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Abstract. Street trees are more and more regarded as an effective measure to reduce excessive heat in urban areas. However,

the vast majority of mesoscale urban climate models do not represent street trees in an explicit manner and for example do

not take the important effect of shading by trees into account. In addition, urban canopy models that take interactions of trees

and urban fabrics directly into account are usually limited to the street or neighbourhood scale and, hence, cannot be used

to analyse the citywide effect of urban greening. In order to represent the interactions between street trees, urban elements5

and the atmosphere in realistic regional weather and climate simulations, we coupled the vegetated urban canopy model BEP-

Tree and the mesoscale weather and climate model COSMO. The performance and applicability of the coupled model, named

COSMO-BEP-Tree, are demonstrated over the urban area of Basel, Switzerland, during the heatwave event of June-July 2015.

Overall, the model compared well with measurements of individual components of the surface energy balance and with air and

surface temperatures obtained from a flux tower, surface stations and satellites. Deficiencies were identified for night-time air10

temperature and humidity, which can mainly be traced back to limitations in the simulation of the night-time stable boundary

layer in COSMO. The representation of street trees in the coupled model generally improved the agreement with observations.

Street trees produced large changes in simulated sensible and latent heat flux, and wind speed. Within the canopy layer, the

presence of street trees resulted in a slight reduction in daytime air temperature and a very minor increase in night-time air

temperature. The model was found to realistically respond to changes in the parameters defining the street trees: leaf area15

density and stomatal conductance. Overall, COSMO-BEP-Tree demonstrated the potential of (a) enabling city-wide studies

on the cooling potential of street trees and (b) further enhancing the modelling capabilities and performance in urban climate

modelling studies.

1 Introduction

Street trees - trees located in street canyons - and urban vegetation in general are more and more regarded as an effective20

measure to reduce excessive heat conditions in urban areas (e.g. Shashua-Bar et al., 2009; Armson et al., 2012; Coutts et al.,
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2016; Tan et al., 2016; Gunawardena et al., 2017; Manickathan et al., 2018). Excessive heat conditions are typically caused by

the combination of regional scale hot weather (heat wave) situations and the urban heat island effect (UHI). The UHI refers

to air temperature increase in urban areas compared to their rural surroundings and it is caused by the alteration of the surface

energy balance due to the presence of man-made structures and activities (Oke et al., 2017). Climate change is expected to

further accentuate the magnitude and frequency of excessive heat conditions in cities with potentially severe impacts on human5

health, energy consumption, air pollution and urban ecology (Rosenzweig et al., 2018).

Street trees impact the urban atmosphere through radiative, heat, moisture and flow interactions (Oke, 1989). Street trees

intercept radiation through their foliage canopy. By intercepting the direct short-wave (solar) radiation, they reduce the temper-

ature of underlying surfaces (Armson et al., 2012). Additionally, street trees also intercept radiation coming from the canyon

surfaces, such as the long-wave radiation emitted by warm wall and street surfaces. At night, this effect can actually reduce10

the radiative cooling of wall and street surfaces (Bowler et al., 2010). Through tree transpiration, leaf surface temperature is

reduced resulting in the extraction of sensible heat from the air (Green, 1993). Finally, the tree foliage extracts momentum

from the mean flow, contributing to Turbulent Kinetic Energy (TKE) generation due to wake production and TKE dissipation

due to the small scale of the leaves (Wilson and Shaw, 1977).

The climatic impact of urban vegetation has been investigated in numerous previous studies from the scale of the single15

street canyon to that of the entire urban region (e.g. Gromke et al., 2015; Ng et al., 2012; De Munck et al., 2018). However,

studies on entire urban regions primarily focused on low vegetation, representing low height gardens and green roofs (Wang

et al., 2013; De Munck et al., 2018). Street trees, instead, have generally only been represented in a separate natural tile (e.g.

Schubert and Grossman-Clarke, 2013; Li and Norford, 2016). This approach precluded considering any interactions between

trees and urban surfaces in a street canyon, such as shading and sheltering effects (Krayenhoff et al., 2014, 2015). Other studies20

employed somewhat more sophisticated methods but still neglect some of the critical interactions between trees, canyon surface

and airflow (Thatcher and Hurley, 2012).

The very first example of a weather and climate model with an integrated representation of street trees was developed

by Dupont et al. (2004). They built an urban canopy model, called DA-SM2-U, for the Penn State–NCAR fifth-generation

Mesoscale Model (MM5, Grell et al. (1994)). DA-SM2-U was based on the multi-layer urban canopy concept where a drag-25

force approach is used to represent the dynamic and turbulent effects of buildings and vegetation. In the meantime, the Weather

and Forecasting Model (WRF, Skamarock et al. (2005)) has replaced MM5 and, to the authors best knowledge, DA-SM2-U

was not ported to WRF. Lee and Park (2008) developed an urban canopy model with an explicit representation of street trees

named Vegetated Urban Canopy Model (VUCM). VUCM adopts a single-layer urban canopy concept (i.e., the urban canopy is

represented by only one model layer) where street trees are represented as a single tree canopy characterised by canopy cover30

fraction, mean height and mean leaf area density. Lee (2011) further developed VUCM by including a grass-covered soil surface

within the canyon. Lee et al. (2016) incorporated VUCM into WRF and performed an application over Seoul, South Korea.

VUCM was also used by Loughner et al. (2012), coupled with WRF, to simulate the role of street trees in Washington, D.C.,

USA. Wang et al. (2018) incorporated a representation of the radiative effects of street trees (Wang, 2014) into the single-layer

urban canopy model of WRF (Chen et al., 2011a). They simulated the impact of street trees over the contiguous United States35
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using a 20 km model resolution. Krayenhoff et al. (2018) used WRF, coupled with the single-layer urban canopy model, to

simulate the impact of urban adaptation strategies (including street tree planting) for air temperature during contemporary and

future climate over the contiguous United States. A couple of other urban canopy models (UCMs) with explicit representation

of street trees have been developed (Ryu et al., 2016; Redon et al., 2017) but, to the authors best knowledge, not yet coupled

with a mesoscale weather and climate model.5

The literature review revealed a number of major limitations in the models used to study the city-wide impact of street trees.

Several studies neglected some the interactions between street trees and urban fabrics. For example, the exchange of long-wave

radiation between street trees and urban fabrics is often neglected (Wang et al., 2018; Krayenhoff et al., 2018), together with

the impact of street trees on the flow field. Neglecting long-wave radiation exchanges and impacts of trees on the flow field may

overestimate their cooling potential. Another simplistic assumption concerns the representation of tree shading, which was in10

some cases independent of the solar direction (Dupont et al., 2004; Lee and Park, 2008).

A second common assumption concerns the characterisation of street trees in model applications. In all the previous studies,

no real data on the location, density height and species of street trees were used. Instead, a homogeneous distribution of

street trees has often been assumed (Dupont et al., 2004; Loughner et al., 2012). The increasing availability of detailed street

tree datasets (e.g. Alonzo et al., 2014; Konarska et al., 2016) gives now a chance to represent the distribution of street tree15

characteristics more realistically during model applications.

Finally, the majority of the studies did not include a comprehensive evaluation of their model. Typically, only the underlying

urban canopy model used in the coupled model has been evaluated off-line. Online model evaluation against surface stations,

flux towers and satellite observations are needed to better understand the model performance and to identify future lines of

development.20

Motivated by the great potential of using an integrated model to study the urban climate impact of street trees in a city-

wide manner, the objective of this study is two-fold. First, we aim to document the development of an urban climate model

with explicit representation of street trees, featuring a two-way coupling between the vegetated urban canopy model BEP-Tree

(Krayenhoff, 2014; Krayenhoff et al., 2019) and the mesoscale weather and climate model COSMO-CLM (COSMO here-

inafter; Rockel et al. (2008)). The coupled model, named COSMO-BEP-Tree, represents the multiple interactions between25

street trees, urban fabrics and the atmosphere in a comprehensive way considering the exchange of heat, moisture, and momen-

tum and the transfer of short- and long-wave radiation. COSMO-BEP-Tree enables city-wide studies on the cooling potential

of street trees in comparison, or in combination, with other UHI mitigation measures (e.g. albedo changes). Additionally, it has

the potential to enhance the performance in urban climate modelling studies by a more realistic representation of the surface

and its interaction with the atmosphere. In order to facilitate the application, the model comes with a tool to pre-process the30

additional inputs required for COSMO-BEP-Tree, such as street tree datasets or a 3D city model.

Second, we present an application and comprehensive evaluation of COSMO-BEP-Tree over the transnational urban ag-

glomeration of Basel (Switzerland, Germany and France) during a heatwave event in June-July 2015. The evaluation makes

use of the extensive measurement infrastructure for urban climate studies available in Basel (Feigenwinter et al., 2018; Wicki

et al., 2018) including an urban flux tower and a network of surface stations and additionally uses land surface temperature35
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(LST) observations from satellite. In order to verify the model’s response to the parameters that define the street trees, a

sensitivity analysis is also presented.

We remark that this study only aims to document the development and evaluation of COSMO-BEP-Tree. Analysis on the

role of street trees in urban climate and on their potential for mitigating excessive heat conditions are out of the scope of this

paper and will be presented in follow-up studies. Although the focus of this study is on street trees, it is important to consider5

that other components of the so-called urban forest, such as trees in parks and private gardens as well as peri-urban trees, are

also likely to have a remarkable impact on the urban climate.

