Articles | Volume 13, issue 5
https://doi.org/10.5194/gmd-13-2277-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-2277-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the performance of climate change simulation results from BESM-OA2.5 compared with a CMIP5 model ensemble
Vinicius Buscioli Capistrano
CORRESPONDING AUTHOR
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Amazonas State University (UEA), Manaus – Amazonas, Brazil
Paulo Nobre
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Sandro F. Veiga
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Renata Tedeschi
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Josiane Silva
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Marcus Bottino
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Manoel Baptista da Silva Jr.
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Otacílio Leandro Menezes Neto
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Silvio Nilo Figueroa
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
José Paulo Bonatti
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Paulo Yoshio Kubota
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Julio Pablo Reyes Fernandez
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Emanuel Giarolla
Center for Weather Forecast and Climate Studies/National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista – São Paulo, Brazil
Jessica Vial
Laboratoire de Météorologie Dynamique/Centre National de la Recherche Scientifique (LMD/CNRS), Paris, France
Carlos A. Nobre
National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN), São José dos Campos – São Paulo, Brazil
Related authors
Sandro F. Veiga, Paulo Nobre, Emanuel Giarolla, Vinicius Capistrano, Manoel Baptista Jr., André L. Marquez, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Kubota, and Carlos A. Nobre
Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, https://doi.org/10.5194/gmd-12-1613-2019, 2019
Short summary
Short summary
This study evaluates the Brazilian Earth System Model with coupled ocean–atmosphere version 2.5 (BESM-OA2.5) and the effectiveness of reproducing the main characteristics of the atmospheric and oceanic variability in a real-life-based scenario of greenhouse gas increase (the CMIP5 historical protocol). The evaluation specifically focuses on how the model simulates the mean climate state, as well as the most important large-scale climate patterns.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Eduardo Rohde Eras, Haroldo Fraga de Campos Velho, and Paulo Yoshio Kubota
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-59, https://doi.org/10.5194/gmd-2023-59, 2023
Publication in GMD not foreseen
Short summary
Short summary
The portion of the earth atmosphere closer to the ground is responsible for heat, moisture and mechanical energy transportation between the surface and the air through turbulence, been very important for weather forecast. Between many solutions used to model this turbulence, this is the first attempt to use one based on Taylor's statistical theory in a global atmospheric model, achieving good results for precipitation and energy transportation, specially in the Amazon basin region.
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023, https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Short summary
The municipality of Petrópolis (approximately 305 687 inhabitants) is nestled in the mountains 68 km outside the city of Rio de Janeiro. On 15 February 2022, the city of Petrópolis in Rio de Janeiro, Brazil, received an unusually high volume of rain within 3 h (258 mm). This resulted in flash floods and subsequent landslides that caused 231 fatalities, the deadliest landslide disaster recorded in Petrópolis. This work shows how the disaster was triggered.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Anna Lea Albright, Benjamin Fildier, Ludovic Touzé-Peiffer, Robert Pincus, Jessica Vial, and Caroline Muller
Earth Syst. Sci. Data, 13, 617–630, https://doi.org/10.5194/essd-13-617-2021, https://doi.org/10.5194/essd-13-617-2021, 2021
Short summary
Short summary
A number of climate mysteries are rooted in uncertainties in how clouds respond to their environment in the trades, the global belt of easterly winds. Differences in radiative heating play a role in the couplings between clouds and their environment. We calculate radiative profiles from 2580 dropsondes and radiosondes from the EUREC4A field campaign (downstream Atlantic trades, winter 2020). We describe the method, assess uncertainty, and discuss radiative heating variability on multiple scales.
Fernanda Casagrande, Ronald Buss de Souza, Paulo Nobre, and Andre Lanfer Marquez
Ann. Geophys., 38, 1123–1138, https://doi.org/10.5194/angeo-38-1123-2020, https://doi.org/10.5194/angeo-38-1123-2020, 2020
Short summary
Short summary
Polar amplification is possibly one of the most important sensitive indicators of climate change. Our results showed that the polar regions are much more vulnerable to large warming due to an increase in atmospheric CO2 forcing than the rest of the world, particularly during the cold season. Despite the asymmetry in warming between the Arctic and Antarctic, both poles show systematic polar amplification in all climate models.
