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Abstract. The main features of climate change patterns, as
simulated by the coupled ocean–atmosphere version 2.5 of
the Brazilian Earth System Model (BESM), are compared
with those of 25 other CMIP5 models, focusing on tem-
perature, precipitation, atmospheric circulation, and radiative
feedbacks. The climate sensitivity to quadrupling the atmo-
spheric CO2 concentration was investigated via two methods:
linear regression (Gregory et al., 2004) and radiative ker-
nels (Soden and Held, 2006; Soden et al., 2008). Radiative
kernels from both the National Center for Atmospheric Re-
search (NCAR) and the Geophysical Fluid Dynamics Lab-
oratory (GFDL) were used to decompose the climate feed-
back responses of the CMIP5 models and BESM into dif-
ferent processes. By applying the linear regression method
for equilibrium climate sensitivity (ECS) estimation, we ob-
tained a BESM value close to the ensemble mean value. This
study reveals that the BESM simulations yield zonally av-
erage feedbacks, as estimated from radiative kernels, that
lie within the ensemble standard deviation. Exceptions were
found in the high latitudes of the Northern Hemisphere and
over the ocean near Antarctica, where BESM showed val-
ues for lapse rate, humidity feedback, and albedo that were
marginally outside the standard deviation of the values from
the CMIP5 multi-model ensemble. For those areas, BESM
also featured a strong positive cloud feedback that appeared
as an outlier compared with all analyzed models. However,

BESM showed physically consistent changes in the temper-
ature, precipitation, and atmospheric circulation patterns rel-
ative to the CMIP5 ensemble mean.

1 Introduction

The effects of increased atmospheric CO2 concentrations on
the climate system have been studied over the last 120 years
(Arrhenius, 1896; Callendar, 1938; Plass, 1956; Kaplan,
1960; Manabe and Wetherald, 1967, 1975; Manabe and
Stouffer, 1980; IPCC, 2007, 2013; Pincus et al., 2016; Good
et al., 2016, and many others). The human-induced increase
in atmospheric greenhouse gas (GHG) concentrations, some-
times given as the CO2-equivalent concentration, contributes
to a radiation imbalance at the top of the atmosphere (TOA)
that causes less outgoing radiation to leave the Earth system.
The trapping of infrared radiation results in a temperature
rise at the lower levels of the troposphere and an increase
in ocean heat content. In addition, the increased GHG con-
centration can trigger climate feedback processes that either
amplify or damp the initial radiative perturbation (Cubasch
and Cess, 1990). Earth system models (ESMs) are the most
advanced tools available for analyzing the coupled climate
system (atmosphere, ocean, land, and ice) physical processes
and their interactions, although even these models still ex-
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hibit important uncertainties in their projections of climate
change (IPCC, 2013).

The equilibrium global mean surface temperature change
induced by doubling the CO2 concentration in the atmo-
sphere, referred to as the equilibrium climate sensitivity
(ECS), remains a centrally important measure of a model’s
climate response to CO2 forcing. In the fifth Intergovern-
mental Panel on Climate Change (IPCC) assessment report
(AR5), climate model ECS estimates range from 2.0 to 4.5 K.
For more than 40 years, this inter-model spread has been con-
sidered one of the most critical uncertainties for the evalua-
tion of future climate change (IPCC, 2013). This inter-model
dispersion arises principally from differences in how the cli-
mate models simulate climate feedback processes. Among
them, cloud feedback constitutes the largest source of vari-
ation in the climate sensitivity estimates (Cess et al., 1989,
1990; Dufresne and Bony, 2008; Vial et al., 2013; Caldwell
et al., 2016).

Beyond the ECS, the response of precipitation patterns to
anthropogenic GHG emissions is a topic of great interest in
climate science given their potential effects on both societies
and ecosystems. Changes in precipitation can generally be
decomposed into two processes: a thermodynamic compo-
nent due to increased moisture with no circulation change
and a dynamic component due to circulation change with
no moisture change (Bony et al., 2006; Seager et al., 2010).
The thermodynamic component gives rise to the well-known
“wet-gets-wetter” and “dry-gets-drier” patterns of precipita-
tion change first described by Held and Soden (2006), which
are associated with the Clausius–Clapeyron relation (i.e.,
a temperature-dependent exponential increase in the satu-
ration specific humidity) (Marvel and Bonfils, 2013). The
dynamic component, which is associated with circulation
change, sometimes yields strong deviations from the ther-
modynamic pattern of precipitation, and this component is
known to dominate the inter-model deviation in estimates of
total precipitation due to uncertainties in the regional circu-
lation change (Xie et al., 2015).

In this study, we assess the main features of climate change
patterns as simulated by the Brazilian Earth System Model
ocean–atmosphere coupled version 2.5 (BESM-OA2.5), with
a focus on temperature (climate sensitivity and feedbacks),
precipitation, and atmospheric circulation. The recent devel-
opment of the BESM-OA2.5 has been a coordinated effort
at the National Institute for Space Research (INPE) in Brazil
intended to advance the understanding of the causes of global
and regional climate changes and their effects on the socioe-
conomic sector. We evaluate how the BESM-simulated cli-
mate change prediction compares with those from Coupled
Model Intercomparison Project Phase 5 (CMIP5) models,
also discussing peculiarities in the BESM-OA2.5 climate re-
sponse. This paper is structured as follows: Sect. 2 presents
the description of the new features of BESM-OA2.5, Sect. 3
presents the methodology, Sect. 4 presents the results, and
Sect. 5 presents the summary and conclusions.

2 Model description

2.1 BESM-OA2.5

BESM-OA2.5 is the result of coupling the Center for
Weather Forecast and Climate Studies (CPTEC/INPE)
Brazilian Atmospheric Model (BAM; Figueroa et al., 2016)
and the Geophysical Fluid Dynamics Laboratory (GFDL)
Modular Ocean Model version 4p1 (Griffies et al., 2004)
via the Flexible Modular System (FMS) (also from GFDL).
The dynamical core and physical parameterizations of the
atmospheric component of BESM-OA2.5 are the same as
those discussed in Veiga et al. (2019). BAM is a hydro-
static model, with its dynamical core based on the spectral
transform method, which employs global spherical harmonic
basis functions. The Eulerian advection scheme option is
used in this study, with a two-time-level semi-Lagrangian
scheme for the transport of moisture and microphysics prog-
nostic variables, which are carried out completely within the
model grid space. Simplified fast physical parameterizations
are used here to increase the computational efficiency of long
integrations, thus resulting in a decreased computational de-
mand compared with that required by the operational Numer-
ical Weather Prediction (NWP) model. A summary of the
main differences in the physical parameterizations between
BAM (as used in this paper) and the BAM NWP operational
model is provided in Table 1. The dynamical equations in
BAM are discretized following a spectral transform with hor-
izontal resolution truncated at triangular wavenumber 62 (an
equivalent grid size of approximately 1.875◦) and 28 layers
unevenly spaced in the vertical sigma coordinate with the top
level at approximately 2.73 hPa. The oceanic component uses
a tripolar grid at a horizontal resolution of 1◦ in longitude,
and in the latitudinal direction the grid spacing is 1/4◦ be-
tween 10◦ S and 10◦ N, decreasing uniformly to 1◦ at 45◦

and to 2◦ at 90◦ in both hemispheres. The ocean grid has 50
vertical levels with a 10 m resolution in the upper 220 m, de-
creasing gradually to approximately 370 m at deeper levels.

