Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 13, issue 3
Geosci. Model Dev., 13, 1609–1622, 2020
https://doi.org/10.5194/gmd-13-1609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
Geosci. Model Dev., 13, 1609–1622, 2020
https://doi.org/10.5194/gmd-13-1609-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model description paper 27 Mar 2020

Model description paper | 27 Mar 2020

DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations

Alexander Barth et al.

Related authors

Upscaling of a local model into a larger-scale model
Luc Vandenbulcke and Alexander Barth
Ocean Sci., 15, 291–305, https://doi.org/10.5194/os-15-291-2019,https://doi.org/10.5194/os-15-291-2019, 2019
Short summary
A method to generate fully multi-scale optimal interpolation by combining efficient single process analyses, illustrated by a DINEOF analysis spiced with a local optimal interpolation
J.-M. Beckers, A. Barth, I. Tomazic, and A. Alvera-Azcárate
Ocean Sci., 10, 845–862, https://doi.org/10.5194/os-10-845-2014,https://doi.org/10.5194/os-10-845-2014, 2014
Assimilation of HF radar surface currents to optimize forcing in the northwestern Mediterranean Sea
J. Marmain, A. Molcard, P. Forget, A. Barth, and Y. Ourmières
Nonlin. Processes Geophys., 21, 659–675, https://doi.org/10.5194/npg-21-659-2014,https://doi.org/10.5194/npg-21-659-2014, 2014
divand-1.0: n-dimensional variational data analysis for ocean observations
A. Barth, J.-M. Beckers, C. Troupin, A. Alvera-Azcárate, and L. Vandenbulcke
Geosci. Model Dev., 7, 225–241, https://doi.org/10.5194/gmd-7-225-2014,https://doi.org/10.5194/gmd-7-225-2014, 2014

Related subject area

Oceanography
Multi-grid algorithm for passive tracer transport in the NEMO ocean circulation model: a case study with the NEMO OGCM (version 3.6)
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020,https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Introducing LAB60: A 1∕60° NEMO 3.6 numerical simulation of the Labrador Sea
Clark Pennelly and Paul G. Myers
Geosci. Model Dev., 13, 4959–4975, https://doi.org/10.5194/gmd-13-4959-2020,https://doi.org/10.5194/gmd-13-4959-2020, 2020
Short summary
Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020,https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
CSIRO Environmental Modelling Suite (EMS): scientific description of the optical and biogeochemical models (vB3p0)
Mark E. Baird, Karen A. Wild-Allen, John Parslow, Mathieu Mongin, Barbara Robson, Jennifer Skerratt, Farhan Rizwi, Monika Soja-Woźniak, Emlyn Jones, Mike Herzfeld, Nugzar Margvelashvili, John Andrewartha, Clothilde Langlais, Matthew P. Adams, Nagur Cherukuru, Malin Gustafsson, Scott Hadley, Peter J. Ralph, Uwe Rosebrock, Thomas Schroeder, Leonardo Laiolo, Daniel Harrison, and Andrew D. L. Steven
Geosci. Model Dev., 13, 4503–4553, https://doi.org/10.5194/gmd-13-4503-2020,https://doi.org/10.5194/gmd-13-4503-2020, 2020
Short summary
Constraining the response of phytoplankton to zooplankton grazing and photo-acclimation in a temperate shelf sea with a 1-D model – towards S2P3 v8.0
Angela A. Bahamondes Dominguez, Anna E. Hickman, Robert Marsh, and C. Mark Moore
Geosci. Model Dev., 13, 4019–4040, https://doi.org/10.5194/gmd-13-4019-2020,https://doi.org/10.5194/gmd-13-4019-2020, 2020
Short summary

Cited articles

Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J.-M.: Reconstruction of incomplete oceanographic data sets using Empirical Orthogonal Functions. Application to the Adriatic Sea Surface Temperature, Ocean Model., 9, 325–346, https://doi.org/10.1016/j.ocemod.2004.08.001, 2005. a, b, c, d
Alvera-Azcárate, A., Barth, A., Beckers, J.-M., and Weisberg, R. H.: Multivariate reconstruction of missing data in sea surface temperature, chlorophyll and wind satellite field, J. Geophys. Res., 112, C03008, https://doi.org/10.1029/2006JC003660, 2007. a
Alvera-Azcárate, A., Barth, A., Sirjacobs, D., and Beckers, J.-M.: Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF, Ocean Sci., 5, 475–485, https://doi.org/10.5194/os-5-475-2009, 2009. a, b
Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sens. Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, 2016. a
Publications Copernicus
Download
Short summary
DINCAE is a method for reconstructing missing data in satellite datasets using a neural network. Satellite observations working in the optical and infrared bands are affected by clouds, which obscure part of the ocean underneath. In this paper, a neural network with the structure of a convolutional auto-encoder is developed to reconstruct the missing data based on the available cloud-free pixels in satellite images.
DINCAE is a method for reconstructing missing data in satellite datasets using a neural network....
Citation