The manuscript is structured as follows. The two model components COSMO and BEP-Tree, together with the coupling

strategy and the pre-processor, are described in Section 2. Section 3 and 4 present the model evaluation and sensitivity. In

Sections 5 and 6 future work and conclusions are discussed.10

2 Model description

2.1 COSMO model

The Consortium for Small-scale Modelling (COSMO) model is a non-hydrostatic limited-area atmospheric prediction model

(COSMO, 2019). It has been designed for operational numerical weather prediction, regional climate simulation and other

applications at the mesoscale (weather phenomena of sizes between about 1 km and a few hundred kilometres). COSMO15

evolved from the operational weather forecast Local Model (LM) of the German Weather Service (Steppeler et al., 2003)

and has been developed by a consortium of weather services in Europe and by the CLM-Community for climate applica-

tions (CCLM-Community). The regional climate model version of COSMO, called COSMO-CLM, includes modifications

allowing the application on time-scales up to centuries (Rockel et al., 2008). These modifications comprise a representation of

phenological cycles as well as externally prescribed, time-dependent atmospheric CO2 concentrations.20

The COSMO model is based on the thermo-hydrodynamical equations describing non-hydrostatic compressible flow in a

moist atmosphere. A variety of physical processes are taken into account by parameterisation schemes: cloud formation and

precipitation, moist and shallow convection, sub-grid scale turbulence, radiation and land-surface exchanges (see Figure 1a).

At the convection-resolving model resolution used in this study, the parameterisations for sub-grid scale clouds and moist

convection are switched off. Additional information on the governing equations and physical parameterisations can be found25

in the model documentation (COSMO, 2019).

Recently, urban parameterisations of different degrees of complexity have been developed for and coupled with the COSMO

model (Trusilova et al., 2016). The urban parameterisation TERRA-URB (Wouters et al., 2015, 2016) employs a simple but

efficient approach by representing the urban canopy using a limited number of parameters (so-called bulk approach). The

Town Energy Balance (TEB) implementation of Trusilova et al. (2013) represents an intermediate level of complexity with a30

single-layer urban canopy model. Finally, the multi-layer urban canopy model DCEP (Double-Canyon Effect parameterisation)

employs the most physically-based but input-demanding representation of the urban canopy by solving the radiation exchange

in a realistic multi-layer canyon configuration (Schubert et al., 2012).
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Figure 1. Schematic of the key processes represented by (a) COSMO and (b) BEP-Tree for urban climate simulations. Details about the

interactions between radiation and the foliage layers (e.g. radiation absorption and scattering) are not represented here. Please refer to

Sections 2.1 and 2.2 for a comprehensive description of the models.

Applications of these models included studies of the impact of climate change on cities (Grossman-Clarke et al., 2017;

Wouters et al., 2017), the influence of green areas and low albedo materials (Schubert and Grossman-Clarke, 2013) and the

intra-urban climate variability (Mussetti et al., 2020).

2.2 Building Effect parameterisation with Trees (BEP-Tree)

The Building Effect Parameterisation with Trees (BEP-Tree) is a multi-layer urban canopy model with explicit representation5

of trees and their interaction with the street canyon (Krayenhoff, 2014; Krayenhoff et al., 2019). Building on the geometry of

the existing multi-layer urban canopy model BEP (Martilli et al., 2002), Krayenhoff et al. (2014) included the effects of tree

foliage on the radiative exchange within the street canyon.

The basic geometry is a two-dimensional canyon with vertical leaf area density profiles and probabilistic variation of building

height (see Figure 1b). Tree foliage is permitted both between and above buildings allowing the representation of street trees10

as well as trees overhanging buildings.

Ray tracing is used to determine the receipt of direct short-wave irradiance by building and foliage elements. View factors

for long-wave and short-wave diffuse radiation exchange are computed once at the start of the simulation using a Monte Carlo
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ray tracing approach, and used thereafter to calculate multiple reflections between all urban fabrics. Interception of radiation

by tree foliage is modelled with the Bouguer-Lambert-Beer law:

∆Vi = ri

(
1− exp(−K ΩLD ∆s fi)

)
, (1)

where ∆Vi is the reduction in intensity of the ray due to the tree foliage [W m−2], ri is the initial intensity of the ray [W m−2],

K is the foliage extinction coefficient [-], LD is the leaf area density [m2 m−3], Ω is the foliage clumping index [-], ∆s is the5

2-D ray step size [m] and fi is the ratio of 3-D (actual) to 2-D (model) distance travelled by the ray (actual 3-D paths of all

rays are mapped to the 2-D domain, depending on the canyon orientation; Krayenhoff et al. (2014)).

BEP-Tree includes a parameterisation of building and tree foliage effects on the airflow (Martilli et al., 2002; Santiago and

Martilli, 2010; Krayenhoff et al., 2015). The parameterisation introduces (a) a sink term for momentum to account for obstacle

drag, (b) modifications of turbulence length scales by building interactions, and (c) enhanced dissipation of turbulent kinetic10

energy due to the small scale of the tree foliage elements. The obstacle drag from tree foliage is determined as:

Sm,i =−Cdv ΩLD U ui, (2)

where Sm,i is the sink term for momentum along the coordinate axis i [m s−2], Cdv is the sectional drag coefficient for tree

foliage (set to 0.2) [-], U is the horizontal wind speed [m s−1] and ui is the wind speed component along axis i [m s−1].

Surface energy balance equations for roof, wall and road elements are identical to Martilli et al. (2002). For leaf layers, the15

Penman equation is rearranged to solve for the leaf temperature as in Campbell and Norman (2012). The sensible heat flux,

latent heat flux and source of moisture from street trees are determined as:

QH = cp gHa ΩLD (Tveg−Tair), (3)

QE = λ
gsga
gs + ga

ΩLD

(
s (Tveg−Tair) +

es− eair
p

)
, (4)

Sq =
µw
ρair

gsga
gs + ga

ΩLD

(
s (Tveg−Tair) +

es− eair
p

)
, (5)20

where QH is the sensible heat flux from foliage per unit height [W m−3], cp is the specific heat capacity of air [J mol−1 K−1],

gHa is the heat conductance [mol m−2 s−1], Tveg is the temperature of the foliage layer [K], Tair is the air temperature at

the height of the foliage layer [K], QE is the latent heat flux from foliage per unit height [W m−3], λ is the latent heat of

vaporisation [J mol−1], gs is the vapour stomatal conductance of the leaf [mol m−2 s−1], ga is the vapour boundary-layer

conductance of the leaf [mol m−2 s−1], s = des
dTair

1
p is the change is saturation pressure with temperature given by the Clausius-25

Clapeyron equation (Stull, 2012) [K−1], es is the saturation vapour pressure [Pa], eair is the vapour pressure in the air [Pa], p

is the atmospheric pressure [Pa], Sq is the source term for moisture due to transpiration from foliage [s−1], µw is the molar

mass of water [kg mol−1] and ρair is the density of air [kg m−3]. Here we report only those equations that are relevant for

the coupling of BEP-Tree with COSMO and for understanding the response to the sensitivity experiments described later. The

complete set of equations as well as further details about the model components can be found in Krayenhoff et al. (2014, 2015,30

2019), including a recently-developed parameterisation for climate impacts of street tree foliage distribution.
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The main model inputs to BEP-Tree are (a) atmospheric state variables above the canyon and (b) canyon geometry including

vegetation. The former includes the traditional atmospheric variables and radiation fluxes, that can be either provided by

a tall tower (off-line application) or by a weather model (online application). The canyon geometry inputs include height

distribution of buildings, canyon width, thermo-physical material properties of active surfaces (wall elements, roof and street)

and parameters representing in-canyon vegetation.5

Regarding in-canyon vegetation, a vertical profile of leaf area density (LD) needs to be provided for both the canyon and the

building columns. LD,can and LD,bld represent the surface area of leaves per unit volume of air [m2 m−3] in the canyon space

and in the building space (e.g. in case of trees overhanging buildings), respectively. Additionally, information on the spatial

distribution of the leaves from street trees in the available canyon space needs to be provided. This information is represented

by the clumping index Ω as defined by Nilson (1971). The index takes values between 0 and 1, with Ω = 1 being the case where10

the leaves are randomly distributed. Ω encompasses clumping at several scales, from the within-branch to the between-crown

scale. Ω is used, together with LD, to account for the fraction of leaves that actively contribute to the radiation exchange.

Moreover, Ω is used to represent the aerodynamic sheltering following the approach proposed by Marcolla et al. (2003) and to

modulate wake production and turbulent kinetic energy (TKE) dissipation (Krayenhoff, 2014). Ω is always used in combination

with LD to compute an “effective leaf area density” defined as LDe = LD Ω.15

BEP-Tree has been evaluated in off-line mode against measurements in Vancouver, Canada (Krayenhoff, 2014). The evalu-

ation made use of measured fluxes of radiation and turbulent exchange in the inertial sublayer, as well as measurements of air

temperature and humidity in the urban canopy layer. The evaluation has been recently extended using measurements of street

surface temperature and street-level radiation fluxes from two sites in North America (Krayenhoff et al., 2019).

2.3 COSMO-BEP-Tree20

We coupled BEP-Tree to the COSMO-CLM model v5.0_clm2.1. The coupling is done through model integration (also called

joint coupling by Brandmeyer and Karimi (2000)) and makes use of the interface created by Schubert et al. (2012) for the

urban parameterisation DCEP. The coupling makes use of the tile approach, where mixed proportions of urban and natural

surfaces within a grid cell can be considered. Natural surfaces within a urban grid cell represents, for instance, urban parks

and peri-urban forests. The surface-atmosphere interactions are calculated independently for the urban and rural tiles and then25

averaged with respect to the fractional coverage of each tile. BEP-Tree is used to calculate the surface-atmosphere interactions

for the urban tile, while the land surface model of COSMO does it for the natural tile (see Section 2.1 for further details).

