Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
Download
Short summary
We developed the Real-time On-road Emission (ROE v1.0) model to obtain the street-scale on-road hot emissions by using real-time big data for traffic provided by the Gaode Map navigation application. The results are close to other emission inventories. Meanwhile, we applied our results to a street-level air quality model for studying the impact of the national holiday traffic volume change on air quality. The model can be further extended to more districts in China or other countries.
We developed the Real-time On-road Emission (ROE v1.0) model to obtain the street-scale on-road...
GMD | Articles | Volume 13, issue 1
Geosci. Model Dev., 13, 23–40, 2020
https://doi.org/10.5194/gmd-13-23-2020

Special issue: Air Quality Research at Street-Level (ACP/GMD inter-journal...

Geosci. Model Dev., 13, 23–40, 2020
https://doi.org/10.5194/gmd-13-23-2020

Model description paper 03 Jan 2020

Model description paper | 03 Jan 2020

Development of the Real-time On-road Emission (ROE v1.0) model for street-scale air quality modeling based on dynamic traffic big data

Luolin Wu et al.

Related authors

APFoam-1.0: integrated CFD simulation of O3–NOx–VOCs chemistry and pollutant dispersion in typical street canyon
Luolin Wu, Jian Hang, Xuemei Wang, Min Shao, and Cheng Gong
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-387,https://doi.org/10.5194/gmd-2020-387, 2020
Preprint under review for GMD
Short summary

Related subject area

Atmospheric Sciences
A multi-year short-range hindcast experiment with CESM1 for evaluating climate model moist processes from diurnal to interannual timescales
Hsi-Yen Ma, Chen Zhou, Yunyan Zhang, Stephen A. Klein, Mark D. Zelinka, Xue Zheng, Shaocheng Xie, Wei-Ting Chen, and Chien-Ming Wu
Geosci. Model Dev., 14, 73–90, https://doi.org/10.5194/gmd-14-73-2021,https://doi.org/10.5194/gmd-14-73-2021, 2021
Short summary
Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0)
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021,https://doi.org/10.5194/gmd-14-43-2021, 2021
Development of an Ozone Monitoring Instrument (OMI) aerosol index (AI) data assimilation scheme for aerosol modeling over bright surfaces – a step toward direct radiance assimilation in the UV spectrum
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021,https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
Felix Kleinert, Lukas H. Leufen, and Martin G. Schultz
Geosci. Model Dev., 14, 1–25, https://doi.org/10.5194/gmd-14-1-2021,https://doi.org/10.5194/gmd-14-1-2021, 2021
Short summary
ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites
Adrien Napoly, Aaron Boone, and Théo Welfringer
Geosci. Model Dev., 13, 6523–6545, https://doi.org/10.5194/gmd-13-6523-2020,https://doi.org/10.5194/gmd-13-6523-2020, 2020
Short summary

Cited articles

An, X., Hou, Q., Li, N., and Zhai, S.: Assessment of human exposure level to PM10 in China, Atmos. Environ., 70, 376–386, https://doi.org/10.1016/j.atmosenv.2013.01.017, 2013. 
Ashie, Y. and Kono, T.: Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo Bay area, Int. J. Climatol., 31, 174–188, https://doi.org/10.1002/joc.2226, 2011. 
Britter, R. E. and Hanna, S. R.: Flow and dispersion in urban areas, Annu. Rev. Fluid Mech., 35, 469–496, https://doi.org/10.1146/annurev.fluid.35.101101.161147, 2003. 
Cai, H. and Xie, S. D.: Estimation of vehicular emission inventories in China from 1980 to 2005, Atmos. Environ., 41, 8963–8979, https://doi.org/10.1016/j.atmosenv.2007.08.019, 2007. 
Che, W., Zheng, J., Wang, S., Zhong, L., and Lau, A.: Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China, Atmos. Environ., 45, 1740–1751, https://doi.org/10.1016/j.atmosenv.2010.12.050, 2011. 
Publications Copernicus
Download
Short summary
We developed the Real-time On-road Emission (ROE v1.0) model to obtain the street-scale on-road hot emissions by using real-time big data for traffic provided by the Gaode Map navigation application. The results are close to other emission inventories. Meanwhile, we applied our results to a street-level air quality model for studying the impact of the national holiday traffic volume change on air quality. The model can be further extended to more districts in China or other countries.
We developed the Real-time On-road Emission (ROE v1.0) model to obtain the street-scale on-road...
Citation