Articles | Volume 13, issue 3
https://doi.org/10.5194/gmd-13-1499-2020
https://doi.org/10.5194/gmd-13-1499-2020
Model evaluation paper
 | 
25 Mar 2020
Model evaluation paper |  | 25 Mar 2020

PM2.5 ∕ PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China

Xueling Wu, Ying Wang, Siyuan He, and Zhongfang Wu

Related authors

Optimizing Rainfall-Triggered Landslide Thresholds to Warning Daily Landslide Hazard in Three Gorges Reservoir Area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-109,https://doi.org/10.5194/nhess-2024-109, 2024
Revised manuscript accepted for NHESS
Short summary

Related subject area

Atmospheric sciences
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024,https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024,https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024,https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024,https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024,https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary

Cited articles

Arvani, B., Pierce, R. B., Lyapustin, A. I., Wang, Y., and Teggi, S.: Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product, Atmos. Environ., 141, 106–121, 2016. 
Bao, G. and Zeng, Z.: Multistability of periodic delayed recurrent neural network with memristors, Neural Comput. Appl., 23, 1963–1967, 2013. 
Cai, H., Gui, K., and Chen, Q.: Changes in haze trends in the Sichuan-Chongqing region, China, 1980 to 2016, Atmosphere, 9, 277, https://doi.org/10.3390/atmos9070277, 2018. 
Chen, Q. X., Yuan, Y., Huang, X., Jiang, Y. Q., and Tan, H. P.: Estimation of surface-level PM2.5, concentration using aerosol optical thickness through aerosol type analysis method, Atmos. Environ., 159, 26–33, 2017. 
Chen, Z. Y., Zhang, T. H., Zhang, R., Zhu, Z. M., Ou, C. Q., and Guo, Y.: Estimating PM2.5 concentrations based on non-linear exposure-lag-response associations with aerosol optical depth and meteorological measures, Atmos. Environ., 173, 30–37, 2018. 
Download
Short summary
This paper presents a composite prediction system designed to improve the accuracy and applicability of PM2.5 / PM10 predictions. Based on remote sensing images, the aerosol optical thickness was obtained and corrected. Then, we selected PM2.5 / PM10-related factors from meteorological factors and air pollutants and compared the effects of several intelligent models in different prediction patterns. The results showed that the LSTM model had significant advantages in accuracy and stability.