A schematic representation of the coupling is presented in Fig. 2. Before executing COSMO-BEP-Tree, the parameters that

characterise the street canyon are estimated for all urban grid cells in the model domain from external input datasets of trees,

building geometries and imperviousness. This task is performed by a dedicated pre-processor described in Sec. 2.4. Once all30

required inputs are generated, the coupled model can be executed. At the first model time step, the urban canopy parameters

are used to estimate the view factors for long-wave and diffuse short-wave radiation between each street canyon element (wall,

roof, street and foliage layer) including the sky. The view factors are stored in the form of a matrix and applied during the

model simulation at each time step. In the case of direct short-wave radiation, the receipt of radiation by each street canyon

7



Figure 2. Flow chart of the coupling of BEP-Tree with COSMO. Rose boxes denote quantities of COSMO, blue boxes of BEP-Tree.

Additional input datasets required to run COSMO-BEP-Tree are shown as green boxes.

element is computed online during the simulation using a direct ray tracing algorithm. Subsequently, the diffuse short-wave

radiation, short-wave reflections and received and emitted long-wave radiation at each street canyon element are estimated

using a radiosity approach (making use of the view factor matrices). At this point, the radiation balance at each active surface

is available and is used to determine the radiation balance of the entire grid cell in the COSMO model.

The user can specify the frequency at which the radiation exchanges in BEP-Tree are updated. By default, this is set to 0.055

h (3 minutes), as a compromise between accuracy and computational cost.

The air temperature tendencies (increments) due to sensible heat flux, the momentum tendencies due to obstacle drag and

the TKE tendencies are determined for each street canyon element. For the foliage layers, latent heat and moisture fluxes

are calculated by solving the leaf energy balance. Although moisture exchange between street trees and the atmosphere is

implemented, street trees do not interact with soil moisture content as represented by COSMO’s land surface scheme. In10

other words, a mechanistic interaction between soil moisture and the transpiration of street trees is not included, assuming

that the transpiration is never limited by soil water availability. A careful representation of soil moisture in the urban tiles

would have required a new urban hydrology scheme, which was beyond the scope of the study. The missing interaction with

soil moisture may reduce the model ability to represent variations in transpiration during periods with large changes in soil

moisture (Konarska et al., 2016; Asawa et al., 2017). Nevertheless, street trees are less sensitive to variations in soil moisture15

than short vegetation, thanks to their deeper root system (Chen et al., 2011b; Asawa et al., 2017).
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The radiative coupling between COSMO and BEP-Tree is realised through four bulk radiation parameters: (a) albedo for

diffuse short-wave radiation α↓urb, (b) albedo for direct short-wave radiation α⇓urb, (c) mean emissivity εurb and (d) radiative

surface temperature Turb. α↓urb does not change with time being only dependent on the canyon geometry and on the albedo of

individual surface elements, given the assumption of isotropic diffuse radiation exchange. Therefore, it is calculated only once

at the beginning of the simulation as:5

α↓urb =
K↑0urb
K↓

, (6)

with K↑0urb being the shortwave radiation reflected from all street canyon elements into the sky for the case where the incoming

direct short-wave radiation K⇓ is zero and K↓ being the incoming diffuse short-wave radiation.

α⇓urb, instead, depends on the position of the sun and is therefore estimated at each time step as:

α⇓urb =
(K↑urb−α

↓
urbK

↓)

K⇓
, (7)10

with K↑urb being the shortwave radiation reflected from all street canyon elements into the sky.

The radiative surface temperature is calculated as:

Trad =

(
L↑urb− (1− εurb)L↓)

σ εurb

)1/4

, (8)

where L↑urb is the sum of the emitted and reflected long-wave radiation from all street canyon elements into the sky, εurb is the

bulk emissivity of the urban surface, L↓ is the incoming long-wave radiation and σ is the Stephan-Boltzmann constant. εurb is15

calculated as the mean emissivity of the street canyon elements.

The bulk radiation parameters from the urban tile (urb) computed by BEP-Tree are combined with the ones computed by

COSMO for the natural (nat) tile as:

α⇓ = furb α
⇓
urb + fnat α

⇓
nat, (9)

α↓ = furb α
↓
urb + fnat α

↓
nat, (10)20

ε= furb εurb + fnat εnat, (11)

Trad =

(
(furb εurb T

4
urb + fnat εnat T

4
nat)

ε

)1/4

, (12)

with furb and fnat (= 1 - furb) being the planar fractions of urban and natural surfaces, respectively. The resulting bulk radiation

parameters are used as lower (surface) boundary conditions for the short-wave and long-wave radiation routines in COSMO.

In the same way, the tendencies of momentum, sensible heat, moisture and TKE production from the urban tile are combined25

with the corresponding tendencies from the natural tile.

BEP-Tree operates on a grid (called urban grid) that is vertically independent of and generally finer than the grid of COSMO

(called mesoscale grid). As a default, the vertical resolution of the urban grid is 5 m. At each model time step, the input fields
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from COSMO have to be interpolated to the urban grid whereas the output fields (tendencies) of BEP-Tree have to be aggre-

gated back to the mesoscale grid. The interpolation and aggregation of fields in COSMO-BEP-Tree follows the implementation

of Schubert (2013).

Following Schubert (2013), the 2 m air temperature is diagnosed from the air temperature at the lowest mesoscale model

layer and the surface temperature from both urban and natural surfaces as:5

T2m = (fnat Tg + furb Tstr) + r (T1− (fnat Tg + furb Tstr)), (13)

where Tg is the surface temperature of the natural tile, Tstr is the street surface temperature, r is a coefficient that represents

the stability-dependent resistance for scalar transport as estimated by the TKE-based surface-layer transfer scheme of COSMO

(Baldauf et al., 2011), and T1 is the air temperature at the lowest model level.

2.4 COSMO-BEP-Tree preprocessor10

Additional input variables need to be calculated before running COSMO-BEP-Tree. These variables, referred to as urban

canopy parameters (UCPs) in the following, describe the spatial representation of the street canyon (including street trees)

required by the urban canopy model. A dedicated python program, UCPgenerator v1.0, has been developed to generate the

UCPs based on external datasets. The workflow of UCPgenerator is shown in Fig. 2 (green boxes). A technical description of

UCPgenerator v1.0 is given in Appendix A.15

The UCPgenerator requires the following three input datasets: (1) street trees, (2) buildings and (3) imperviousness. The

dataset of street trees consists of a spatial map of the street tree distribution. This may include information on tree height,

leaf area index (L) or leaf area density (LD) and tree species. In the case of missing information, representative profiles or

knowledge-based assumptions can be used instead. Information on street trees is typically provided by inventories maintained

by urban environmental agencies (e.g. Stadtgaertnerei Kantons Basel-Stadt), remotely sensed data such as LIDAR data (e.g.,20

Alonzo et al., 2014) and combined data derived using data fusion techniques (e.g., Branson et al., 2018).

The building dataset consists of a collection of building geometries in the urban area, including building height as an attribute

of each individual building. 3D building datasets are typically provided by national mapping agencies and collaborative projects

(e.g. OpenStreetMap).

The imperviousness dataset is a spatial representation of the horizontal fraction of impervious surfaces in the model domain.25

Such data is available at the European scale (e.g. EEA, 2015) as well as at the global scale (e.g. Brown de Colstoun et al.,

2017).

3 Model evaluation

3.1 Study area and model set up

COSMO-BEP-Tree was applied over the Basel metropolitan area (Basel hereinafter), located mainly in Switzerland but ex-30

tending over the borders of France and Germany (Fig. 3). Situated along the Rhine river, the larger Basel area has a population
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of approx. 830,000 inhabitants and is surrounded by hilly to mountainous terrain especially towards the south (Jura mountains)

and north-east (Black Forest). According to the Köppen climate classification, Basel features a temperate oceanic climate

(Köppen: Cfb). The inner city (Basel-Stadt) includes more than 24,000 urban trees and 275 hectares of public vegetated sur-

faces distributed over a total area of the city centre of approx. 2,385 hectars (Stadtgaertnerei Kantons Basel-Stadt). The average

canopy cover from street trees is about 20% when considering the entire urban area, but it varies from 6 to 31% in the different5

neighbourhoods (Supplement). The city of Basel is an interesting target for the availability of extensive observational data sets

for model evaluation, which had been used in numerous previous urban climate studies (e.g. Rotach et al., 2005; Parlow et al.,

2014). Observations and input data used here are described in Section 3.3 and Section 3.2.

In this study, COSMO-BEP-Tree was run for the period 22 June 2015 - 9 July 2015, with the first 5 days discarded as spin-up

period. The analyses were performed on the period 27 June 2015 - 9 July 2015, called study period hereinafter. The period10

corresponds to an intense heatwave that persisted across Europe producing a seasonal mean surface air temperature 2.4 K above

the 1964-1993 mean (Dong et al., 2016; Ionita et al., 2017). The event featured a stable anticyclonic weather regime with a

prevalence of cloud-free conditions, low wind speeds and absence of precipitation. The conditions were ideal for evaluating

the model performance, particularly with respect to the impact of street trees on the urban atmosphere and the development of

the UHI.15

We applied COSMO-BEP-Tree over a domain of approx. 90 km x 80 km with a horizontal grid spacing of 0.0025◦ (approx.

270 m). 60 levels were used in the vertical direction, with 5 and 23 levels in the first 100 m and 1000 m, respectively. The

model set-up closely follows the configuration described in Mussetti et al. (2020). Initial and boundary conditions were taken

from the operational COSMO-2 analyses operated by the Swiss Federal Office of Meteorology and Climatology (MeteoSwiss),

which are centred over Switzerland and cover the whole Alpine domain. The analyses have a horizontal resolution of about20

2 km and are produced using a nudging technique (Schraff, 1997) applied to near-surface observations and vertical soundings

of pressure, humidity and wind. Soil moisture, a key variable for accurate representation of heatwaves (Wang et al., 2019),

is also initialised with the COSMO-2 analyses, which trace back to the soil moisture analyses of ECMWF’s operational IFS

model (De Rosnay et al., 2013). As additional input parameters for COSMO, the 1” global digital elevation map ASTER

(Tachikawa et al., 2011) for topography, the 10” land use dataset GlobCover 2009 (Loveland et al., 2000) for land cover, and25

the 30” Harmonized World Soil Database (FAO et al., 2009) for soil properties were used.