Veiga et al. (2019) showed that BESM-OA2.5 can cap-
ture the general mean climate state; however, substantial
biases appeared in the simulation associated with a dou-
ble Intertropical Convergence Zone (ITCZ) over the Pacific
and Atlantic oceans and regional biases in the precipitation
over the Amazon and Indian regions. BESM-OA2.5 can also
reproduce the most important large-scale interannual and
decadal climate variability patterns. The Atlantic Meridional
Mode (AMM) (Nobre and Shukla, 1996) is well simulated by
the model in terms of its spatial pattern and temporal variabil-
ity, whereas this mode is poorly represented in most CMIP5
models (IPCC, 2013; Liu et al., 2013; Richter et al., 2014;
Amaya et al., 2017). The maximum strength of the Atlantic
Meridional Overturning Circulation (AMOC) represented by
BESM-OA2.5 is 14 Sv, which is lower than the value de-
termined within the RAPID project (17 Sv; McCarthy et al.,
2015) but in the range of the observed root mean square vari-
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Table 1. Atmospheric physical parameterizations used in BAM (Figueroa et al., 2016) BESM-OA2.5.

Physical parameterization BAM BESM-OA2.5

Shortwave radiation RRTMG (Iacono et al., 2008) Clirad (Tarasova and Fomin, 2007)
Longwave radiation RRTMG (Iacono et al., 2008) Harshvardhan et al. (1987)
Cloud microphysics Morrison (Morrison et al., 2005) Ferrier et al. (2002)
Land surface model Ibis (Foley et al., 1996, modified by Kubota, 2012) SSib (Xue et al., 1991)
Planetary boundary layer Modified Mellor and Yamada (1982) scheme Holtslag and Boville (1993) scheme
Shallow convection UW shallow convection (Park and Bretherton, 2009) Tiedtke (1984)
Deep convection Modified Grell and Dévényi (2002) ensemble scheme Modified Grell and Dévényi (2002) ensemble scheme
Gravity wave Webster et al. (2003) scheme with low-level blocking Alpert et al. (1988)
Total cloud cover fraction Based on probability density function (PDF) Slingo (1987)

ability, and this value is comparable to the ensemble AMOC
simulated by the CMIP5 models. Moreover, the spatial struc-
tures of both the North Atlantic Oscillation (NAO) and the
Pacific Decadal Oscillation (PDO) variability are well cap-
tured (Veiga et al., 2019).

2.2 Comparison to a previous model version

The recently developed BESM-OA2.5 is an advancement
of BESM-OA2.3, which was presented by Nobre et al.
(2013). The main differences between BESM-OA2.5 and
the previous version (BESM-OA2.3) lie in the atmospheric
model and how some surface layer variables are estimated.
The total energy balance at the TOA is better represented
in BESM-OA2.5 than in BESM-OA2.3, with a reduced
global mean bias of approximately −4 W m−2 compared
with−20 W m−2 for the latter. It should be noted that BESM-
OA2.5 has a new set of parameterizations, mainly related to
an improved representation of microphysical processes. For
instance, the precipitation in the previous model was param-
eterized only in terms of the large-scale condensation. More-
over, BESM-OA2.5 underwent improvements in the repre-
sentation of wind, humidity, and temperature in the surface
layer with the use of the similarity functions method pre-
sented by Jiménez et al. (2012). Based on Monin–Obukhov
theory, the wind (u10 m), humidity (q2 m), and temperature
(θ2 m) are estimated from the values of the first atmospheric
model level and the surface, as described in Eqs. (24), (25),
and (26) of Jiménez et al. (2012). Furthermore, the similar-
ity functions ψm and ψh depend on the stability regimes
(Businger et al., 1971). For BESM-OA2.5, those regimes
are associated with stable (ζ/L > 0) and unstable (ζ/L≤
0) conditions (Arya, 1988). These diagnostic variables are
important for BESM because they are used in the ocean–
atmosphere coupling strategy.

Both versions reproduce the main climate variability, par-
ticularly over the Atlantic, such as the AMOC and the
AMM, but simulate a weak El Niño–Southern Oscillation
(ENSO) interannual variability over the equatorial Pacific
(Nobre et al., 2013; Veiga et al., 2019). Concerning the gen-
eral mean present-day climate state, BESM-OA2.5 shows

improvements in reproducing the Intertropical Convergence
Zone (ITCZ), and it reduces both the global precipitation
root mean square error (RMSE) and the sea surface tempera-
ture (SST) RMSE compared with those modeled by BESM-
OA2.3.

Global simulations that were 1 year long and 6-hourly
outputs were performed with BAM configured with surface
layer schemes based on Arya (1988) and Jiménez et al.
(2012), here called BAM-Arya (the original scheme) and
BAM-Jimenez (the new scheme), respectively. The normal-
ized RMSE was computed with respect to the reanalysis
NCEP-DOE (National Centers for Environmental Prediction
– Department of Energy) version 2 (Kanamitsu et al., 2002).
The normalized RMSE of the wind at 10 m and the temper-
ature and humidity at 2 m for the two surface layer schemes
was investigated. Consistent improvements of BAM-Jimenez
relative to BAM-Arya were noted in all three variables over
the oceanic regions. The normalized RMSE analysis over the
continents yielded less consistent results, with an improved
BAM-Jimenez representation of both winds and temperature
but with an inferior representation of the humidity field (fig-
ures not shown).

3 Methodology

3.1 Experimental design

For this study, climate simulations were performed using
BESM-OA2.5 (hereinafter BESM) for the piControl (prein-
dustrial control scenario, run for 300 years with atmospheric
CO2 concentration invariant at 274 ppmv) and abrupt4xCO2
(run for 150 years after the abrupt quadrupling of atmo-
spheric CO2 at year 151 of the piControl simulation) sce-
narios; therefore, both experiments were run in parallel for
150 years. These two scenarios are commonly employed
in CMIP5 studies for climate sensitivity assessment (Taylor
et al., 2012; Eyring et al., 2016). Climate change is evalu-
ated as the difference between the abrupt4xCO2 and piCon-
trol experiments. In addition, BESM’s results were compared
with a selection of 25 CMIP5 models listed in Table 2. All
models, including BESM, were interpolated at 2.5◦× 2.5◦
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Table 2. Models belonging to the CMIP5 ensemble used in this
study.