Sandro F. Veiga, Paulo Nobre, Emanuel Giarolla, Vinicius Capistrano, Manoel Baptista Jr., André L. Marquez, Silvio Nilo Figueroa, José Paulo Bonatti, Paulo Kubota, and Carlos A. Nobre
Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, https://doi.org/10.5194/gmd-12-1613-2019, 2019
Short summary
Short summary
This study evaluates the Brazilian Earth System Model with coupled ocean–atmosphere version 2.5 (BESM-OA2.5) and the effectiveness of reproducing the main characteristics of the atmospheric and oceanic variability in a real-life-based scenario of greenhouse gas increase (the CMIP5 historical protocol). The evaluation specifically focuses on how the model simulates the mean climate state, as well as the most important large-scale climate patterns.
Mabel Costa Calim, Paulo Nobre, Peter Oke, Andreas Schiller, Leo San Pedro Siqueira, and Guilherme Pimenta Castelão
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-5, https://doi.org/10.5194/gmd-2018-5, 2018
Revised manuscript not accepted
Short summary
Short summary
A new tool inspired on tides is introduced. The Spectral Taylor Diagram designed for evaluating and monitoring models performance in frequency domain calculates the degree of correspondence between simulated and observed fields for a given frequency (or a band of frequencies). It's a powerful tool to detect co-oscillating patterns in multi scale analysis, without using filtering techniques.
Related subject area
Climate and Earth system modeling
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Architectural Insights and Training Methodology Optimization of Pangu-Weather
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Robust handling of extremes in quantile mapping – "Murder your darlings"
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
Short-term effects of hurricanes on nitrate-nitrogen runoff loading: a case study of Hurricane Ida using E3SM land model (v2.1)
CARIB12: A Regional Community Earth System Model / Modular Ocean Model 6 Configuration of the Caribbean Sea
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
Evaluation of global fire simulations in CMIP6 Earth system models
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Design, evaluation and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Introducing the MESMER-M-TPv0.1.0 module: Spatially Explicit Earth System Model Emulation for Monthly Precipitation and Temperature
Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified Convection-Permitting E3SM Atmosphere Model Version 0
Machine learning parameterization of the multi-scale Kain–Fritsch (MSKF) convection scheme and stable simulation coupled in the Weather Research and Forecasting (WRF) model using WRF–ML v1.0
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Deifilia Aurora To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
EGUsphere, https://doi.org/10.5194/egusphere-2024-1714, https://doi.org/10.5194/egusphere-2024-1714, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers three-dimensional atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20–30%. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases accessibility of training and working with the model.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-98, https://doi.org/10.5194/gmd-2024-98, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger range of data is likely encountered outside the calibration period. The end result is highly dependent on the method used, and we show that one needs to exclude data in the calibration range to activate the extrapolation functionality also in that time period, else there will be discontinuities in the timeseries.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1456, https://doi.org/10.5194/egusphere-2024-1456, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant covariances during convective and frontal precipitation events. Common statistical downscaling techniques preserve expected covariances during convective precipitation. However, they dampen future intensification of frontal precipitation captured in global climate models and dynamical downscaling. This suggests statistical downscaling may not fully resolve non-stationary hydrologic processes as compared to dynamical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-97, https://doi.org/10.5194/gmd-2024-97, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Research software is crucial for scientific progress but is often developed by scientists with limited training, time, and funding, leading to software that is hard to understand, (re)use, modify, and maintain. Our study across 10 research sectors highlights strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. Recommendations include workshops, code quality metrics, funding, and adherence to FAIR standards.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-70, https://doi.org/10.5194/gmd-2024-70, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Hurricanes may worsen the water quality in the lower Mississippi River Basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate-nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in LMRB during Hurricane Ida in 2021, but less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni G. Seijo-Ellis, Donata Giglio, Gustavo M. Marques, and Frank O. Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1378, https://doi.org/10.5194/egusphere-2024-1378, 2024
