of the data sets used here (e.g. vegetation 
carbon). Furthermore, some of the data sets (e.g. emissions) involve modelled relationships; there 
has been little formal assessment of the choice of model on the resultant observational 
uncertainty. While we use multiple datasets when available (e.g. for burnt area, where there are 
large differences between the products), in an attempt to integrate observational uncertainty in 
our evaluations, it seems premature to incorporate uncertainty in the benchmark data sets in a 
formal sense when calculating the benchmarking scores.” 

Table 3: Why are the benchmarking scores for the Mean null model often equal to 1? Is this an 
artifact of the calculation itself? If so, wouldn’t this detract from the utility of using the Mean null 
model as a point of comparison with fire model benchmark scores for those fire variables?  

 The normalized mean error (NME) is constructed in such a way as to normalize the scores 
against an objective background so that the mean null model results in a score = 1 (Kelley et al., 
2013, Biogeosciences 10: 3313-3340). This is not an artifact but a design feature of the metric to 
make the interpretation of the results more intuitive compared to other error metrics. All the values 
shown as less than 1 in Table 3 are for seasonal phase and are calculated using the mean Phase 
Difference metric, which is not constrained in the same way. Since our description of the metrics 
is not clear, and also in response to comments by the second reviewer, we have rewritten the 
section of text describing the metrics and the null models as follows: 

“To assess model ability to reproduce spatial patterns in a variable, we use the normalised 
mean error (NME): 

 
𝑁𝑀𝐸 = ∑"!|$%&!'&()!|
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where the difference between observations (obs) and simulation (sim) are summed over all 

cells (i) weighted by cell area (Ai) and normalized by the average distance from the mean of the 
observations (𝑜𝑏𝑠$$$$$). Since NME is proportional to mean absolute errors, the smaller the NME value 
the better the model performance. A score of 0 represents a perfect match to observations. NME 
has no upper bound.  

NME can be sensitive to the simulated magnitude of the variable. To take this into account in 
comparisons, we removed the influence of biases in the mean and variance between model 
results and each reference dataset. This has the further desirable property of limiting the impact 
of observational uncertainties in the reference datasets on the comparisons. Although we focus 
on benchmarking results after removing biases in the mean and variance, the scores for 
comparisons before this procedure (and for comparisons after removing mean biases only) are 
given in Supplementary Information S2. 

To assess model ability to reproduce seasonal patterns in a variable, we focused on seasonal 
concentration (roughly equivalent to the inverse of season length) and seasonal phase (or timing). 
We calculated a mean seasonal “vector” for each observed and simulated location based on the 
monthly distribution of the variable through the year. The concentration is the length of this vector 
compared to the annual value, and ranges between 0 when the variable is distributed evenly 
throughout the year and 1 when the season is confined to a single month. The phase is indicated 
by the direction of the vector. Observed and modelled concentrations were compared using NME. 
Phase is compared using the Mean Phase Difference (MPD) metric (see Supplementary 
Information S2). Again, for NME, a score of 0 represents a perfect match to observations and 



there is no upper bound. MPD has a maximum value of 1 when all cells have a maximum phase 
mismatch of 6 months. Seasonality metrics could not be calculated for three models (LPJ-
GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, MC2), either because they do not simulate 
the seasonal cycle or because they did not provide these outputs. We did not use FireCC4.0 to 
assess seasonality or interannual variability (IAV) in burnt area because it has a much shorter 
times series than the other burnt area products.  

 Model scores are interpreted by comparing them to two null models (Kelley et al., 2013). 
The “mean” null model compares each benchmark dataset to a dataset of the same size created 
using the mean value of all the observations. The mean null model for NME always has a value 
of 1 because the metric is normalised by the mean difference. The mean null model for MPD is 
based on the mean direction across all observations, and therefore the value can vary and is 
always less than 1. The “randomly-resampled” null model compares the benchmark data set to 
these observations resampled 1000 times without replacement (Table 3). The “randomly-
resampled” null model is normally worse than the mean null model for NME comparisons. For 
MPD, the mean will be better than the random null model when most grid cells show the same 
phase. A detailed description of the benchmarking metrics is given in the Supplementary 
Information S2. “ 

 

Paragraph at line 229: The text discussion seems inconsistent with the results in Table 3. I may 
be misunderstanding the reason for the benchmarking scores for the Mean and Random null 
models, but my interpretation is that those Mean and Random null model benchmarking scores 
are the target to beat. If a fire model beats that benchmark score, then my interpretation is that 
that particular fire model performs better than the null model. Is that a correct interpretation? If so, 
then there seem to be some inconsistencies between the text and Table 3 as follows.  

 Your interpretation is correct. We stated this in the original manuscript (lines 192-198) but 
we have now rewritten the section on the metrics and their interpretation (as described above) 
and hope this is now clearer. The confusions between the Table and the text are due to mistakes 
on our part in the description and we have now corrected these, as explained below.  

Paragraph at line 229: Specifically, one sentence states “The models capture the timing of the 
peak fire season reasonably well, with all of the models performing better than both null models 
for seasonal phase in burnt area” but many of the fire models have benchmark scores greater 
than the Random null model, so why do the authors say “all”?  

 This sentence should have read “The models capture the timing of the peak fire season 
reasonably well, with all of the models performing better than the mean null model for seasonal 
phase in burnt area”. And have added additionally: “The models also frequently perform better 
than the random null model, with all models performing better against GFED4.”. 

Paragraph at line 229: Another sentence states “all of the FireMIP models perform worse than 
both null models for seasonal concentration of burnt area, independent of the reference burnt 
area dataset” but looking at Table 3, almost all of the fire model benchmark scores are less than 
the benchmark scores for the Random null model, with the exception being JULES-INFERNO vs 
FireCCI40. Wouldn’t this mean that the comparisons are all better than the Random null model?  

 This should have read “mean null model” instead of “both null models” and has been 
corrected. 



Future model development section: I would suggest that the authors propose mechanisms that 
fire models should include (crops, prescribed biogeography), and reflect on both why some fire 
models do not include those mechanisms already, and whether the future of fire model 
development will include those mechanisms. Or perhaps this is discussed in other FireMIP papers 
already? Also, the authors might provide a broader perspective in this section by discussing 
whether there are global fire models currently in use that did not participate in FireMIP but do 
include features that the benchmarking results in this study highlight as particularly weak. For 
example, Pfeiffer et al’s LPJ-LMFire model https://www.geosci-model-dev.net/6/643/2013/ 
includes representation of human use of fire in a novel way.  

 We agree that the title of this section is somewhat misleading, since we do not believe it 
is possible, as yet, to prescribe exactly the steps that would yield an improved fire model. Our 
intention here was to point to areas which need to be investigated further because the 
benchmarking identifies them as weaknesses in the current models. It would be possible, for 
example, to include crops into the models or human use of fire (as in LPJ-LMFire). However, the 
current parameterizations of agricultural fires are relatively simple and generally not based on 
rigorous data analysis. And indeed, as the ongoing discussion about the impacts of anthropogenic 
activity on fire trends shows, our understanding of human-fire interactions is very incomplete. 
Similarly, we have identified the ability to reproduce vegetation properties and hence fuel loads 
as an area where the models do not perform well -- but again, this is an active area of research 
and, as yet, there is no agreed way forward. However, we agree that it would be valuable to point 
out which processes are already implemented in different fire models not participating in FireMIP 
(including LPJ-LMFire) and will adapt the discussion section in different points accordingly. We 
will also re-title this section simply as: Discussion. 
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