Number Model Institution, country

1 ACCESS1-0 CSIRO-BOM, Australia
2 ACCESS1-3 CSIRO-BOM, Australia
3 bcc-csm1-1 BCC, China
4 BNU-ESM BNU, China
5 CanESM2 CCCma, Canada
6 CCSM4 NCAR, USA
7 CNRM-CM5 CNRM-CERFACS, France
8 CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia
9 FGOALS-g2 LASG-CESS, China
10 FGOALS-s2 LASG-IAP, China
11 GFDL-CM3 NOAA-GFDL, USA
12 GFDL-ESM2G NOAA-GFDL, USA
13 GFDL-ESM2M NOAA-GFDL, USA
14 GISS-E2-H NASA-GISS, USA
15 GISS-E2-R NASA-GISS, USA
16 HadGEM2-ES MOHC, England
17 inmcm4 INM, Russia
18 IPSL-CM5A-LR IPSL, France
19 IPSL-CM5B-LR IPSL, France
20 MIROC-ESM MIROC, Japan
21 MIROC5 MIROC, Japan
22 MPI-ESM-LR MPI-M, Germany
23 MPI-ESM-P MPI-M, Germany
24 MRI-CGCM3 MRI, Japan
25 NorESM1-M NCC, Norway

longitude–latitude horizontal resolution. All CMIP5 model
data are available from the Earth System Grid Federation
(ESGF).

3.2 Climate change sensitivity estimates

Here we estimate the climate feedback with two different
methods using either a regression according to Gregory et al.
(2004) or radiative kernels (Soden et al., 2004, 2008). The
Gregory method is more straightforward computationally;
however, it returns only a global mean value. Moreover, the
ECS can be estimated with this method. On the other hand, it
is possible to obtain the seasonal feedback for every latitude–
longitude point with the radiative kernel method; further-
more, the feedback can be decomposed into different pro-
cesses.

3.2.1 Linear forcing–feedback regression analysis

The regression method for computing the thermal response to
radiative forcing was applied for 26 CMIP5 models, includ-
ing BESM. The method consists of linear regression between
the annual change (considering abrupt4xCO2 minus piCon-
trol) in the global mean near-surface temperature (1Tas) and
the net radiation flux change (1R) at the TOA.

IfG is the radiative forcing imposed on the climate system
(here associated with an abrupt increase in atmospheric CO2
concentration) and 1R is the resulting radiative imbalance
in the global mean net radiative budget at the TOA, then at
any time, the response of the climate system to this radiative
imbalance corresponds to the radiative forcing according to
the following equation:

1R = λ1T as+G, (1)

where λ (< 0) is the climate feedback parameter and1T as is
the global mean near-surface temperature change. In a suffi-
ciently long simulation (coupled atmosphere–ocean models
take millennia), the climate system reaches a new equilib-
rium when 1R = 0. As G can be approximated via back-
ward regression towards 1T as = 0, ECS can be estimated
as ECS=−G/λ. As the ECS is the theoretical equilibrium
temperature for doubling CO2, in a quadrupling of CO2 it is
common to divide the result derived from 4xCO2 simulations
by 2 (Andrews et al., 2012).

By using this linear forcing response framework, we can
estimate climate sensitivity, radiative forcing, and feedback
parameters following the method proposed by Gregory et al.
(2004). The values of λ (slope) and G (y intercept) are esti-
mated via the ordinary least-squares regression of the global
annual mean of 1R against 1T as under all-sky conditions.
Using the same linear technique, we decompose the feedback
parameter into shortwave (SW) and longwave (LW) radia-
tion components, and we extract the clear-sky radiative flux
components from the BESM and CMIP databases to estimate
the cloud radiative forcing or cloud radiative effect (1CRE)
defined as the difference between the all-sky and clear-sky
feedback parameters (Andrews et al., 2012). Estimates of G,
λ, 1CRE, and ECS for all models are presented in the next
section.

3.2.2 Separating individual climate feedbacks using
radiative kernels

The radiative kernel technique (as in Soden and Held, 2006;
Soden et al., 2008; Vial et al., 2013) is used to separate the
feedback parameter λ into contributions from the tempera-
ture response (λT ), water vapor (λlnq ), surface albedo (λa),
and cloud (λc) feedbacks plus a residual term (Re) (Vial et al.,
2013) as expressed in Eq. (2).

λ= λT + λlnq + λa + λc+Re (2)

We used both GFDL (Soden et al., 2008) and National
Center for Atmospheric Research (NCAR) (Shell et al.,
2008) radiative kernels to estimate climate feedbacks. Such
radiative kernels represent the impact on the radiative bal-
ance at the TOA via arbitrary increases in the atmospheric
temperature, albedo, and specific humidity. For calculating
the temperature kernel, an increment of 1 K is added for
all model levels (including the surface). For the albedo ker-
nel, the albedo value is increased by 0.01 (1 %). Finally, for
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the water vapor kernel, the specific humidity is increased
by a value equivalent to a 1 K atmosphere temperature in-
crease, with the relative humidity remaining constant. Fur-
thermore, we used the lnq instead of q, considering the
quasi-proportionality of the absorption of radiation by water
vapor to lnq.

Following Soden and Held (2006), Jonko et al. (2013), and
Vial et al. (2013), we decompose the total feedback parame-
ter (λ) into contributions from λT , λlnq , λa , and λc as

λ=
∑
x

λx +Re=
∑
x

∂R

∂x

dx

dT as
+Re

=

∑
x

Kx
dx

dT as
+Re

λ=

(
KTs

dTs

dT as
+KT

dT

dT as

)
+

(
Klnq

dlnq

dT as

)
+

(
Ka

da

dT as

)
+ λc+Re. (3)

The temperature feedback has been separated into the
Planck feedback (the vertically uniform tropospheric warm-
ing equal to the surface warming) and the lapse rate feedback
(the deviation from the tropospheric uniform warming):

λT = λp + λlr =

(
KTs

dTs

dT as
+KT

dTs

dT as

)
+

(
KT

dT

dT as
−KT

dTs

dT as

)
. (4)

In Eq. (3), Kx (the radiative kernel for a variable x) and x
(temperature (Ts and T ; K), the natural logarithm of humid-
ity (lnq; kg kg−1), and the albedo, which is represented by
“a” and is dimensionless) are functions of the longitude, lati-
tude, and pressure vertical coordinates in the monthly clima-
tology. To obtain tropospheric averages, the water vapor and
temperature feedbacks are vertically integrated from the sur-
face up to the tropopause, defined as 100 hPa at the Equator,
and varying linearly to 300 hPa at the poles. The stratospheric
temperature and water changes are not accounted for in cal-
culating the feedbacks, and they are shifted to the residuum.