To assess the physical consistency of the implementation of the different interactions with street trees, we performed ad-

ditional sensitivity simulations changing the values of the parameters describing the street trees (Table 1). In addition to the

standard run (STD), simulations without street trees (LA0), with increased and decreased values of leaf area density (LA+

and LA-, respectively), and with increased and decreased values of stomatal conductance (SC+ and SC-, respectively) were30

performed.

3.2 Urban canopy input data

Figure 4 shows the distribution of the main urban canopy parameters as derived by the preprocessor UCPgenerator. The model

represents the spatial variability of the urban texture in terms of fraction of urban surfaces, street canyon orientation and width ,
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Figure 3. (a) The model domain centred over the metropolitan area of Basel. The terrain height (in m a.s.l.) is shown in the background.

The urban area is highlighted in red (b) Detail of the urban area (corresponding to the dashed rectangle in (a)) with the location of the

measurement sites used for the evaluation (Section 3). In the background are the tree height distribution (green) (Basel-Stadt, 2019) and

building geometries (grey).
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Table 1. Summary of numerical experiments and changes in the parameters used for the sensitivity study. Std indicates the standard value(s)

as provided in Section 3.2. The other parameters are kept constant with the values provided in Section 3.2.

Name LDe gs Description

STD Std Std Current conditions

LA0 0 Std No street trees

LA+ +50% Std Increased leaf area density

LA- -50% Std Decreased leaf area density

SC+ Std +50% Increased stomatal conductance

SC- Std -50% Decreased stomatal conductance

building width and urban vegetation (Figures 4e-f). Lcan and Lnat are obtained by vertical integration of the respective leaf area

densities LD,can and LD,nat. Figure 4 also gives a flavor of the heterogeneity of the city: Industrial areas in the northern and

south-east parts of the city, for instance, are associated with wide street canyons and very low vegetation density. Residential

areas in the south and west of the centre, in contrast, are characterised by narrow street canyons and relatively high vegetation

density.5

The urban canopy parameters were derived with UCPgenerator from the following input datasets: (a) imperviousness from

EEA (2015), (b) 3D buildings from Federal Office of Topography (2007) and (c) lidar-based tree canopy height (see data

availability section). The imperviousness dataset represents the percentage of soil sealing (including building area) and has a

resolution of 20 m. The building dataset is a vector dataset representing the building geometries (accuracy 3-8 m), including

heights but without information on the building materials or use. The tree canopy height dataset has a 2 m spatial resolution10

and includes all trees in the Basel area. The imperviousness data set was used to differentiate between street trees (contributing

to LD,can) and trees over natural surfaces (contributing to LD,nat). Specifically, trees located over mostly impervious surface

(≥ 50%) are classified as street trees. A local leaf area density (inside individual trees) LD,loc of 1 m3 m−2 was used accord-

ing to measurements over urban trees during summertime in Gothenburg, Sweden (Klingberg et al., 2017). The tree species

measured by Klingberg et al. (2017) are assumed to be rather representative as they correspond to 6 of the 12 most common15

species present in Basel (Basel-Stadt, 2019). The density of street trees above the building column (LD,bld, representing trees

overhanging roofs) was assumed to be 0. This assumption was made giving that no reliable information was available about

the overlapping between tree crowns and roofs. Further details regarding the methodology used to derive the urban canopy

parameters are given in the Appendix A. The resulting Lcan (Figure 4e) have values ranging from 0 up to 3 m2 m−2, which is

within the same range as reported in previous urban studies (Liss et al., 2010; Alonzo et al., 2015; Klingberg et al., 2017).20

The thermal and physical properties of urban elements are listed in Table 2. The values are based on the recommendations of

Loridan and Grimmond (2012) and are used as default values in COSMO-BEP-Tree. The values have already been evaluated

over Basel by Loridan and Grimmond (2012). A foliage scattering coefficient of 0.5 and a foliage emissivity of 0.95 are used

according to Krayenhoff (2014).
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Figure 4. Urban canopy parameters derived for the model domain: (a) urban fraction, (b) canyon fraction along the NW-SE direction, (c)

average canyon width, (d) average building width, (e) leaf area index due to street trees, and (f) leaf area index due to vegetation outside the

urban canopy. Further details about the variables are given in Table A1. Only urban grid cells (furb > 0.1) are shown.

A step function is used to model the stomatal conductance (gs) with values of 140 mmol m−2 s−1 and 20 mmol m−2 s−1 for

daytime and night-time, respectively. The values are calculated combining the dataset of urban tree species in the public area

of Basel (Basel-Stadt, 2019) with observed values of stomatal conductance (Konarska et al., 2016; Keel et al., 2007; Campbell

and Norman, 2012; Xiong et al., 2018). Additional details are provided in the Supplement.

A uniform constant value of clumping index (Ω) of 0.5 was used for the reference simulation (STD). In the absence of5

easily applicable methods to determine Ω in street canyon environments, we made our choice in analogy to measurements

over an open Savannah (Ryu et al., 2010). Savannah is a natural environment that resemble the urban environment in terms of

heterogeneity and openness of the tree canopy.

Anthropogenic heat flux (QA) was estimated off-line with the Large scale Urban Consumption of energY model (LUCY;

Allen et al. (2011); Lindberg et al. (2013)) version 2014a. LUCY simulates the hourly heat emissions from buildings, vehicles10

and human metabolism using gridded inventories of population density, primary energy consumption, air temperature, number

of vehicles and seasonal, weekly, and diurnal cycles of traffic density. Gridded population density from Center for International

Earth Science Information Network - CIESIN - Columbia University, International Food Policy Research Institute - IFPRI, The
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Table 2. Material properties used in the urban canopy model.

Roof Wall Road

Albedo (-) 0.10 0.10 0.15

Emissivity (-) 0.85 0.90 0.95

Heat Capacity (J m−3 K−1 × 106) 1.50 1.40 1.50

Heat Conductivity (W m−1 K−1) 0.80 1.00 0.80

Total thickness (m) 0.50 0.30 1.00

Roughness length (m) 0.01 - 0.01

Table 3. Overview of observation sites used for model evaluation. Figure 3b shows the location of the sites. T is air temperature, q specific

humidity, u wind speed, QH sensible heat flux, and QE latent heat flux.

Name Variablea Type Height furb Lcan LCZ

BKLI T , q, u, QH, QE Flux tower 38 m 0.79 1.50 Compact mid-rise (2)

BFEL T Surface 2 m 0.98 1.03 Compact mid-rise (2)

BSJO T Surface 2 m 0.85 1.06 Compact mid-riseb (2)

SLFR T Surface 2 m 0.51 0.35 Large low-rise (8)

BBIN T Surface 2 m <0.10 0.00 Rural low plantsc (D)

BLER T , q, QH Surface 2 / 10 m <0.10 0.00 Rural low plants (D)

a Only variables used in this study are reported (the station may measure additional variables). b with scattered trees (LCZ B).
c surrounded by open mid-rise residential areas (LCZ 2).

World Bank, and Centro Internacional de Agricultura Tropical - CIAT. 2011 (2011) with a resolution of 30” were used. Values

of energy consumption in the region of Basel for the months June and July 2015 have been obtained Basel-Stadt, replacing the

default yearly average value, as recommended by Lindberg et al. (2013). The model estimated period-average values of QA of

4 and 14.4 W m−2 over the entire urban area and the city centre, respectively. A maximum value of 22.9 W m−2 was found

around mid-day in the city centre. The values are consistent with previous estimates of 20 W m−2 as annual average from5

Christen (2005).

3.3 In situ measurements

Measurements from one 38 m tall flux tower and five surface stations were used to evaluate the model results. Table 3 shows a

summary of the corresponding observations. The site of Basel Klingelbergstrasse (BKLI) is an urban flux tower operated by the

MCR-Lab (Meteorology, Climatology and Remote Sensing) of the University of Basel. BKLI is located in an area with a dense10

mix of mid-rise buildings, corresponding to a Local Climate Zone (LCZ) 2 (Stewart and Oke, 2012), and relatively high density

of street trees. The site consists of a 18 m high tower mounted on the flat roof of a 20 m high building. According to Lietzke and

Vogt (2013) and Feigenwinter et al. (2012), the measurements can be considered to take place above the roughness sub-layer,
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and inside the inertial sub-layer. The footprint area for energy fluxes was estimated to be 0.60 km2 for 90% of the source area in

summer (Schmutz et al., 2016). The site comprises an eddy covariance system consisting of an ultrasonic anemometer (HS-50,

Gill Instruments Ltd.) and an open-path CO2/H2O infra-red gas analyser (LI-7500, LI-COR Inc.). Air temperature is measured

with a fine-wire thermocouple mounted in a fan-aspirated radiation shield (ASPTC, Campbell Scientific); relative humidity is

measured with a mirror-type dew point hygrometer (THYGAN VTP6, Meteolabor AG); radiation fluxes are measured with a5

four-component radiometer (CNR4, Kipp & Zonen). It is worth to mention that the flux measurement is generally characterised

by a considerable uncertainty (Richardson et al., 2012; Järvi et al., 2018). The uncertainty due to random errors is approx. 20%

and 30% of the measured flux of sensible and latent heat, respectively (Hollinger and Richardson, 2005). Further details on the

site and data processing are available in Schmutz et al. (2016); Lietzke and Vogt (2013); Feigenwinter et al. (2018).