Short summary
Short summary
A CESM/MOM6 regional configuration of the Caribbean Sea was developed as a response to the rising need of high-resolution models for climate impact studies. The configuration is validated for the period of 2000–2020 and improves significant errors in a low resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon river are well captured and the mean flows across the multiple passages in the Caribbean Sea agree with observations.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-85, https://doi.org/10.5194/gmd-2024-85, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 CMIP6 ESMs. Most models reproduce global total, spatial pattern, seasonality, and regional historical changes well, but fail to simulate the recent decline in global burned area and underestimate the fire sensitivity to wet-dry conditions. They addressed three critical issues in CMIP5. We present targeted guidance for fire scheme development and methodologies to generate reliable fire projections.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Giovanni Di Virgilio, Jason Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew Riley, and Jyothi Lingala
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-87, https://doi.org/10.5194/gmd-2024-87, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models, and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleußner
EGUsphere, https://doi.org/10.5194/egusphere-2024-278, https://doi.org/10.5194/egusphere-2024-278, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Their joint distribution largely determines the division into climate regimes. Yet, projecting precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows to generate monthly means of local precipitation and temperature at low computational costs.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Xiaohui Zhong, Xing Yu, and Hao Li
Geosci. Model Dev., 17, 3667–3685, https://doi.org/10.5194/gmd-17-3667-2024, https://doi.org/10.5194/gmd-17-3667-2024, 2024
Short summary
Short summary
In order to forecast localized warm-sector rainfall in the south China region, numerical weather prediction models are being run with finer grid spacing. The conventional convection parameterization (CP) performs poorly in the gray zone, necessitating the development of a scale-aware scheme. We propose a machine learning (ML) model to replace the scale-aware CP scheme. Evaluation against the original CP scheme has shown that the ML-based CP scheme can provide accurate and reliable predictions.
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002. a
Alpert, J. C., Kanamitsu, M., Caplan, P. M., Sela, J. G., White, G. H., and
Kalnay, E.: Mountain induced gravity wave drag parameterization in the NMC
medium-range forecast model, 726–733, Am. Meterool. Soc., 1988. a
Amaya, D. J., DeFlorio, M. J., Miller, A. J., and Xie, S.-P.: WES feedback
and the Atlantic Meridional Mode: observations and CMIP5 comparisons,
Clim. Dynam., 49, 1665–1679, https://doi.org/10.1007/s00382-016-3411-1, 2017. a
Andrews, T. and Forster, P. M.: CO2 forcing induces semi-direct effects
with consequences for climate feedback interpretations, Geophys. Res.
Lett., 35, L04802, https://doi.org/10.1029/2007GL032273, 2008. a, b
Arrhenius, S.: On the influence of carbonic acid in the air upon the
temperature of the ground, Philosophical Magazine and Journal of Science, 41, 251, 1896. a
Bi, D., Dix, M., Marsland, S., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
T., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S.,
Hill, R., Harris, C., and Puri, K.: The ACCESS Coupled Model:
Description, Control Climate and Evaluation, Aust. Meteorol.
Ocean., 63, 41–64, 2013. a
Block, K., Schneider, F. A., Mülmenstädt, J., Salzmann, M., and Quaas, J.:
Climate models disagree on the sign of total radiative feedback in the
Arctic, Tellus A, 72, 1–14,
https://doi.org/10.1080/16000870.2019.1696139,
2020. a, b
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S.,
Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W.,
Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do
we understand and evaluate climate change feedback processes?, J.
Climate, 19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006. a
Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-Profile
Relationships in the Atmospheric Surface Layer, J. Atmos.