It is worth noting that in the regression method, the radia-
tive feedback is consistent with the actual radiative transfer
scheme used in the climate model, while in the radiative ker-
nel, the feedback is not necessarily consistent. In fact, the
kernel is obtained from another climate model that is not
among the CMIP5 models analyzed. Model intercomparison
is easily achieved via this method, as the same kernel can be
applied to all models (Soden and Held, 2006; Soden et al.,
2008). However, the resulting kernel-derived feedbacks can
only be assumed to reflect the actual feedback in the consid-
ered models under the premise of small differences between
the radiative transfer codes.

Due to the nonlinearities involving clouds and net radia-
tion at the TOA (Soden et al., 2008), the cloud feedback is not

calculated directly from these radiative kernels, which repre-
sents one of the key limitations of the kernel method. Instead,
the cloud feedback is approximated using the cloud radiative
forcing (1CRE) corrected by removing the non-cloud feed-
back effects as in Soden et al. (2004, 2008). After the calcu-
lation of non-cloud feedbacks for both all-sky and clear-sky
(superscript cs) conditions, we thus estimate the cloud feed-
back (λc) as

1CRE=1R−1Rcs

1CREk = (G−Gcs)CO2 −1T as
∑
x

(λx − λ
cs
x )

1CREa =1CRE−1CREk

λc =
1CREa

T as
, (5)

where 1Rcl is the clear-sky net radiation flux at the TOA.
Following Soden et al. (2008), (G−Gcl)CO2 was defined as
2× 0.69 W m−2. The index k represents the change in the
1CRE due to the non-cloud feedbacks, while the index “a”
means the adjusted 1CRE. Finally, a 30-year mean relative
to the period from the 120th to 150th years of each scenario
was used for all feedback estimations. It is worth mentioning
that the term

∑
x(λx−λ

cs
x ), introduced in Eq. (5), represents

the cloud masking on the non-cloud radiative feedbacks. It
can be physically interpreted as the differences in the distri-
bution of the temperature, vapor water, and albedo between
an all-sky and a clear-sky atmosphere (Soden et al., 2004).

3.3 Changes in the atmospheric circulation and
precipitation

Monthly mean climatologies were computed for the last
30 years of the piControl and abrupt4xCO2 runs, and the
projected climate response to CO2 increase was evaluated
from the difference between these abrupt4xCO2 and piCon-
trol monthly mean climatologies. The statistical significance
of this difference was calculated based on the Student’s t test
with a significance level of 90 %. Furthermore, to evaluate
how similar two spatial patterns are, we used the spatial in-
ner product calculated as

∑
(Ai ·Bi)/(|A|·|B|), whereA and

B are the 2-D variables and i is the spatial index related to
their latitude–longitude coordinates.

4 Results

4.1 G, λ, 1CRE, and ECS estimated via the Gregory
method

Figure 1 shows the linear regressions of 1R , 1LW (clear
sky), and 1SW (clear sky) against 1T as from BESM. The
linear regressions based on all-sky radiative flux are used
to estimate ECS, G, and λ, while the regressions based
on clear-sky data are used to obtain 1CRE (as mentioned
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Figure 1. Annual global mean linear regression between1T as and (a) net radiation, (b)1T as and1LW (clear sky), and (c)1T as and1SW
(clear sky) for BESM-OA2.5.

in the previous section). BESM features G= 8.62 W m−2,
λ=−1.45 W m−2 K−1, 1CRE=−0.13 W m−2 K−1, and
ECS= 2.96 K.

The parameters G, λ, 1CRE, and ECS as computed for
all models are shown in Table 3. The climate sensitivities
of the 26 CMIP5 coupled models (including BESM-OA2.5)
were compiled in an extension of the previous work by
Andrews et al. (2012), who evaluated 15 CMIP5 coupled
models. In the present work, we added the following mod-
els: ACCESS1-0, ACCESS1-3, bcc-csm1-1, BESM-OA2.5,
BNU-ESM, CCSM4, FGOALS-g2, FGOALS-s2, GISS-E2-
H, GISS-E2-R, and inmcm4. In Andrews et al. (2012) the
ECS ranges from 2.07 to 4.74 K for the 15 models analyzed
there, which is largely confirmed by our analysis. The small
differences can possibly be attributed to the interpolation of
the data. G and λ vary from 5.01 to 8.95 W m−2 and from
−1.66 to −0.60 W m−2 K−1, respectively. The inter-model
spread inG among the models is due to differences in the ra-
diative codes used and the rapid adjustment processes in the
troposphere and at the surface (Collins et al., 2006; Gregory
and Webb, 2008; Andrews and Forster, 2008). The spread in
the ECS is more robustly influenced by λ than by G (Fig. 2),
as was also suggested by Andrews et al. (2012). The corre-
lation coefficient between the ECS and λ is −0.82, which
is significant at a 1 % significance level (Fig. 2b). On the
other hand, the correlation between the ECS andG is−0.01,
which is not statistically significant (Fig. 2a). Thus, inter-
model variation in the balance of feedbacks explains the dis-
persion in the ECS better than the initial radiative imbal-
ance triggered by the CO2 increase (related to G). Although
BESM yielded one of the highest G values among all of the
CMIP5 models, it showed a warming response to CO2 dou-
bling that is well within the range of 3.30± 0.76 K as pre-
sented by the ensemble models.

The 1CRE from BESM is −0.13 W m−2 K−1, while the
CMIP5 models yield 1CRE values ranging from −0.50 to
0.70 W m−2 K−1. Unlike the1CREa, this term does not con-
sider the masking effects of clouds as estimated via the radia-
tive kernel method (Eq. 5). Therefore, the 1CRE cannot be
interpreted to reflect a change in the cloud properties alone.

4.2 Climate feedbacks estimated via the radiative
kernel method

Figure 3 shows the global mean feedbacks for lapse rate, wa-
ter vapor, lapse rate plus water vapor, albedo, and cloud (SW,
LW, and total) for each CMIP5 model. Both radiative ker-
nels are used to test whether the results are sensitive to the
choice of radiative kernel and whether the inter-model devi-
ation is greater than the distribution of the radiatively active
constituents (temperature, water vapor, albedo, and cloud) of
the base model. It is worth clarifying that positive (negative)
values of feedbacks contribute to the amplification (damping)
of global warming. The strongest positive feedback (Fig. 3)
is due to water vapor (mean value: 1.39 W m−2 K−1), fol-
lowed by clouds (mean value: 0.96 W m−2 K−1) and then
surface albedo (mean value: 0.32 W m−2 K−1). The global
mean Planck feedback is negative, with an average value of
−3.60 W m−2 K−1 (not shown in Fig. 3), followed by a lapse
rate feedback of −0.77 W m−2 K−1. BESM yields values
near the ensemble mean for the albedo and cloud feedbacks,
i.e., 0.27 and 0.95 W m−2 K−1, respectively. For the lapse
rate feedback BESM yields a value of −0.71 W m−2 K−1,
slightly underestimating the ensemble mean value in magni-
tude. In turn, BESM is among the models with the lowest
global water vapor feedback average, with a value of around
1.24 W m−2 K−1.