Six surface stations are used to evaluate the model performance inside the urban canopy layer. The sites of Basel Feld-10

bergstrasse (BFEL) and Basel St. Johannplatz (BSJO) are operated by the local environmental agency (Lufthygieneamt beider

Basel). The site of BFEL is located in an area corresponding to compact mid-rise (LCZ 2) and has moderate density of street

trees. It is positioned directly inside the street canyon at the intersection between two roads oriented along the 80°/260° and

160°/340° axis. Due to its vicinity to a south facing wall, BFEL may experience temperatures larger than those expected in

the middle of the street canyon. The site of BSJO is located in a small park at the border of the old city core. The park is15

vegetated and extends to the north-east while the surrounding area is characterised by a dense mix of mid-rise buildings. Both

sites BFEL and BSJO measure temperature with a thermometer with radiation shield (HC-S3, Campbell Scientific). The site of

Saint-Louis Trois-Frontières (SLFR) is operated by the environmental agency of Alsace (ASPA), France. The station is located

in the outskirts of the city in an area characterised by large low-rise buildings (LCZ 8). Few or no trees are present and the

land cover is mostly paved or hard-packed. Air temperature is measured with a platinum resistance thermometer (HMP35D,20

Vaisala) with radiation shield. The site of Basel Binningen (BBIN) is operated by the Swiss Federal Office of Meteorology

and Climatology (MeteoSwiss). The station is located in a rural/agricultural patch (LCZ D) at the south-western outskirts of

the city. Low-rise residential areas surround the patch to the west, north and east. The surface underneath the sensor is natural

(grass) and scattered low-rise buildings are present at 15-20 m distance. The site measures temperature with a thermometer

with radiation shield and active ventilation (Rotronic HC2A-S3, Meteolabor). The site of Basel Lange Erlen (BLER) is oper-25

ated by the MCR-Lab. The station is located in a rural/agricultural patch (LCZ D) at 6 km distance from the city core. The

surface underneath the sensor is natural (grass). Given the vegetated environment and distance from the city centre, the site of

BLER is used as a rural reference in this study. The station used the same instruments as the site BKLI for air temperature,

relative humidity and radiation fluxes.

3.4 Satellite observations30

Thermal infrared (TIR) data from the Landsat 7 are used to evaluate the modelled land surface temperatures (LSTmod). Landsat

acquires TIR data with a spatial resolution of 60 m. In contrast to other TIR satellite data (e.g. MODIS or SEVIRI), this

resolution is fine enough to support high-resolution applications. Due to its small field of view, Landsat TIR retrievals are not

affected by thermal angular anisotropy (Hu et al., 2016). During the investigation period, the Landsat 7 scene from 5 July 2015
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was selected for the evaluation. No other cloud-free scenes from Landsat 7 or 8 were available during this period. Specifically,

the Landsat 8 overpass of 4 July 2015 had to be discarded due to the presence of cirrus clouds.

The satellite surface temperature (LSTsat) was derived from satellite data by correcting and converting the TIR signal

received by the satellite sensor. The LSTsat calculation follows the approach described in Mussetti et al. (2020). We used

the radiative transfer model MODTRAN (MODerate resolution atmospheric TRANsmission) to estimate the atmospheric5

transmission, the long-wave upwelling or atmospheric path radiance and the long-wave downwelling or sky radiance (Abreu

and Anderson; Tardy et al., 2016). Atmospheric profiles from COSMO-BEP-Tree (STD simulation) were used in MODTRAN

replacing its standard profiles. MODTRAN was used to transform the top-of-atmosphere radiance to surface-leaving radiance,

which was further converted to LST by inverting the Planck function (Coll et al., 2010). A modified vegetation-threshold

approach by Sobrino et al. (2008) was used to estimate the surface emissivity. As the original approach does not account for10

built-up areas, a lookup table for dark and bright urban surfaces with a range of 0.95 to 0.97, based on emissivity values for

typical urban fabrics (Baldridge et al., 2009), was applied (Mitraka et al., 2012). Note that these values differ from those used

in the model (Table 2). The uncertainty in the values of emissivity produces average changes in the LST of about 1.25 K

(Supplement). On top of this, the LST is affected by uncertainties due to atmospheric correction, sensor and off-nadir view

(Voogt and Oke, 2003; Chen et al., 2017).15

The LSTsat has been re-mapped to the model grid of COSMO-BEP-Tree using an average re-sampling method, i.e. the

average of all contributing pixels was computed (McInerney and Kempeneers, 2015). This re-sampling method ensures the

conservation of the mean values.

LSTmod was calculated combining the temperatures of roofs, streets, natural surfaces according to their respective fractions

as:20

LSTmod =

Nd∑
d=1

Tstrfdirfstr(1−CC) +

Nd∑
d=1

TvegfdirfstrCC +

Nd∑
d=1

(

Nh∑
h=1

Trooffroof )fdirfbld +Tnatfnat, (14)

where Tstr is the temperature of the streets (function of canyon direction (d)), fdir is the fraction of canyons with direction

d, CC is the effective canopy cover from street trees, Tveg is the vertically averaged temperature of the leaves of the street

trees, Troof is the temperature of the roofs (function of (d) and height (h)) and Tnat is the temperature of the natural tile. CC is

estimated from the leaf area density L using the relationship provided by Klingberg et al. (2017).25

3.5 Performance metrics

The model performance was evaluated against the observations using the following metrics: root-mean-square error (RMSE),

systematic root-mean-square error (RMSEs), unsystematic root-mean-square error (RMSEu), mean bias error (MBE) and

coefficient of determination (r2). This choice of metrics follows the recommendations of Willmott et al. (1985) and ensures

comparability with previous urban climate model evaluations (e.g., Schubert and Grossman-Clarke, 2014; Oleson et al., 2008;30

Grimmond et al., 2011). The definition of the indices is available in Willmott et al. (1985); Willmott (1981).
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Figure 5. Comparison between observations (Obs) and model simulations (STD, LA0) of air temperature (a,b), specific humidity (c,d), wind

speed (e,f), sensible heat flux (g,h) and latent heat flux (i,l) at the site BKLI (38 m tall flux tower) during the study period. The left (a,c,e,g,i)

and right (b,d,f,h,l) columns show the 3-h moving average and the diurnal cycle, respectively. Black dots indicate the observations. Blue and

red lines indicate the results from the STD and LA0 model runs, respectively. The shaded areas represent the range of variability within the

period for the observations and STD simulation only. Specifications of the model set-ups can be found in Section 3.1.

4 Results

4.1 Evaluation against measurements from an urban flux tower

The comparison between model simulations and observations above the urban canopy layer at the BKLI flux tower site is

shown in Fig. 5. Only the results corresponding to the reference simulation (STD) and to the simulation without street trees

(LA0) are shown (see Table 1 for further details on the simulation set-ups). The statistical scores are given in Table 4. If not5

specified, we refer to the STD simulation in the text below.
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Table 4. Root-mean-square errors (RMSE), mean-bias errors (MBE) and coefficient of determination (r2) of the simulated air temperatures

(T ), specific humidity (q), wind speed (u), sensible heat flux (QH) and latent heat flux (QE) at the BKLI site (38 m above ground) during the

study period. In addition to the total RMSEs (T), the systematic (S) and the unsystematic (U) RMSEs are listed. The statistics are provided

for the standard simulation (STD) and the simulation without street trees (LA0). The units only apply to RMSE and MBE.

RMSE (T/S/U) MBE r2

T (K)
STD 1.04 / 0.51 / 0.90 0.51 0.97

LA0 1.10 / 0.58 / 0.93 0.58 0.97

q (g kg−1)
STD 1.52 / 1.13 / 1.02 -1.09 0.74

LA0 1.61 / 1.24 / 1.03 -1.20 0.73

u (m s−1)
STD 1.31 / 0.80 / 1.03 0.61 0.70

LA0 1.62 / 1.10 / 1.19 0.87 0.69

QH (W m−2)
STD 40.10 / 7.72 / 39.30 7.70 0.88

LA0 74.80 / 50.60 / 55.20 47.00 0.84

QE (W m−2)
STD 25.10 / 6.86 / 24.10 5.31 0.70

LA0 37.80 / 36.90 / 8.57 -32.20 0.74

The model simulates the evolution of air temperature very well during the evaluation period (Figure 5a-b) although a slight

overestimation with a MBE of 0.51 K and a systematic RMSE of 0.51 K was found. The overestimation occurs mostly during

night-time and it seems to be related to an underestimation of the bulk albedo (Supplement) which can be traced back to the

choice of material properties (Table 2). A too low albedo may have produced an excess in heat storage with consequently larger

sensible heat release at night. Nevertheless, a night-time overestimation of temperature was not found at the near-surface sites,5

indicating that more analyses are needed to better understand eventual issues with the choice of material properties. The impact

of street trees on the air temperature above the canopy layer is found to be negligible, giving the very small differences between

STD and LA0.

The evolution of specific humidity q throughout the simulation is generally well reproduced (Figure 5c-d). The mean value

of q is underestimated (MBE = -1.09 g kg−1), which explains a large fraction of the systematic RMSE (RMSEs = 1.13 g10

kg−1). A similar pattern is found at the rural site of BLER (available in the Supplement), indicating that the bias is not related

to the urban scheme. The bias would be consistent with a general underestimation of soil moisture in COSMO as reported by

Davin et al. (2011). Another possible source of the bias may be related to the boundary conditions, with insufficient humidity

advected from the boundaries of the domain. Street trees produce a very small increase in specific humidity bringing the model

in slightly closer agreement with the observations. This is quantified by a reduction in the systematic component of RMSE and15

MBE compared to LA0 of about 0.1 g kg−1 (about 6 and 8 % of the entire RMSE and MBE, respectively).