Sci., 28, 181–189,
https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2, 1971. a
Cai, W., Whetton, P. H., and Karoly, D. J.: The Response of the Antarctic
Oscillation to Increasing and Stabilized Atmospheric CO2, J. Climate, 16, 1525–1538, https://doi.org/10.1175/1520-0442-16.10.1525, 2003. a, b
Cai, W., Santoso, A., Wang, G., Yeh, S.-W., An, S.-I., Cobb, K. M., Collins,
M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne, M., McPhaden, M. J.,
Takahashi, K., Timmermann, A., Vecchi, G., Watanabe, M., and Wu, L.: ENSO
and greenhouse warming, Nat. Clim. Change, 5, 849–859,
https://doi.org/10.1038/nclimate2743, 2015. a, b
Caldwell, P. M., Zelinka, M. D., Taylor, K. E., and Marvel, K.: Quantifying the
Sources of Intermodel Spread in Equilibrium Climate Sensitivity,
J. Climate, 29, 513–524, https://doi.org/10.1175/JCLI-D-15-0352.1, 2016. a
Callendar, G.: The Artificial Production of Carbon Dioxide, Q. J. Roy. Meteor. Soc., 64, 223–240,
https://doi.org/10.1002/qj.49706427503, 1938. a
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl,
J. T., Le Treut, H., Li, Z.-X., Liang, X.-Z., Mitchell, J. F. B., Morcrette,
J.-J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A.,
Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.:
Interpretation of Cloud-Climate Feedback as Produced by 14
Atmospheric General Circulation Models, Science, 245, 513–516,
https://doi.org/10.1126/science.245.4917.513, 1989. a, b
Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., and Del Genio, A. D.:
Intercomparison and interpretation of climate feedback processes in 19
atmospheric general circulation models, J. Geophys. Res., 95,
16601–16615, https://doi.org/10.1029/JD095iD10p16601, 1990. a
Chung, E.-S. and Soden, B. J.: An Assessment of Direct Radiative Forcing,
Radiative Adjustments, and Radiative Feedbacks in Coupled Ocean–Atmosphere
Models, J. Climate, 28, 4152–4170, https://doi.org/10.1175/JCLI-D-14-00436.1,
2015. a
Collins, M., An, S.-I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.-F.,
Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and
Wittenberg, A.: The impact of global warming on the tropical Pacific
Ocean and El Niño, Nat. Geosci., 3, 391–397,
https://doi.org/10.1038/ngeo868, 2010. a
Collins, W. D., Ramaswamy, V., Schwarzkopf, M. D., Sun, Y., Portmann, R. W.,
Fu, Q., Casanova, S. E. B., Dufresne, J.-L., Fillmore, D. W., Forster, P.
M. D., Galin, V. Y., Gohar, L. K., Ingram, W. J., Kratz, D. P., Lefebvre,
M.-P., Li, J., Marquet, P., Oinas, V., Tsushima, Y., Uchiyama, T., and Zhong,
W. Y.: Radiative forcing by well-mixed greenhouse gases: Estimates from
climate models in the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report (AR4), J. Geophys. Res., 111, D14317,
https://doi.org/10.1029/2005JD006713, 2006. a, b
Cubasch, U. and Cess, R. D.: Processes and modeling. Climate Change: The
IPCC Scientific Assessment, Cambridge University Press, Cambridge, 1990. a
DiNezio, P. N., Kirtman, B. P., Clement, A. C., Lee, S.-K., Vecchi, G. A.,
and Wittenberg, A.: Mean Climate Controls on the Simulated Response of
ENSO to Increasing Greenhouse Gases, J. Climate, 25, 7399–7420,
https://doi.org/10.1175/JCLI-D-11-00494.1, 2012. a
Dix, M., Vohralik, P., Bi, D., Rashid, H., Marsland, S., O’Farrell, S.,
Uotila, P., Hirst, T., Kowalczyk, E., Sullivan, A., Yan, H., Franklin, C.,
Sun, Z., Watterson, I., Collier, M., Noonan, J., Rotstayn, L., Stevens, S.,
Uhe, P., and Puri, K.: The ACCESS coupled model: description, control
climate and evaluation, Aust. Meteorol. Ocean.,
63, 83–99, 2013. a
Drijfhout, S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a Decline of
AMOC Causing the Warming Hole above the North Atlantic in
Observed and Modeled Warming Patterns?, J. Climate, 25,
8373–8379, https://doi.org/10.1175/JCLI-D-12-00490.1, 2012. a, b
Dufresne, J.-L. and Bony, S.: An Assessment of the Primary Sources of Spread
of Global Warming Estimates from Coupled Atmosphere–Ocean Models, J.
Climate, 21, 5135–5144, https://doi.org/10.1175/2008JCLI2239.1, 2008. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., and DiMego, G.:
Implementation of a new grid-scale cloud and precipitation scheme in the
NCEP Eta Model, 280–283, Am. Meteorol. Soc., San Antonio,TX, 2002. a
Figueroa, S. N., Kubota, P. Y., Grell, G., Morrison, H., Bonatti, J. P.,
Barros, S., Fernandez, J. P., Ramirez, E., Siqueira, L., Satyamurti, P.,
Luzia, G., da Silva, J., da Silva, J., Pendharkar, J., Capistrano, V. B.,
Alvin, D., Enore, D., Denis, F., Rozante, J. R., Cavalcanti, I., Barbosa, H.,
Mendes, C., and Tarassova, T.: The Brazilian Global Atmospheric
Model (BAM). Part I: Performance for Tropical Rainfall forecasting and
sensitivity to convective schemes and horizontal resolutions, Weather
Forecast., 31, 1547–1572, https://doi.org/10.1175/WAF-D-16-0062.1, 2016. a, b
Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch,
S., and Haxeltine, A.: An integrated biosphere model of land surface
processes, terrestrial carbon balance, and vegetation dynamics, vol. 10,
1996. a
Fyfe, J. C., Boer, G. J., and Flato, G. M.: The Arctic and Antarctic
oscillations and their projected changes under global warming, Geophys.
