Articles | Volume 13, issue 1
https://doi.org/10.5194/gmd-13-23-2020
https://doi.org/10.5194/gmd-13-23-2020
Model description paper
 | 
03 Jan 2020
Model description paper |  | 03 Jan 2020

Development of the Real-time On-road Emission (ROE v1.0) model for street-scale air quality modeling based on dynamic traffic big data

Luolin Wu, Ming Chang, Xuemei Wang, Jian Hang, Jinpu Zhang, Liqing Wu, and Min Shao

Related authors

APFoam 1.0: integrated computational fluid dynamics simulation of O3–NOx–volatile organic compound chemistry and pollutant dispersion in a typical street canyon
Luolin Wu, Jian Hang, Xuemei Wang, Min Shao, and Cheng Gong
Geosci. Model Dev., 14, 4655–4681, https://doi.org/10.5194/gmd-14-4655-2021,https://doi.org/10.5194/gmd-14-4655-2021, 2021
Short summary

Related subject area

Atmospheric sciences
An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Identifying lightning processes in ERA5 soundings with deep learning
Gregor Ehrensperger, Thorsten Simon, Georg J. Mayr, and Tobias Hell
Geosci. Model Dev., 18, 1141–1153, https://doi.org/10.5194/gmd-18-1141-2025,https://doi.org/10.5194/gmd-18-1141-2025, 2025
Short summary
Sensitivity of predicted ultrafine particle size distributions in Europe to different nucleation rate parameterizations using PMCAMx-UF v2.2
David Patoulias, Kalliopi Florou, and Spyros N. Pandis
Geosci. Model Dev., 18, 1103–1118, https://doi.org/10.5194/gmd-18-1103-2025,https://doi.org/10.5194/gmd-18-1103-2025, 2025
Short summary
Explaining neural networks for detection of tropical cyclones and atmospheric rivers in gridded atmospheric simulation data
Tim Radke, Susanne Fuchs, Christian Wilms, Iuliia Polkova, and Marc Rautenhaus
Geosci. Model Dev., 18, 1017–1039, https://doi.org/10.5194/gmd-18-1017-2025,https://doi.org/10.5194/gmd-18-1017-2025, 2025
Short summary
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary

Cited articles

An, X., Hou, Q., Li, N., and Zhai, S.: Assessment of human exposure level to PM10 in China, Atmos. Environ., 70, 376–386, https://doi.org/10.1016/j.atmosenv.2013.01.017, 2013. 
Ashie, Y. and Kono, T.: Urban-scale CFD analysis in support of a climate-sensitive design for the Tokyo Bay area, Int. J. Climatol., 31, 174–188, https://doi.org/10.1002/joc.2226, 2011. 
Britter, R. E. and Hanna, S. R.: Flow and dispersion in urban areas, Annu. Rev. Fluid Mech., 35, 469–496, https://doi.org/10.1146/annurev.fluid.35.101101.161147, 2003. 
Cai, H. and Xie, S. D.: Estimation of vehicular emission inventories in China from 1980 to 2005, Atmos. Environ., 41, 8963–8979, https://doi.org/10.1016/j.atmosenv.2007.08.019, 2007. 
Che, W., Zheng, J., Wang, S., Zhong, L., and Lau, A.: Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China, Atmos. Environ., 45, 1740–1751, https://doi.org/10.1016/j.atmosenv.2010.12.050, 2011. 
Download
Short summary
We developed the Real-time On-road Emission (ROE v1.0) model to obtain the street-scale on-road hot emissions by using real-time big data for traffic provided by the Gaode Map navigation application. The results are close to other emission inventories. Meanwhile, we applied our results to a street-level air quality model for studying the impact of the national holiday traffic volume change on air quality. The model can be further extended to more districts in China or other countries.
Share