The model simulates well the evolution of wind speed (u) during the evaluation period (Figure 5e-f), but overestimates u

during several days and especially in the afternoon. The overestimation was not limited to the urban area but was also found at

the rural site (Supplement). Although its origin is unclear, possible causes may a misrepresentation of the regional scale wind
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from the driving boundary conditions and an overestimation of the thermally driven flow induced by the surface temperature

gradient between the city and the surroundings. Nevertheless, the comparison with observations shows a small bias (MBE =

0.61 m s−1), lower than previous urban studies with COSMO (e.g. Schubert and Grossman-Clarke, 2014), and the unsystematic

error dominates. Street trees reduce the simulated u and slightly improve the agreement with the observations. RMSE and MBE

are reduced compared to LA0 by 0.31 and 0.26 m s−1, respectively.5

The sensible heat flux (QH) follows very well the observations during the evaluation period (Figure 5g-h) showing almost

no bias (MBE = 7.7 W m−2) but a RMSE of 40.1 W m−2 with a large unsystematic component. These errors are comparable

to, or smaller than those obtained in a recent inter-comparison of UCMs (Grimmond et al., 2011). The representation of street

trees substantially improves the agreement with the observations. Street trees reduce simulated QH by as much as 100 W m−2

during mid-day. The improvements in RMSE and MBE compared to LA0 were as large as 34.7 and 39.3 W m−2, respectively.10

Additionally, an improvement of 0.06 in r2 was also found.

The evolution of latent heat flux (QE) is generally well reproduced by the model (Figure 5i-l), but the agreement is better

during the initial and final phase of the heatwave when the synoptic forcing was stronger and wind speeds correspondingly

higher. During the central part of the evaluation period, an overestimation is found. Overall, the model showed a very small

MBE of about 5 W m−2 and a RMSE of 25.1 W m−2. Again, the scores are comparable to, or better than those obtained in a15

recent inter-comparison of UCMs (Grimmond et al., 2011). The slight overestimation during the central part of the simulation

period could be caused by a limitation in soil water availability that may have been present in reality but was not considered

in the simulations. Street trees had a very large impact on QE and improved the agreement with the observations substantially.

RMSE and MBE improved compared to LA0 by 12.7 and 26.9 W m−2, respectively.

For completeness, the comparison between modelled and observed radiation fluxes is shown in the Supplement. The model20

simulations agree reasonably well with the observed radiation fluxes, although the upward short-wave radiation is underesti-

mated. This indicates that the albedo is underestimated, which can be related to the choice of material properties (Table 2). The

upward long-wave radiation is slightly overestimated, which can therefore be related to the underestimation of the albedo and,

consequently, to an overestimation of surface temperatures. Overall, the representation of street trees had a very minor impact

on the radiation fluxes.25

4.2 Evaluation against surface stations

Within the urban canopy layer, the model was evaluated in terms of the 2-m air temperature (T2m) and canopy layer urban heat

island (UHI) intensity. The UHI intensity is defined as UHIi = Ti−Trur where Ti is the 2-m air temperature at the urban site i

and Trur is the 2-m temperature at the rural reference site BLER. The comparison between model simulations and observations

in term of T2m is shown in Fig. 6. Only the results corresponding to the reference simulation (STD) and to the simulation30

without street trees (LA0) are shown. If not specified, we refer to the STD simulation in the text below.

The model simulation compares generally well with the observed T2m, especially in the urban area. The model errors are

in the range of other urban climate studies (e.g. Schubert and Grossman-Clarke, 2014; Wouters et al., 2016). The difference

between model and observations is more pronounced at the site BFEL where the systematic part of the RMSE is substantially
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Figure 6. Comparison between period averaged daily profiles of observed (Obs) and model-simulated 2-m air temperature at the sites BFEL,

BSJO, SLFR, BBIN and BLER during the study period. Black dots indicate the observations. Blue lines and red lines indicate the results

from the STD and LA0 model runs, respectively. The range of variability within the selected period is shown as shaded area for Obs (grey)

and STD (light blue).

higher (RMSEs = 0.93 K) than at other sites. This difference may be related to the local exposure of the BFEL sensor, located

in the vicinity of a (warm) south facing wall. Notable is also the overestimation of temperatures at the rural sites BLER and

BBIN (MBE = 1.36 K and 0.88 K, respectively), which is most pronounced at night-time. This is probably determined by the

combined effect of underestimation in surface albedo and misrepresentation of atmospheric stability (Supplement). A similar

underestimation of albedo at rural sites has been already found by Schubert and Grossman-Clarke (2014). The underestimation5

is attributed to the default albedo scheme of COSMO-CLM, which fails to represent different vegetation types. It is unclear,

however, whether this bias is due to specific conditions at the BLER site (grassland) or due to a general misrepresentation in

the land-surface model of COSMO-CLM. The misrepresentation of stable boundary layer conditions is a well-known issue

of COSMO (Buzzi et al., 2011; Cerenzia, 2017) and has already been reported in previous studies (Schubert and Grossman-

Clarke, 2014; Mussetti et al., 2020).10
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Table 5. Root-mean-square errors (RMSE), mean-bias errors (MBE) and coefficient of determination (r2) of the simulated 2-m air temper-

ature T2m at the sites BFEL, BSJO, SLFR, BBIN and BLER during the study period. In addition to the total RMSEs (T), the systematic (S)

and the unsystematic (U) RMSEs are listed. The statistics are provided for the standard simulation (STD) and the simulation without street

trees (LA0).

2-m air temperature (K)

RMSE (T/S/U) MBE r2

BFEL
STD 1.66 / 0.93 / 1.37 -0.85 0.94

LA0 1.59 / 0.72 / 1.41 -0.70 0.94

BSJO
STD 1.39 / 0.56 / 1.27 0.56 0.95

LA0 1.55 / 0.81 / 1.32 0.77 0.95

SLFR
STD 1.03 / 0.19 / 1.01 0.04 0.97

LA0 1.03 / 0.18 / 1.02 0.08 0.97

BBIN
STD 1.39 / 0.90 / 1.07 0.88 0.96

LA0 1.43 / 0.99 / 1.04 0.98 0.97

BLER
STD 2.17 / 1.41 / 1.65 1.36 0.91

LA0 2.20 / 1.45 / 1.65 1.40 0.91

Alla
STD 1.53 / 0.80 / 1.27 0.40 0.95

LA0 1.56 / 0.83 / 1.29 0.51 0.95

a average over all sites.

The representation of street trees produces a slight decrease in daytime air temperature, particularly around noon (Figure

6a-b). This effect is more evident at sites with higher urban fraction (furb) and leaf area index from street trees (Lcan). The

representation of street trees slightly reduced the RMSE and MBE at all the sites (but BFEL) compared to LA0. When averaged

over all sites, the reductions in RMSE and MBE were 0.03 and 0.11 K, respectively.

The comparison between model simulation and observations in terms of UHI intensity for the simulations STD and LA0 is5

shown in Fig. 7. The statistical scores are presented in Table 6 for the simulation STD only. The model is able to capture the

general features of the UHI, such as the daily evolution and the different magnitude of the UHI at the different sites, whereas the

temporal variability throughout the period is not always represented. Generally, the UHI intensity is underestimated, especially

during night-time. This is related to the overestimation of night-time air temperatures at the rural site BLER (MBE = 1.36 K

for STD) and, to a minor extent, to the underestimation at the most urban sites (Table 5 and Supplement). The performance10

with respect to UHI intensity is better or comparable to similar studies (Wouters et al., 2016; Schubert and Grossman-Clarke,

2014).

The representation of street trees’ affects the simulated UHI intensity by producing a slight reduction in UHI intensity from

late morning to early evening. The impact of street trees is more evident at sites with higher urban fraction and density of

street trees. An improvement in model performance with street trees was, however, not evident in terms of UHI representation.15
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Figure 7. Comparison between period-averaged daily profiles of observed (Obs) and model-simulated 2-m urban heat island (UHI) intensity

at the sites BFEL, BSJO, SLFR and BBIN during the evaluation period. The site BLER is used as rural reference. Black dots indicate the

observations. Blue and red lines indicate the results from the STD and LA0 model runs, respectively. The range of variability within the

selected period is shown as shaded area (only for Obs and STD).

Considering that street trees produce changes in the expected direction, this suggests that probably other model biases are

masking the benefit of including street trees.

4.3 Evaluation against satellite observations of land surface temperature

Figure 8 compares the spatial distribution of simulated and remotely-sensed land surface temperature (LST) on 5 July 2015 at

approx. 11:10 LT (10:10 UTC). Statistical scores are shown in Table 7.5

Overall, a good agreement between simulations and observations was obtained in terms of the domain averaged model bias

and errors. As shown in Fig. 8, the spatial pattern of LST is generally well captured by the model indicating that the urban

and rural land use variations are well represented. However, the model is found to underestimate the maximum LSTs and to

overestimate the minimum LSTs at the outskirts of the urban area (Figure 8d-e). Quantitatively, the model was found to have a

small negative bias over the urban area (MBE = -0.39 K for STD) and a small positive bias when considering the entire domain10

(MBE = 0.34 K for STD). The RMSE was found to be lower in the urban area (RMBS = 2.71 K for STD) than in the entire

domain. However, a relatively large component of RMSE was found to be systematic. The coefficient of determination was

found to be quite low (r2 = 0.58 for STD). Only minor differences between STD and LA0 are seen, with STD being slightly

colder over the urban area.
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Table 6. Root-mean-square errors (RMSE), mean-bias errors (MBE) and coefficient of determination (r2) of the simulated 2-m urban heat

island (UHI) intensity (K) at the sites of BFEL, BSJO, SLFR and BBIN during the study period. The site of BLER is used as rural reference.

In addition to the total RMSEs (T), the systematic (S) and the unsystematic (U) RMSEs are listed.