Res. Lett., 26, 1601–1604, https://doi.org/10.1029/1999GL900317, 1999. a, b
Gastineau, G. and Soden, B. J.: Model projected changes of extreme wind
events in response to global warming, Geophys. Res. Lett., 36, L10810,
https://doi.org/10.1029/2009GL037500, 2009. a
Good, P., Andrews, T., Chadwick, R., Dufresne, J.-L., Gregory, J. M., Lowe, J. A., Schaller, N., and Shiogama, H.: nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0), Geosci. Model Dev., 9, 4019–4028, https://doi.org/10.5194/gmd-9-4019-2016, 2016. a
Gregory, J. and Webb, M.: Tropospheric Adjustment Induces a Cloud Component
in CO2 Forcing, J. Climate, 21, 58–71,
https://doi.org/10.1175/2007JCLI1834.1, 2008. a, b
Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A.,
Thorpe, R. B., Lowe, J. A., Jonhs, T. C., and Williams, K. D.: A new method
for diagnosing radiative forcing and climate sensitivity, Geophys.
Res. Lett., 31, L03205, https://doi.org/10.1029/2003GL018747, 2004. a, b, c, d
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques:
Parameterizing convection combining ensemble and data
assimilation techniques, 29, 38-1–38-4, https://doi.org/10.1029/2002GL015311,
2002. a, b
Griffies, S. M., Harrison, M. J., Pacanowski, Ronald, C., and Rosati, A.: A
Technical Guide to MOM4, GFDL Ocean Group Technical Report No. 5,
NOAA/Geophysical Fluid Dynamics Laboratory, available at:
https://www.gfdl.noaa.gov (last access: 1 June 2016), 2004. a
Grimm, A. M. and Tedeschi, R. G.: ENSO and Extreme Rainfall Events in South
America, J. Climate, 22, 1589–1609, https://doi.org/10.1175/2008JCLI2429.1,
2009. a
Harshvardhan, Davies, R., Randall, D. A., and Corsetti, T. G.: A fast
radiation parameterization for atmospheric circulation models, J.
Geophys. Res., 92, 1009, https://doi.org/10.1029/JD092iD01p01009, 1987. a
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to
Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1,
2006. a, b, c, d
Holtslag, A. A. M. and Boville, B. A.: Local versus nonlocal boundary-layer
diffusion in a global climate model, J. Climate, 6, 1825–1842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2, 1993. a
Huang, P. and Xie, S.-P.: Mechanisms of change in ENSO-induced tropical
Pacific rainfall variability in a warming climate, Nat. Geosci., 8,
922–926, https://doi.org/10.1038/ngeo2571, 2015. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a, b
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for
the WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012. a, b, c
Jonko, A. K., Shell, K. M., Sanderson, B. M., and Danabasoglu, G.: Climate
Feedbacks in CCSM3 under Changing CO2 Forcing. Part II:
Variation of Climate Feedbacks and Sensitivity with Forcing, J.
Climate, 26, 2784–2795, https://doi.org/10.1175/JCLI-D-12-00479.1, 2013. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino,
M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1643,
https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Kaplan, L. D.: The Influence of Carbon Dioxide Variations on the Atmospheric
Heat Balance, Tellus, 12, 204–208, https://doi.org/10.1111/j.2153-3490.1960.tb01301.x,
1960. a
Kayano, M. T., Rao, V. B., and Moura, A. D.: Tropical circulations and the
associated rainfall anomalies during two contrasting years, J.