Figure 4 shows the latitudinal profiles for the global mean
feedback values in Fig. 3, allowing us to identify the regions
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Table 3. CO2 forcing (W m−2) (G), net feedback (W m−2 K−1) (λ), climate response (W m−2) (1CRE), and equilibrium climate sensitivity
(K) (ECS) values.

Model G λ 1CRE ECS

ACCESS1-0 5.78 −0.74 0.11 3.90
ACCESS1-3 5.71 −0.80 0.27 3.57
bcc-csm1-1 6.72 −1.20 −0.06 2.81
BESM-OA2.5 8.62 −1.45 −0.13 2.96
BNU-ESM 7.45 −0.92 −0.27 4.04
CanESM2 7.51 −1.02 0.16 3.67
CCSM4 7.27 −1.23 −0.15 2.96
CNRM-CM5 7.34 −1.12 −0.19 3.28
CSIRO-Mk3-6-0 5.01 −0.60 0.25 4.21
FGOALS-g2 5.59 −0.83 −0.08 3.36
FGOALS-s2 7.58 −0.90 −0.45 4.20
GFDL-CM3 5.91 −0.74 0.49 4.00
GFDL-ESM2G 5.98 −1.23 −0.21 2.43
GFDL-ESM2M 6.69 −1.37 −0.31 2.44
GISS-E2-H 7.74 −1.64 −0.50 2.37
GISS-E2-R 7.26 −1.69 −0.46 2.15
HadGEM2-ES 5.77 −0.62 0.37 4.63
inmcm4 5.74 −1.38 −0.10 2.07
IPSL-CM5A-LR 6.38 −0.79 0.70 4.04
IPSL-CM5B-LR 5.25 −1.00 0.29 2.63
MIROC5 8.95 −1.66 −0.43 2.69
MIROC-ESM 8.33 −0.88 0.14 4.74
MPI-ESM-LR 8.07 −1.10 −0.06 3.67
MPI-ESM-P 8.39 −1.20 −0.04 3.49
MRI-CGCM3 6.50 −1.25 −0.05 2.60
NorESM1-M 6.19 −1.10 −0.08 2.80

Mean 6.84± 1.09 −1.09± 0.31 −0.03± 0.30 3.30± 0.76

that induce deviations of BESM results from the CMIP en-
semble. In Fig. 4a–b, there is a nearly constant Planck feed-
back of approximately−3.4 W m−2 K−1 from 90 ◦S to 60◦N,
with a notable increase in the ensemble standard deviation in
the sub-Antarctic latitudes (around 60 ◦S), which is in accor-
dance with Rieger et al. (2017). The exception is in the Arc-
tic region, where the mean value reaches −10 W m−2 K−1

with a similarly increased standard deviation value. In the
sub-Antarctic and Arctic latitudes, BESM yields one of the
most negative values for the Planck feedback, revealing that
BESM has a stronger vertically homogeneous warming (cor-
responding to large surface warming) among the CMIP5
models. Furthermore, for those same regions, BESM showed
more positive lapse rate feedback than the ensemble. There-
fore, BESM yields a warming relatively larger at the surface
and relatively weaker at the upper troposphere, resulting in
a stronger vertical temperature gradient in comparison to the
other models.

In the tropics, where there is an intense moist convection,
atmospheric warming almost follows a moist adiabat (tem-
perature increase is larger in the upper troposphere compared
to that at the surface), implying a negative lapse rate feed-

back (Fig. 4c–d) (Manabe and Stouffer, 1980). In accordance
with this upper tropospheric warming in the tropics, an in-
crease in the specific humidity occurs (Manabe and Wether-
ald, 1975), which causes a reinforcement of the greenhouse
effect, reflected by a positive water vapor feedback as shown
in Fig. 4d–e. Because of this close link between the lapse
rate and water vapor feedbacks, it is common to consider
their effects as a sum, as displayed in Fig. 3. BESM shows a
lapse rate feedback near the ensemble mean for the tropics.
The greatest BESM deviations are observed near the Antarc-
tic and over the Arctic (Fig. 4c–d), where this feedback be-
came positive for all models. For the water vapor feedback,
greater dispersion of the models was observed in the tropics,
with BESM systematically yielding values below the ensem-
ble mean for the same latitude band (Fig. 4e–f). These lower
values extend throughout the Northern Hemisphere, consis-
tent with the low global mean water vapor feedback value
relative to the ensemble (shown in Fig. 3).

The albedo feedback profiles from BESM and the CMIP5
models are compared in Fig. 4g–h. Nonzero results mostly
occur over the polar regions, where there is a reduction in
sea ice and snow cover (Chung and Soden, 2015; Block et al.,
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Figure 2. (a) Equilibrium climate sensitivity (ECS, in red) and ra-
diative forcing (G, in blue) values with ECS values increasing from
left to right; (b) ECS (red) and climate sensitivity (λ, in green) with
ECS values increasing from left to right.

2020). The positive albedo feedback signals yielded by all of
the models in such regions imply that the reduction in the
albedo corresponds to an increase in the radiation budget at
the TOA due to reduced upward shortwave radiation. As ex-
pected, the polar regions present a large dispersion among
the models, which is related to how fast the sea ice melts
in the different climate models. The regions over the Arc-
tic and the ocean near the Antarctic show the largest surface
warming, and this positive albedo, together with the posi-
tive lapse rate feedbacks, is the main factor responsible for a
phenomenon known as polar amplification (Pithan and Mau-
ritsen, 2014; Block et al., 2020). BESM yielded an albedo
feedback greater than the ensemble standard deviation over
the Southern Ocean at around 60◦ S. This same latitude is
where BESM shows negative Planck and positive lapse rate
feedbacks outside the models limits, as previously discussed.

Figure 3. Global mean feedbacks for 25 CMIP5 models and BESM-
OA2.5 (circle). Changes in abrupt4xCO2 relative to the piCon-
trol were averaged over years 120–150. The triangles represent the
mean estimated feedback values calculated using the NCAR radia-
tive kernel, whereas the upside-down triangles represent the esti-
mated feedback values calculated using the GFDL radiative kernel.