2-m UHI intensity (K)

RMSE (T/S/U) MBE r2

BFEL
STD 2.7 / 2.53 / 0.95 -2.26 0.57

LA0 2.6 / 2.43 / 0.92 -2.12 0.56

BSJO
STD 1.56 / 1.2 / 1.0 -0.86 0.54

LA0 1.53 / 1.12 / 1.04 -0.65 0.48

SLFR
STD 1.8 / 1.63 / 0.75 -1.37 0.67

LA0 1.77 / 1.6 / 0.75 -1.33 0.67

BBIN
STD 0.93 / 0.86 / 0.36 -0.48 0.43

LA0 0.86 / 0.78 / 0.37 -0.38 0.45

All1
STD 1.66 / 1.42 / 0.82 -1.18 0.55

LA0 1.60 / 1.38 / 0.81 -1.10 0.54

1 average over all sites.

Table 7. Root-mean-square errors (RMSE), mean-bias errors (MBE) and coefficient of determination (r2) of the simulated (STD) land

surface temperature (LST) [K] against the Landsat 7 satellite observations on the 5 July 2015 at approx. 11:10 LT (10:10 UTC). In addition

to the total RMSEs (T), the systematic (S) and the unsystematic (U) RMSEs are listed. "Urb" represents the comparison only at the urban

grid cells (furb > 0.1). Grid cells contaminated by water or clouds have been removed.

Surface Temperature (K)

RMSE (T/S/U) MBE r2

All (N=5853)
STD 3.14 / 2.36 / 2.07 0.34 0.60

LA0 3.08 / 2.25 / 2.10 0.53 0.63

Urb (N=1930)
STD 2.71 / 2.36 / 1.34 -0.39 0.58

LA0 2.61 / 2.25 / 1.31 -0.03 0.62

The moderate r2 and the relatively high component of systematic RMSE over urban areas may be explained by the fact that

the same material properties (albedo, emissivity, heat capacity and heat conductivity) were used for the whole city. Therefore,

spatial variations in material properties, e.g. between industrial and residential buildings, were not represented. This likely

limits the model’s ability to represent intra-urban gradients of surface temperature and, consequently, the related components

such as sensible heat fluxes.5
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Figure 8. Spatial distribution of land surface temperature (LST) [◦C] on 5 July 2015 at approx. 11:10 LT (10:10 UTC). (a,b) show the

simulated LST with STD and LA0 configurations, respectively; (c) shows the observed LST from Landsat 7 satellite; (d,e) show the LST

differences between simulated and observed LST for the STD and LA0 configurations, respectively. Grid cells contaminated by the presence

of the river or clouds have been removed.

The explicit representation of street trees did not improve the agreement with satellite observations of land surface temper-

ature. However, this observation should be taken with care given that satellite-derived LST in urban areas are known to have

a large degree of uncertainly due to potential errors in the surface emissivity, sensor and satellite view bias (Voogt and Oke,

2003; Chen et al., 2017). Slight off-nadir view angles can introduce a bias over areas with tall buildings while LST variations

at scales below 500 m may be unresolved (Crawford et al., 2018).5

Studies comparing simulated and remotely sensed surface temperatures over cities are rather scarce. We were only able to

quantitatively compare our results with the studies of Wouters et al. (2016) and Hu et al. (2014). Other studies only performed a

qualitative comparison (Miao et al., 2009; Giannaros et al., 2013; Li and Bou-Zeid, 2013; Ramamurthy et al., 2017). The MBE
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Figure 9. Model sensitivity Sφ of 2-m air temperature Tair, street surface temperature Tstr, specific humidity q and wind speed u to varying

values of tree parameters (LA+, LA-, SC+, SC-). Values of S represent a spatial (over all urban grid cells) and temporal (over whole

simulation period) average. Daytime corresponds to 10-18 local time, night-time to 21-5 local time.

found in the present study is lower than what was found by Wouters et al. (2016) and Hu et al. (2014) for most of the conditions

(different urban fractions and rural). Like the present study, Hu et al. (2014) found a general overestimation of daytime surface

temperature in their model while Wouters et al. (2016) reported an opposite behaviour. Wouters et al. (2016) and Hu et al.

(2014) did not use other quantitative statistical metrics. Therefore, a comparison for RMSE and r2 was not possible.

4.4 Model sensitivity to tree parameters5

Figure 9 shows the model sensitivity of 2-m air temperature (called here Tair), street surface temperature Tstr, specific humidity

q and wind speed u to varying values of tree parameters (LA+, LA-, SC+, SC-). The sensitivity Sφ,i is defined here in relative

terms normalised by the amplitude of the difference between a simulation with and without street trees:

Sφ,i =
φi−φSTD

|φLA0−φSTD|
, (15)

where φ is a generic scalar field (Tair, Tstr, q, u), φ represents the spatial and temporal average of the scalar field, and i10

represents the experiment as in Table 1. Generally, the model was more sensitive to changes in leaf area density (LA+, LA-)

than to changes in stomatal conductance (SC+, SC-). During daytime (10-18 local time), Tair and Tstr were the variables that

were most sensitive to the choices of street tree parameters, whereas u was the least sensitive. At night (21-5 local time),

conversely, the variable with the largest sensitivity was q.

An increase in the leaf area density from street trees (LA+) produced a reduction in daytime Tair, Tstr and u, and an increase15

in q. The reduction in Tair and Tstr can be explained by the increase in interception of short-wave radiation from the denser

foliage layer (see Eq. (1)) and, consequently, by the reduced amount of short-wave radiation reaching the wall and street
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surfaces within the canyon. The reduction in u can be explained by the augmented drag force excerpted by the denser foliage

layer (see Eq. (2)). The increase of q can be explained by the larger amount of leaf area available for transpiration (see Eq. (5)).

During night-time, the sensitivity experiment LA+ produced a marked increase in q and Tstr. Tair remained approximately

constant while u decreased. The responses of q and u follow the same mechanisms of the daytime response. The response

of Tstr, in contrast, is opposite to its daytime response. At night, enhanced interception of long-wave radiation emitted from5

the internal surfaces of the canyon (walls and street) with increased leaf area density reduces the cooling of the street surface.

Although enhanced tree foliage cools the street surfaces during the day due to shading, the heat capacity and corresponding

thermal inertia of the street surfaces seems to be not sufficient to carry over this effect into the night-time to compensate for

the reduced long-wave radiative cooling. Such an increase in night-time surface temperatures due to street trees, although

somewhat counter-intuitive, has in fact been reported previously in observation-based studies (e.g. Shashua-Bar et al., 2009;10

Coutts et al., 2016).

A reduction in the leaf area density (LA-) generally produced an opposite response to that of an increase in leaf area density

(LA+). An interesting exception is the reduction of Tair at night, suggesting that different processes with opposing sensitivities

to values of LAD are at work. The largest night-time reduction in Tair was achieved with LA-, which was associated with a

similar reduction in Tstr. A slight reduction in Tair, however, was also found for LA+, which contrasts with an increase in Tstr15

for this scenario. This points towards complex, non-linear interactions between the different effects of LAD on radiation and

winds. However, further studies are needed to corroborate this finding.

An increase in the stomatal conductance (SC+) produced an increase in daytime q and a decrease in Tair. A decrease (SC-)

produced an opposite response. These effects are due to an increase in the source of moisture (see Eq. 5) and latent heat flux

QE (see Eq. 4) as a response to the larger value of stomatal conductance gs. The increase in QE causes a reduction in QH that20

consequently impacts Tair. Tstr and u were found to be insensitive to changes in the stomatal conductance. This is expected

since, in contrast to leaf area density, stomatal conductance has no influence on short-wave radiation or drag. During night-

time, the model was found to be rather insensitive to changes in stomatal conductance. This is not surprising giving the low

value of night-time stomatal conductance in the standard run (STD).

5 Future work25

We acknowledge that there are a number of potential limitations in the current model system that need to be addressed in future

studies. BEP-Tree, and therefore COSMO-BEP-Tree, employ a rather simplistic stomata model for representing the transpira-

tion from street trees. In particular, constant and spatially homogeneous values of daytime and night-time stomatal conductance

were employed ignoring the potentially important impact of water scarcity and the dependence on environmental conditions

(e.g. air temperature and solar irradiation). In order to improve the representation of the transpiration from street trees and30

therefore the modelling of the associated latent heat fluxes, a mechanistic stomata model (e.g. Damour et al. (2010)) will have

to be implemented. Furthermore, to properly represent soil water scarcity during extended drought periods, an urban hydrology
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module should be developed and coupled to COSMO-BEP-Tree (e.g. Järvi et al., 2011; Yang et al., 2015; Stavropulos-Laffaille

et al., 2018).

In this study, a homogeneous and constant value of the clumping index (Ω) was used. The value was chosen from a mea-

surement over a natural environment that resembles the urban environment in terms of openness and heterogeneity of the tree

canopy. In order to improve urban climate simulations with street trees, a methodology to estimate the spatial distribution of5

Ω over urban environments needs to be established. A future implementation of the clumping effects should also consider the

temporal changes of Ω with the solar zenith angle (Ryu et al., 2016).

The coupling approach employed in this work to link COSMO-CLM and BEP-Tree is based on model integration (also called

joint coupling by Brandmeyer and Karimi (2000)) rather than on an independent coupler. The model integration approach has

the advantage of maximising the computational performance by reducing the information exchanged. As a drawback, it does not10

support independent model updates. In other words, every update in the standalone version of each individual model (COSMO-

CLM and BEP-Tree) potentially requires additional effort in re-building the coupled version. In order to allow flexible coupling

between future versions of COSMO-CLM and BEP-Tree, the use of a coupler would be interesting. As an example, COSMO-

CLM has been already used with the OASIS coupler (Craig et al., 2017) to couple with different land surface models (Will

et al., 2017).15

Even if generally comparable with other models, the performance of COSMO-BEP-Tree still has room for improvements.