Climatology, 8, 477–488, https://doi.org/10.1002/joc.3370080504, 1988. a
Kubota, P. Y.: Variability of stored energy in the surface and its impact on
the definition of the precipitation pattern over South America
(Variablidade de energia armazenada na superfície e seu impacto na
definição do padrão de precipitação na América do
Sul), PhD thesis, National Institute for Space Research (INPE),
available at:
http://mtc-m16d.sid.inpe.br/col/sid.inpe.br/mtc-m19/2012/08.02.02.42/doc/publicacao.pdf (last access: 13 January 2018),
2012. a
Liu, H., Wang, C., Lee, S.-K., and Enfield, D.: Atlantic Warm Pool
Variability in the CMIP5 Simulations, J. Climate, 26,
5315–5336, https://doi.org/10.1175/JCLI-D-12-00556.1, 2013. a
Liu, Z., Vavrus, S., He, F., Wen, N., and Zhong, Y.: Rethinking Tropical
Ocean Response to Global Warming: The Enhanced Equatorial Warming*, J. Climate, 18, 4684–4700, https://doi.org/10.1175/JCLI3579.1, 2005. a
Manabe, S. and Stouffer, R. J.: Sensitivity of a global climate model to an
increase of CO2 concentration in the atmosphere, J. Geophys.
Res., 85, 5529–5554, https://doi.org/10.1029/JC085iC10p05529, 1980. a, b
Manabe, S. and Wetherald, R. T.: Thermal Equilibrium of the Atmosphere with a
Given Distribution of Relative Humidity, J. Atmos. Sci.,
24, 241–259, 1967. a
Manabe, S. and Wetherald, R. T.: The Effects of Doubling the CO2
Concentration on the climate of a General Circulation Model, J. Atmos. Sci., 32, 3–15,
https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2, 1975. a
Marengo, J. A. and Hastenrath, S.: Case Studies of Extreme Climatic
Events in the Amazon Basin, J. Climate, 6, 617–627,
https://doi.org/10.1175/1520-0442(1993)006<0617:CSOECE>2.0.CO;2, 1993. a
Marvel, K. and Bonfils, C.: Identifying external influences on global
precipitation, P. Natl. Acad. Sci. USA, 110,
19301–19306, https://doi.org/10.1073/pnas.1314382110, 2013. a
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat,
B. I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden,
H. L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘ N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015. a
Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
geophysical fluid problems, Rev. Geophys., 20, 851,
https://doi.org/10.1029/RG020i004p00851, 1982. a
Miller, R. L., Schmidt, G. A., and Shindell, D. T.: Forced annular variations
in the 20th century Intergovernmental Panel on Climate Change Fourth
Assessment Report models, J. Geophys. Res., 111, D18101,
https://doi.org/10.1029/2005JD006323, 2006. a, b
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A New Double-Moment
Microphysics Parameterization for Application in Cloud and Climate Models.
Part I: Description, J. Atmos. Sci., 62, 1665–1677,
https://doi.org/10.1175/JAS3446.1, 2005. a
Nobre, P. and Shukla, J.: Variations of Sea Surface Temperature, Wind
Stress, and Rainfall over the Tropical Atlantic and South
America, J. Climate, 9, 2464–2479,
https://doi.org/10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2, 1996. a
Nobre, P., Siqueira, L. S. P., de Almeida, R. A. F., Malagutti, M., Giarolla,
E., Castelão, G. P., Bottino, M. J., Kubota, P., Figueroa, S. N., Costa,
M. C., Baptista, M., Irber, L., and Marcondes, G. G.: Climate Simulation
and Change in the Brazilian Climate Model, J. Climate, 26,
6716–6732, https://doi.org/10.1175/JCLI-D-12-00580.1, 2013. a, b
Park, S. and Bretherton, C. S.: The University of Washington Shallow Convection
and Moist Turbulence Schemes and Their Impact on Climate Simulations with the
Community Atmosphere Model, 22, 3449–3469, https://doi.org/10.1175/2008JCLI2557.1,
2009. a
Pincus, R., Forster, P. M., and Stevens, B.: The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6, Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016, 2016. a
Pithan, F. and Mauritsen, T.: Arctic amplification dominated by temperature
feedbacks in contemporary climate models, Nat. Geosci., 7, 181–184,