Finally, regarding cloud feedback, most of the inter-model
spread arises from the SW component (Figs. 3 and 4i–j). This
dispersion is also reflected in the standard deviation and in
the limit between the minimum and maximum of the zonally
averaged cloud feedback shown in Fig. 4i–j. The SW cloud
feedback ranges from −0.28 to 1.40 W m−2 K−1, while the
LW cloud effect ranges from 0.10 to 0.96 W m−2 K−1. The
combined SW and LW cloud effects result in positive cloud
feedback ranging from 0.35 to 1.69 W m−2 K−1. This re-
sult is similar to that found by Soden et al. (2008) for
CMIP3 (IPCC AR4, IPCC, 2007) models, who also reported
a near-zero to positive cloud feedback. BESM presents pos-
itive values of around 0.5 W m−2 K−1 for both SW and LW
cloud feedback, resulting in a total cloud feedback of about
1.0 W m−2 K−1 (as shown in Fig. 3). The highest positive
values are in regions with strong albedo feedback (Fig. 4i–j).

Although BESM yielded global area-averaged feedbacks
near the model ensemble mean values, differences are found
mainly at high latitudes. In fact, for cloud feedback, BESM
is an outlier due to a strong shortwave component response
over both the Arctic and the Southern Ocean near the Antarc-
tic. This effect is evident via the decomposition of the cloud
feedback into the SW and LW components for the ensem-
ble and BESM values, as shown in Fig. 5. To assess the an-
alytical causes of this strong BESM shortwave cloud feed-
back departure from the ensemble, we separately computed
the contributors to the SW cloud feedback, i.e., the SW CRE
(as described by Cess et al., 1989) and the feedback cloud
masks, as in Eq. (5). For the shortwave component, the feed-
back cloud masks are obtained for the albedo and SW wa-
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Figure 4. Feedbacks for the CMIP5 multi-model ensemble mean (solid line) and BESM-OA2.5 (solid line with dots) for the Planck feed-
back (a, b), lapse rate feedback (c, d), water vapor feedback (e, f), albedo feedback (g, h), and cloud feedback (i, j). Inter-model standard
deviations for each latitude are in yellow. In blue are the feedback limits based on the maximum and minimum values for each latitude among
the models, excluding BESM-OA2.5. All feedbacks are based on the averaged over years 120–150.

ter vapor feedbacks by calculating the all-sky minus clear-
sky radiation flux for each feedback. We find that the higher
BESM cloud feedback values (Fig. 6g–h) are mainly conse-
quences of the sum of the SW CRE (Fig. 6a–b) and the effect
of cloud masking for the albedo feedback (Fig. 6c–d) in the
sub-Antarctic and Arctic regions. In turn, the cloud masking
for the SW water vapor (Fig. 6e–f) does not contribute to the
higher positive BESM values. As shown in Fig. 6, it is pos-
sible to attribute BESM’s status as an outlier over the Arctic
region to the SW CRE, while in the Southern Ocean (around

60◦ S), the major contribution comes from the albedo feed-
back cloud mask.

A deepened physical analysis to understand the BESM
cloud feedback behavior in high latitudes is obtained by ex-
amining the zonal mean of the change in the cloud vertical
profile for BESM, as shown in Fig. 7. Over the Arctic and
near the Antarctic, BESM showed an increase in the cloud
fraction above 850 hPa and a decrease below that level, in-
dicating an upward shift of low-level clouds (Fig. 7a). How-
ever, the increase in cloud cover above 850 hPa is stronger
than the reduction below. Because of this increase in the to-
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Figure 5. Cloud feedbacks calculated using the NCAR radiative kernel for the CMIP5 ensemble (a, c, e) and BESM-OA2.5 (b, d, f). These
results are based on the average from years 120–150.

tal cloud fraction, a negative SW CRE (not adjusted) appears
in those regions (Fig. 6a–b), consistent with an increase in
sun shading (Fig. 7b). Moreover, the SW cooling is smaller
than the heating provided by LW radiation due to the up-
ward shift of the low-level clouds, as evident in the net ef-
fect (Fig. 7d). Furthermore, the positive albedo and lapse rate
feedbacks (Fig. 4c–f) are consistent with this vertical cloud
shifting. In this manner, a loss of SW energy at the surface as-
sociated with an increase in the total cloud fraction explains
the negative SW CRE, and the gain of LW energy is respon-
sible for the sea ice melting. Consequently, this gain of LW
energy is indirectly linked to the albedo feedback cloud mask
for BESM, since the mask (1a/1T as(Ka−K

cs
a )) is propor-

tional to the albedo change (1a). As discussed before, both
the SW CRE and albedo feedback cloud mask contribute to

the large positive cloud feedback over the Arctic and sub-
Antarctic areas observed in BESM.

4.3 Changes in temperature, atmospheric circulation,
and precipitation

Figure 8 shows the annual mean surface temperature differ-
ences between the abrupt4xCO2 and piControl scenarios for
the ensemble of 25 CMIP5 models and BESM. As clearly
shown in Fig. 8, despite the generalized increase in the sur-
face temperature over most of the globe, BESM shows a gen-
erally lower temperature increase, principally over the conti-
nental areas. The CMIP5 ensemble yields a mean continental
temperature increase of 6.78 K, while BESM yields a value
of 5.57 K. Nevertheless, the spatial patterns of the temper-
ature increases are similar, as measured by the spatial in-
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Figure 6. Shortwave cloud radiative effect (a, b), the albedo (c, d) and shortwave water vapor (e, f) feedback cloud maskings, and shortwave
cloud feedback (g, h) for the CMIP5 multi-model ensemble mean (solid line) and BESM-OA2.5 (solid line with dots). Inter-model standard
deviations for each latitude are in yellow. In blue are the feedback limits based on the maximum and minimum values for each latitude among
the models, excluding BESM-OA2.5 (physical units of these feedbacks: W m−2 K−1).

ner product (as described in the previous section) between
Fig. 8a and b, which results in a value of 0.96 (values near
1 indicate that both variables have a similar spatial pattern,
whereas values near 0 mean that there is hardly any pattern
correlation between variables). One point of interest within
the scientific community is the relatively low temperature in-
crease over the subpolar North Atlantic, also referred to as
the warming hole (Drijfhout et al., 2012). In the CMIP5 en-
semble mean, the North Atlantic does not show a temper-
ature decrease, although it is the region with the smallest
temperature increase globally, while BESM shows an area

of temperature decrease in this region. Such a decrease is
also present in six other analyzed models (CSIRO-Mk3-6-0,
FGOALS-s2, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-R,
and inmcm4). These results are consistent with those of Dri-
jfhout et al. (2012), who showed that both observations and
CMIP5 models present maximum cooling in the center of the
subpolar gyre. The authors argue that there is evidence that
both the subpolar gyre and the AMOC adjust in concert with
different time lags.