The model evaluation against urban flux tower measurements revealed a systematic underestimation of specific humidity

(q). The source of this bias needs to be better investigated by, for instance, (a) analysing the soil moisture content and (b)

evaluating q at the model boundaries provided by another model. The model evaluation reveals an overestimation of night-

time air temperature above the urban canopy layer, which can be due to the use of default values of material properties.20

Additionally, the 2-m air temperature is overestimated at the rural sites especially at night. Beside previous studies where this

bias was attributed only to the misrepresentation of stable boundary layer conditions (Mussetti et al., 2020), the present study

provides new evidences that point out to an underestimation of albedo over rural areas. Future studies need to address this

issue that partially limits the model ability to represent the urban heat island effect. Potential solutions include the use of more

advanced representations of albedo, already available as options in COSMO-CLM, with explicit consideration of vegetation25

type or satellite-based albedo values (Tölle et al., 2018). In respect to the representation of stable boundary layer conditions,

more recent versions of the COSMO model (from version 5.4a onward) promise a better performance thanks to a revised

turbulence scheme.

In the current study, spatially homogeneous values of material properties of roof, wall and street elements were used.

Therefore, the impact of the spatial variation of material properties between areas with different building types (e.g. old town30

vs. industrial areas) could not be reproduced. Further versions of UCPgenerator need to consider different urban classes with

distinct material properties. This could be achieved, for example, by making use of the data from the World Urban Database

and Access Portal Tools (WUDAPT, Ching et al. (2018)). It has to be noted that the model resolution in this study falls within

the so-called "grey zone" or "terra incognita" (Wyngaard, 2004), a condition where the horizontal grid spacing and hence the

spatial filter used on the equations of motion are of the same order of the energy- and flux-containing turbulence. This may35
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produce a misrepresentation in the turbulence and wind speed patterns (Efstathiou and Beare, 2015). High-resolution urban

climate studies reported the formation of horizontal convective rolls which have an unclear counterpart in the real atmosphere

(Salamanca et al., 2012; Gutiérrez et al., 2015). Although such issues were not visible in this application, these aspects need

to be considered in future studies, for example by exploring the performance of new scale-aware turbulence models (Ito et al.,

2015; Shin and Hong, 2015, e.g.) or large-eddy-simulation schemes as recently developed for the COSMO model (Panosetti5

et al., 2016).”

6 Conclusions

An urban climate model with explicit representation of street trees was developed featuring a two-way coupling between the

vegetated urban canopy model BEP-Tree (Krayenhoff et al., 2019) and the mesoscale weather and climate model COSMO-

CLM (COSMO, 2019). The coupled model, named COSMO-BEP-Tree, mechanistically represents the heat, momentum, tur-10

bulence and moisture interactions between street trees, urban elements and the atmosphere during realistic weather and climate

simulations. COSMO-BEP-Tree comes with a tool to pre-process all data required by BEP-Tree in addition to the standard

inputs for COSMO.

The model’s performance and applicability were demonstrated for the urban area of Basel during a three week heatwave

event in June-July 2015. The model evaluation made use of measurements from an urban flux tower, a network of surface15

stations, and land surface temperature observations from the Landsat 7 satellite. The application demonstrated that the model

successfully captures essential features of the urban heat island during such a heat wave event and that city-wide interactions

between street trees, urban elements and the atmosphere are represented in a realistic way.

In particular, the model captured the day-to-day as well as the mean diurnal evolution of air temperature, relative humidity,

wind speed, sensible and latent heat fluxes relatively well at all observation sites. The comparison with measurements above20

the urban canopy layer revealed very small model biases and errors for air temperature, wind speed, sensible and latent heat

fluxes. The model underestimated the specific humidity and slightly overestimated wind speed in the afternoon.

The comparison with measurements of air temperature within the urban canopy layer (T2m) revealed a generally good model

performance. At rural sites, the model showed an overestimation of T2m as already reported in previous urban climate studies

using the COSMO model. The model was able to reproduce the diurnal cycle of the canopy layer urban heat island effect25

(UHI) generally well, although its magnitude was underestimated during night-time. This issue was largely due to the warm

night-time bias at the rural reference site. At the most urban site, this difference is additionally explained by an overestimation

of the night-time temperature.

In terms of the spatial pattern of the land surface temperature (LST), the model was found to have a relatively small RMSE

and very small MBE compared to the satellite observations. However, the spatial variability over the urban area and especially30

some local peaks in LST were not fully captured by the model, which could be related to the use of spatially homogeneous

material properties. Nevertheless, it should be noted that satellite LST in urban areas are associated with a large degree of

uncertainty.
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The inclusion of street trees in the model generally improved the performance against observations of QH, u, q and QE. In

the case of T2m this was found only at some evaluation sites. The representation of street trees had a large effect on sensible and

latent heat fluxes and wind speed but only a minor influence on specific humidity and air temperature above the urban canopy

layer. Street trees were found to reduce QH and u, and to increase q and QE. Within the canopy layer, a slight decrease in T2m

during daytime was found when including street trees, and a very small increase in T2m during night-time. This behaviour is5

in agreement with measurement studies over street canyons with trees (Shashua-Bar et al., 2009; Coutts et al., 2016). In terms

of UHI intensity, this results in a slight reduction during daytime and a very small increase during night-time.

The model responded realistically to changes in the street tree parameters: leaf area density and stomatal conductance.

During daytime, a 50% increase in leaf area density produced a reduction in air temperature, street temperature and wind, and

an increase in humidity. At night, the same 50% increase in street tree density produced mainly an increase in humidity. A 50%10

increase in stomatal conductance produced an increase in humidity and a decrease air temperature.

This study demonstrates the ability of COSMO-BEP-Tree to simulate the impact of street trees for whole cities in a realistic

way, by considering the multiple interactions between trees, urban elements and the atmosphere from the scale of individual

street canyons to the scale of regional weather patterns. By including the effect of street trees, COSMO-BEP-Tree significantly

enhances the modelling capabilities with respect to its predecessor COSMO-DCEP, adding an important dimension to the study15

of UHI mitigation and climate change adaptation strategies. Furthermore, the improved agreement with observations clearly

underlines the importance of considering street trees in such simulations.

Code and data availability. COSMO-CLM is freely available for scientific usage to the members of the CLM-Community. The procedure

to become a member is available on the community website (https://www.clm-community.eu/) or by contacting the coordination office (clm-

coordination@dwd.de). The code of COSMO-BEP-Tree is made freely available to any user with a valid CLM-Community membership20

(contact Dominik Brunner: dominik.brunner@empa.ch). All research data and scripts to produce figures and analysis are archived on Zenodo

(Mussetti, 2019a). UCPgenerator v1.0 can be downloaded from the GitHub repository (Mussetti, 2019b). The LUCY model, used to calculate

the anthropogenic heat flux, can be downloaded from Grimmond et al. (2018). BEP-Tree as a standalone model can be obtained by contacting

Scott Krayenhoff (skrayenh@gmail.com). MODTRAN is a commercial software: http://modtran.spectral.com/ (accessed 26-08-2019).
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Table A1. Urban canopy parameters required as input to COSMO-BEP-Tree.

Variable Description Dimension NetCDF Name

furb Planar fraction of urban surfaces lon, lat FR_URB

Wcan Average canyon width [m] lon, lat, dir W_STREET

Wbld Average building width [m] lon, lat, dir W_BUILD

fdir Canyon direction distribution lon, lat, dir FR_UDIR

γ Probability to have a building lon, lat, dir, hgt FR_ROOF

LD Leaf area density in the canyon column lon, lat, dir, hgt LAD_C

LD,bld Leaf area density in the building column lon, lat, dir, hgt LAD_B

Ω Clumping index lon, lat OMEGA_R, OMEGA_Da

a BEP-Tree gives the option to define a separate clumping coefficient for the drag and turbulence parameterisations.

Appendix A: UCPgenerator v1.0

UCPgenerator v1.0 is a python program that generates the additional input fields required by COSMO-BEP-Tree (Mussetti,

2019b). The list of the additional input field required by COSMO-BEP-Tree is provided in Table A1. First of all, the urban

fraction furb, defined as the planar fraction of urban surfaces in a model grid cell, is estimated from the given imperviousness

dataset (see Section 2.4 for further details). A threshold method is used estimate the average urban fraction in the COSMO-5

BEP-Tree grid cell (function urbfrac). urbfrac performs also the reference system transformation.

The parameters that characterise the canyon geometry are then estimated in the function cangeom from the building dataset.

Planar and frontal area density are calculated according to Grimmond and Oke (1999) as:

λp =
AP

AT
(A1)

and10

λf =
AF

AT
, (A2)

where λp is the planar area density, λf is the frontal area density, AP is the plan area of building elements, AT is the total

horizontal surface area and AF is the frontal area of building elements. Canyon and building widths are calculated according

to Martilli (2009) as:

Wbld =
λp
λf
h (A3)15

and

Wcan = (
1

λp
− 1)

λp
λf
, (A4)

where Wcan is the canyon width [m], Wbld is the building width [m] and h is the average building height [m].
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Each building in the building dataset is clustered according to height and direction classes that can be set by the user through

the namelist of COSMO-BEP-Tree. The vertical distribution of buildings γ and the distribution of canyon directions fdir are

determined from the above mentioned clustering.

The sub-routine veget finally computes the grid cell averaged values of LD,can and LD,nat. It is designed to read as

input a LIDAR based dataset containing the height distribution of street trees. Making assumptions on the specific leaf area5

density inside an average tree (LD,loc), the routine calculates the total LD in each model grid cell. If a dataset of all trees (e.g.

including trees in parks) is available, the sub-routine identifies the street trees by using furb. Specifically, trees located over

mostly impervious surface (furb > 0.5) are classified as street trees (contributing to LD,can). The rest of the trees are classified

as natural trees and contribute to LD,nat. The routine also supports user defined modifications to the LD to simulated greening

or clearing scenarios.10

UCPgenerator v1.0 requires the 3D building dataset to be in the format of ESRI shapefiles (.shp) with a level of detail (LoD)

of 1. In LoD 1 datasets, buildings are represented as prismatic blocks without information on the roof structure (Kolbe et al.,

2005).
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