https://doi.org/10.1038/ngeo2071, 2014. a
Plass, G. N.: The Carbon Dioxide Theory of Climatic Change, Tellus, 8,
140–154, https://doi.org/10.1111/j.2153-3490.1956.tb01206.x, 1956. a
Richter, I., Xie, S.-P., Behera, S. K., Doi, T., and Masumoto, Y.: Equatorial
Atlantic variability and its relation to mean state biases in CMIP5,
Clim. Dynam., 42, 171–188, https://doi.org/10.1007/s00382-012-1624-5, 2014. a
Rieger, V. S., Dietmüller, S., and Ponater, M.: Can feedback analysis be used
to uncover the physical origin of climate sensitivity and efficacy
differences?, Clim. Dynam., 49, 2831–2844,
https://doi.org/10.1007/s00382-016-3476-x, 2017. a
Seager, R., Naik, N., and Vecchi, G. A.: Thermodynamic and Dynamic
Mechanisms for Large-Scale Changes in the Hydrological Cycle in
Response to Global Warming*, J. Climate, 23, 4651–4668,
https://doi.org/10.1175/2010JCLI3655.1,
2010. a
Shell, K. M., Kiehl, J. T., and Shields, C. A.: Using the radiative kernel
technique to calculate climate feedbacks in NCAR's Community
Atmospheric Model, J. Climate, 21, 2269–2282,
https://doi.org/10.1175/2007JCLI2044.1, 2008. a
Slingo, J. M.: The Development and Verification of A Cloud Prediction Scheme
For the ECMWF Model, Q. J. Roy. Meteor. Soc.,
113, 899–927, https://doi.org/10.1002/qj.49711347710, 1987. a
Soden, B. and Held, I.: An Assessment of Climate Feedbacks in Coupled Ocean
– Atmosphere Models, J. Climate, 19, 3354–3360,
https://doi.org/10.1175/JCLI9028.1, 2006. a, b, c, d
Soden, B. J., Broccoli, A. J., and Hemler, R. S.: On the use of cloud forcing
to estimate cloud feedback, J. Climate, 17, 3661–3665,
https://doi.org/10.1175/1520-0442(2004)017<3661:OTUOCF>2.0.CO;2, 2004. a, b, c
Tarasova, T. A. and Fomin, B. A.: The Use of New Parameterizations for
Gaseous Absorption in the CLIRAD-SW Solar Radiation Code for Models,
J. Atmos. Ocean. Tech., 24, 1157–1162,
https://doi.org/10.1175/JTECH2023.1, 2007. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a
Tiedtke, M.: The sensitivity of the time mean large-scale flow to cumulus
convection in the ECMWF model. Workshop on Convection in Large-Scale
Numerical Model, 297–316, ECMWF, Reading, UK, 1984. a
Veiga, S. F., Nobre, P., Giarolla, E., Capistrano, V., Baptista Jr., M., Marquez, A. L., Figueroa, S. N., Bonatti, J. P., Kubota, P., and Nobre, C. A.: The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: evaluation of its CMIP5 historical simulation, Geosci. Model Dev., 12, 1613–1642, https://doi.org/10.5194/gmd-12-1613-2019, 2019. a, b, c, d
Vial, J., Dufresne, J.-L., and Bony, S.: On the interpretation of inter-model
spread in CMIP5 climate sensitivity estimates, Clim. Dynam., 41,
3339–3362, https://doi.org/10.1007/s00382-013-1725-9, 2013. a, b, c, d
Webster, S., Brown, A. R., Cameron, D. R., and Jones, C. P.: Improvements to the
representation of orography in the Met Office Unified Model, Q. J. Roy. Meteor. Soc., 129, 1989–2010,
https://doi.org/10.1256/qj.02.133, 2003. a
Xie, S.-P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A.,
Hawkins, E., Johnson, N. C., Cassou, C., Giannini, A., and Watanabe, M.:
Towards predictive understanding of regional climate change, Nat. Clim.
Change, 5, 921–930, https://doi.org/10.1038/nclimate2689, 2015. a
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A simplified
biosphere model for global climate studies, J. Climate, 4, 345–364,
1991. a
Short summary
This work represents the product of our recent efforts to develop a Brazilian climate model and helps address some scientific issues on the frontier of knowledge (e.g., cloud feedback studies). The BESM results show climate sensitivity and thermodynamical responses similar to a CMIP5 ensemble. More than that, BESM has the objective of being an additional climate model with the ability to reproduce changes that are physically understood in order to study the global climate system.
This work represents the product of our recent efforts to develop a Brazilian climate model and...