The regions with the largest temperature increase in the
abrupt4xCO2 scenario are the polar regions, particularly over
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Figure 7. Vertical profiles of the zonal mean of the abrupt4xCO2–piControl mean difference for the following variables: (a) cloud fraction;
radiative heating or cooling rate (dT/dt ; K d−1) of (b) shortwave, (c) longwave, and the (d) sum of the shortwave and longwave for BESM-
OA2.5.

the Arctic. The equatorial Pacific shows a relative maximum
in warming when the abrupt4xCO2 scenario is compared
with the piControl both in the CMIP5 ensemble and BESM.
Such changes in the Pacific mean state are consistent with the
IPCC AR5, which reports that the Pacific Ocean becomes
warmer near the Equator compared to the subtropics in the
CMIP5 projections (Liu et al., 2005; Gastineau and Soden,
2009; Cai et al., 2015). The scatter plot of the global av-
erage under abrupt4xCO2 conditions versus the piControl
conditions presented in Fig. 8 provides additional informa-
tion that helps to understand the dispersion around the mean
value among the different models. Even though the outputs
of most of the models lie in either quadrant 1 or 3 (top right
and bottom left, respectively), it is not possible to claim any
robust linear relationship. This result indicates that models
with warmer or cooler mean climates in the piControl runs
apparently do not show a corresponding warmer or cooler cli-
mate in the abrupt4xCO2 experiments. BESM yields a tem-
perature near that of the ensemble in both the piControl and
abrupt4xCO2 runs; consequently, it also showed a temper-
ature increase near the ensemble mean, consistent with its
Planck feedback (Figs. 3 and 4a–b).

Figure 9 shows the precipitation changes between the
abrupt4xCO2 and piControl scenarios for the multi-model

ensemble and the BESM. The results are, in general, sim-
ilar to those of Held and Soden (2006), with wet regions
becoming wetter (near-equatorial and subpolar regions) and
dry regions becoming drier (centered around 30◦ in both
hemispheres). The precipitation pattern in the CMIP5 en-
semble shows increased precipitation over the equatorial Pa-
cific, which could be related to the equatorial Pacific warm-
ing pattern shown in the temperature change (Fig. 8). Fur-
thermore, the CMIP5 ensemble shows a decrease in precip-
itation in northern South America. The BESM precipitation
pattern is similar to the spatial patterns in the CMIP5 en-
semble but with some notable exceptions. For example, the
decreased precipitation over the South Pacific shown in the
CMIP5 ensemble plot is extended into the Indonesian region
in BESM. It is also worth noting that in the BESM sim-
ulation, the South Pacific convergence zone (SPCZ) shifts
southward in the abrupt4xCO2 scenario compared with its
position in the piControl scenario. In both the multi-model
ensemble and BESM, the precipitation change pattern over
South America is similar to that which occurs during El
Niño years (Kayano et al., 1988; Marengo and Hastenrath,
1993; Grimm and Tedeschi, 2009), with increased precipita-
tion over southeastern South America and decreased precip-
itation over northern–northeastern South America. The scat-
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Figure 8. Differences (averaged over years 120–150) in surface temperature between the abrupt4xCO2 and piControl simulations in (a) the
CMIP5 ensemble and (b) BESM-OA2.5. (c) A scatter plot of the global average surface temperature for the CMIP5 models used in the
ensemble and BESM-OA2.5 (black dot). The shaded areas in (a) and (b) have confidence levels greater than 90 %; the black line represents
the contour line of zero temperature difference.

ter plot in Fig. 9 emphasizes a linear relationship between
the experiments, indicating that models with higher (lower)
global average precipitation in the piControl scenario show
higher (lower) precipitation in the abrupt4xCO2 scenario.
As is obvious from Fig. 9, the BESM performance perfectly
matches the ensemble mean behavior in global mean.

Figure 10 shows a scatter plot of the ECS versus the pre-
cipitation difference between the abrupt4xCO2 and piCon-
trol scenarios (1Pr) for all of the considered models. It is
worth noting that all the models show increased global mean
precipitation upon a quadrupling of atmospheric CO2 with
piControl preindustrial CO2 concentrations (positive values
on the y axis in Fig. 10). An apparent linear relationship
between these differences (abrupt4xCO2 minus piControl)
in the global mean precipitation and ECS is also evident in
Fig. 10, in which the warmest models tend to have the largest
precipitation changes. The slope of the linear regression re-
flects a 2.5 % precipitation change per Kelvin, which is close
to that found by Held and Soden (2006). This slope is much
lower than that predicted by the Clausius–Clapeyron rela-
tion, i.e., an approximately 6.5 % change in precipitation per
Kelvin. In fact, such precipitation increases are not governed
by moisture availability but rather by the surface and tropo-

spheric energy balance, which incorporates the surface radia-
tive heating, surface latent heat flux, and radiative cooling of
the troposphere (Allen and Ingram, 2002).

MRI-CGCM3, ACCESS1-0, and HadGEM2-ES show
greater deviations from the linear fit shown in Fig. 10. Fur-
thermore, BESM is marginally out of the residual standard
error interval, with a 9.5 % increase in precipitation (the error
limit is 9.2 %). ACCESS1-0 and HadGEM2-ES use the same
atmospheric model (Bi et al., 2013; Dix et al., 2013), which
could explain the lower increase in precipitation in both cou-
pled models.

In addition to temperature and precipitation changes, we
are also interested in understanding the changes in the BESM
atmospheric circulation (compared to other models) follow-
ing a quadrupling of the CO2 concentration. The sea level
pressure (SLP) response patterns shown in Fig. 11 depict a
poleward shift in the subtropical high-pressure cells in both
the CMIP5 ensemble and BESM. Furthermore, when the
models are subjected to the increased atmospheric CO2 con-
centration, a decrease in the SLP over the polar regions is
evident. This, connected with the increase in the midlati-
tudes, indicates a positive trend in Arctic oscillation (AO)
and Antarctic oscillation (AAO) episodes, which have al-
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Figure 9. Differences (averaged over years 120–150) in precipitation (mm month−1) between the abrupt4xCO2 and piControl simulations
in (a) the CMIP5 ensemble and (b) BESM-OA2.5. (c) A scatter plot of the precipitation global averages for the CMIP5 models used in the
ensemble and BESM-OA2.5 (black dot). The shaded areas in (a) and (b) have confidence levels greater than 90 %; the black line represents
the contour line of zero precipitation difference.

Figure 10. Scatter plot of the ECS and 1Pr (%) values for all of
the ensemble models. The solid black line shows the linear fit be-
tween the ECS and the perceptual precipitation change. As in Fig. 2,
the models are sorted according their ECS value. The dashed lines
represent the error limits considering the residual standard error.

ready been reported by Fyfe et al. (1999), Cai et al. (2003),
and Miller et al. (2006). It is also interesting to note the sta-
tistically significant SLP decrease (increase) over the eastern
(western) Pacific, a pattern that might indicate an ENSO-like
pattern in scenarios with an increased CO2 concentration.
This pattern is consistent with those depicted in Fig. 8 for
the SST changes in a 4xCO2 scenario.

