Supplement to ''COSMO-BEP-Tree v1.0: a coupled urban climate model with explicit representation of street trees''

Gianluca Mussetti^{1,2,3}, Dominik Brunner¹, Stephan Henne¹, Jonas Allegrini^{2,3}, E. Scott Krayenhoff⁴, Sebastian Schubert⁵, Christian Feigenwinter⁶, Roland Vogt⁶, Andreas Wicki⁶, and Jan Carmeliet³

¹Laboratory for Air Pollution/Environmental Technology, Empa, Dübendorf 8600, Switzerland

²Laboratory of Multiscale Studies in Building Physics, Empa, Dübendorf 8600, Switzerland

³Chair of Building Physics, ETH Zürich, Zürich 8093, Switzerland

⁴Geography Department, Humboldt-Universität zu Berlin, Berlin 10099, Germany

⁵School of Environmental Sciences, University of Guelph, Guelph ON N1G 2W1, Canada

⁶Research Group Meteorology, Climatology, and Remote Sensing, University of Basel, Basel 4055, Switzerland

⁷Center for Energy, Environment and Technology (CIEMAT), Madrid, Spain

Correspondence: Gianluca Mussetti (mussetti.gianluca@gmail.com) and Stephan Henne (stephan.henne@empa.ch)

Table	1. Num	ber and	l percentage	of the	10 m	ost comn	non tre	e species	found	as public	street	tree	in the	inner	part c	of Bas	sel. T	he c	lata	are
derive	d from t	he inve	ntory of urba	an trees	of the	city of I	Basel (I	Basel-Sta	dt, 201	9).										

Species	Num.	%	$g_s \text{ [mmol m}^{-2} \text{ s}^{-1}$		
			night	day	
<i>Tilia x euchlora</i> (Caucasian lime)	3433	11.3	20^a	100^a	
Platanus x hispanica (London plane)	2766	9.1	18^b	180^{b}	
Aesculus hippocastanum (Horse-chestnut)	2083	6.9	20	90	
Acer platanoides (Norway maple)	1495	4.9	18	180	
Tilia cordata (Small-leaved lime)	990	3.3	20^a	100^a	
Carpinus betulus (Common hornbeam)	903	3.0	20^c	100^{c}	
Acer campestre (Field maple)	851	2.8	18^{b}	180^{b}	
Pinus sylvestris (Scots pine)	682	2.3	17^d	330^d	
Quercus robur (Common oak)	671	2.2	22	210	
Taxus baccata (Common yew)	651	2.1	15^e	80^e	
Average ^f			19	142	

^{*a*} values of *Tilia europaea*. ^{*b*} values of *Acer platanoides*. ^{*c*} from Keel et al. (2007) Fig. 2 year 2003. For night-time, the value from *Tilia europaea* are used. ^{*d*} from Campbell and Norman (2012) Table 7.2 values for *Pinus monticola*. ^{*e*} from Xiong et al. (2018) Fig. 2 . ^{*f*} weighted with the corresponding % of trees within the sample.

Table 2. Root-mean-square errors (RMSE), mean-bias errors (MBE) and coefficient of determination (r^2) of the observed air temperatures (T_{air}) , specific humidity (q), and wind speed (\mathbf{u}) at the rural site of BLER (10 m above ground) during the period 22 June 2015 - 9 July 2015 (discarding the first 5 days as spin-up). In addition to the total RMSEs (T), the systematic (S) and the unsystematic (U) RMSEs are listed. The statistics are provided for the standard simulation (STD) only.

	RMSE (T/S/U)	MBE	r^2
$T_{air}\left(K ight)$	1.74 / 1.34 / 1.10	1.34	0.96
$q(gkg^{-1})$	1.33 / 0.60 / 1.19	-0.56	0.65
$u(ms^{-1})$	1.32 / 0.43 / 1.25	0.41	0.32

Figure 1. Comparison between observations (Obs) and model simulations of air temperature (a), specific humidity (b), wind speed (c), sensible heat flux (d) and latent heat flux (e) at the rural reference site BLER (10 m above ground) during the selected period (discarding the first 5 days as spin-up). Blue lines and red lines indicate the results from the STD and LAD0 model set-ups, respectively. The shaded areas represent the range of variability within the period for the observations and STD simulation only.

Figure 2. Comparison between observations (Obs) and model simulations of downward short-wave radiation K_{\downarrow} (a), upward short-wave radiation K_{\uparrow} (b), downward long-wave radiation L_{\downarrow} (c) and upward long-wave radiation L_{\uparrow} (d) at the site of BKLI during the selected period (discarding the first 5 days as spin-up). Blue lines and red lines indicate the results from the STD and LAD0 model set-ups, respectively. The shaded areas represent the range of variability within the period for the observations and STD simulation only.

Figure 3. Cirrus clouds above the model domain detected from the cirrus band (Band 9) of Landsat 8 satellite during the overpass of 4 July 2015.

References

Basel-Stadt, G. K.: Baumkataster, https://www.geo.bs.ch/, 2019.

Campbell, G. S. and Norman, J. M.: An introduction to environmental biophysics, Springer Science & Business Media, 2012.

Keel, S. G., Pepin, S., Leuzinger, S., and Körner, C.: Stomatal conductance in mature deciduous forest trees exposed to elevated CO 2, Trees,

- 5 21, 151, https://doi.org/10.1007/s00468-006-0106-y, 2007.
- Xiong, D., Douthe, C., and Flexas, J.: Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species, Plant, cell & environment, 41, 436–450, https://doi.org/10.1111/pce.13111, 2018.