The results from the piControl scenario (the contours in
Fig. 12) show that the Southern Hemisphere subtropical
jet, reflected by the core of the maximum eastward zonal
wind, is localized around 35◦ S at 200–150 hPa in both the
CMIP5 ensemble and BESM. In Fig. 12a and b (BESM
and the CMIP5 ensemble), we note that the regions with
the strongest increases in westerly winds at all levels show
a southward jet displacement. This observation is consis-
tent with the poleward displacement of the high SLP center
shown in Fig. 11. Furthermore, as the high-pressure centers
experienced a poleward shift, the pressure gradients inten-
sified in the subpolar areas; consequently, the near-surface
wind velocity increased, following the geostrophic approxi-
mation (u≈−(1/fρ)(∂p/∂y)), where f is the Coriolis pa-
rameter and ρ is the air density.
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Figure 11. Difference (averaged over years 120–150) in sea level pressure (SLP; hPa) between the two scenarios (abrupt4xCO2 minus
piControl; shaded) and SLP under piControl conditions (contours) in the CMIP5 model ensemble (a) and BESM-OA2.5 (b). The white areas
have confidence levels less than 90 %.

Figure 12. Vertical profile of the difference (averaged over years 120–150) in the zonal wind (m s−1) between the two scenarios
(abrupt4xCO2 minus piControl; shaded) and the piControl conditions (contours) for (a) the ensemble of CMIP5 models and (b) BESM-
OA2.5. The white areas have confidence levels less than 90 %.

Figure 13 shows the average differences from 5◦ N to 5◦ S
(Walker circulation) between the abrupt4xCO2 and piCon-
trol scenarios for vertical motion (omega; shaded) and zonal
wind and vertical motion (vectors). According to the vertical
motion pattern in the piControl (contours), the multi-model
ensemble and BESM show subsidence over an extensive area
in the Pacific (150◦ E–90◦W) whose intensity is lower in the
abrupt4xCO2 simulation, as shown in Fig. 13 (blue). This
finding is coherent with near-surface temperature patterns
(Fig. 8), which show an equatorial warming pattern in the
mean state (e.g., during El Niño years, a weakening of the
Walker circulation occurs). Furthermore, there is enhanced
subsidence for the difference between the two scenarios over
South America (around 75◦W), consistent with the decrease
in precipitation in tropical South America, in both BESM and
the CMIP5 ensemble (Fig. 9).

5 Conclusions

The piControl and abrupt4xCO2 scenarios for 25 CMIP5
models have been compared with those generated by BESM
based on their key sensitivity parameters, such as the equilib-
rium climate sensitivity (ECS) and climate feedbacks. Fur-
thermore, changes in the temperature, atmospheric circula-
tion, and precipitation patterns were investigated.

Applying the linear regression method (Gregory et al.,
2004), we obtained ECS values for the 25 CMIP5 models
analyzed that ranged from 2.07 to 4.74 K, with BESM show-
ing 2.96 K, close to the ensemble mean value (3.30± 0.76).
BESM has one of the biggest radiative forcing (G) values,
i.e., 8.62 W m−2 K−1, which is related to the radiative trans-
fer model and the rapid adjustment process (Collins et al.,
2006; Gregory and Webb, 2008; Andrews and Forster, 2008).

www.geosci-model-dev.net/13/2277/2020/ Geosci. Model Dev., 13, 2277–2296, 2020



2292 V. B. Capistrano et al.: The BESM-OA2.5 climate change sensitivity

Figure 13. Difference (averaged over years 120–150) between the abrupt4xCO2 and piControl conditions for generalized vertical motion
(omega (Pa s−1); shaded) and the mean zonal and vertical motion (vectors) averaged between 5◦ S and 5◦ N for (a) the CMIP5 ensemble
and (b) BESM-OA2.5. The contours represents the averaged piControl vertical motion (omega) in the same region. The white regions have
confidence levels less than 90 %.

Both G and the climate sensitivity (λ) define the ECS values
calculated with this method; however, only λ shows a signif-
icant correlation with the ECS, corroborating the results of
Andrews et al. (2012).

To go further in the analysis, the radiative kernel method
was used to separate the climate feedback into Planck, lapse
rate, water vapor, albedo, and cloud feedbacks. Two regions
presented considerable inter-model variability for the Planck,
lapse rate, and albedo values, i.e., the Arctic region and
over the ocean near the Antarctic. Over these regions, the
BESM zonal mean cloud feedback ranges outside the stan-
dard deviation for the analyzed models, reaching approx-
imately 3 W m−2 K−1, while the zonal mean was close to
zero. BESM showed an upward shift of low-cloud cover
and an increase in cloud cover between 850 and 700 hPa,
and these features were responsible for sun shading at the
surface, which increased the reflected solar radiation at the
TOA. Moreover, BESM presented a greater albedo change
compared with those of the other models, especially in the
sub-Antarctic area. Despite the loss of SW energy at the sur-
face, which results in a negative SW cloud radiative effect,
this effect was overcome by the albedo feedback cloud mask,
which contributes to positive cloud feedback over those re-
gions.

The atmospheric circulation patterns in BESM were simi-
lar to the patterns of the multi-model ensemble and those of
other studies regarding the near-surface temperature (IPCC,
2007, 2013). For precipitation, the thermodynamic compo-
nent reflects the well-known “wet-gets-wetter” and “dry-
gets-drier” patterns of precipitation change (Held and So-
den, 2006). BESM and the CMIP5 ensemble show consis-
tent weakening of the Walker circulation, principally in the
Pacific and over northern South America, which has been
reported in previous studies (Collins et al., 2010; DiNezio
et al., 2012; Huang and Xie, 2015; Cai et al., 2015). Regard-
ing SLP, both BESM and the CMIP5 ensemble indicate a

poleward displacement of the subtropical high-pressure sys-
tems, as shown in other studies (Fyfe et al., 1999; Cai et al.,
2003; Miller et al., 2006). In line with such displacement,
the subtropical jet also shifted polewards, and this effect was
more distinct in the Southern Hemisphere.

Summarizing, we conclude that BESM-OA2.5 is a climate
model that can reproduce proven physical processes that de-
termine and modify changes in the global climate system. In
this sense, the analysis methods used here have the poten-
tial to explain remaining process uncertainties causing inter-
model spread in the cloud feedback in future work. This
notwithstanding, the BESM team continues is effort to im-
prove the cloud parameterization of the model as well as its
land surface model in subsequent versions. Furthermore, it is
important to mention that the radiative energy imbalance of
−4 W m−2 at the TOA, arising from our ocean–atmosphere
coupling, is seen as an issue that is to be tackled in ongoing
model development work. We hope that the next version will
include improved energy flow diagnostics and that it will in-
clude physical parameterizations of atmosphere–ocean inter-
actions that lead to better agreement with other models and
with observations.
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