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Abstract. Air pollution is a serious problem in China that
urgently needs to be addressed. Air pollution has a great
impact on the lives of citizens and on urban development.
The particulate matter (PM) value is usually used to indicate
the degree of air pollution. In addition to that of PM2.5 and
PM10, the use of the PM2.5 /PM10 ratio as an indicator and
assessor of air pollution has also become more widespread.
This ratio reflects the air pollution conditions and pollution
sources. In this paper, a better composite prediction system
aimed at improving the accuracy and spatiotemporal appli-
cability of PM2.5 /PM10 was proposed. First, the aerosol op-
tical depth (AOD) in 2017 in Wuhan was obtained based on
Moderate Resolution Imaging Spectroradiometer (MODIS)
images, with a 1 km spatial resolution, by using the dense
dark vegetation (DDV) method. Second, the AOD was cor-
rected by calculating the planetary boundary layer height
(PBLH) and relative humidity (RH). Third, the coefficient of
determination of the optimal subset selection was used to se-
lect the factor with the highest correlation with PM2.5 /PM10
from meteorological factors and gaseous pollutants. Then,
PM2.5 /PM10 predictions based on time, space, and random
patterns were obtained by using nine factors (the corrected
AOD, meteorological data, and gaseous pollutant data) with
the long short-term memory (LSTM) neural network method,
which is a dynamic model that remembers historical informa-
tion and applies it to the current output. Finally, the LSTM
model prediction results were compared and analyzed with
the results of other intelligent models. The results showed
that the LSTM model had significant advantages in the aver-
age, maximum, and minimum accuracy and the stability of
PM2.5 /PM10 prediction.

1 Introduction

Aerosol is a general term for solid and gas particles sus-
pended in air. Aerosols can have an important impact on
regional and global atmospheric environments, climates,
and ecosystems and have long been an important issue in
global environmental change research (Crutzen and Andreae,
1990). Particulate matter (PM) is usually separated and cat-
egorized based on its aerodynamic diameter, and the most
widely monitored particles are PM10 and PM2.5. Particles
with an aerodynamic particle size not exceeding 10 µm are
called PM10. PM10 is primarily produced by industrial pro-
duction, agricultural production, construction, roadside dust,
various industrial processes, and natural processes such as
the resuspension of local soil and dust storms. Particles with
an aerodynamic particle size not exceeding 2.5 µm are called
fine PM (PM2.5) and are mainly derived from anthropogenic
emissions. PM2.5 is mainly produced by anthropogenic com-
bustion for transportation and energy production, and it is
particularly important in environmental policy and public
health (Xie et al., 2011). Infectious disease research shows
that there is a significant consistency between the PM2.5 en-
vironmental quality concentration and adverse effects on hu-
man health (Lelieveld et al., 2015). PM2.5 mainly causes
damage to the respiratory and cardiovascular systems, in-
cluding coughing, difficulty breathing, lowered lung func-
tion, and aggravated asthma, causing chronic bronchitis, ar-
rhythmia, nonfatal heart disease, and premature death of pa-
tients with cardiopulmonary disease (Wu et al., 2011; Jia et
al., 2012). In addition, since the scattering extinction contri-
bution of PM2.5 particles accounts for 80 % of the extinction
of the atmosphere, the concentration of PM2.5 is a key fac-
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tor in determining the visibility of the atmosphere (Sisler and
Malm, 1997). In view of the importance of aerosols and near-
surface atmospheric PM2.5 to regional and global climates
and environments, quantitative and accurate observations us-
ing a variety of observation methods have become a hot re-
search topic domestically and internationally (Dominici et
al., 2006). Since fine and coarse particles come from dif-
ferent sources, the PM2.5–PM10-scale model has different
physicochemical properties, which can not only distinguish
the type of aerosol in the PM but also provide the mixing ra-
tio of dust and artificial aerosols (Sugimoto et al., 2015). The
PM2.5–PM10 scale is the main indicator for macro analysis
of the source of particulate pollution in a region, which is
more practical than considering PM2.5 and PM10 separately.
For the research conducted in an urban area of northwestern
China, PM10 and PM2.5 concentration data were collected to
reveal the spatiotemporal behavior of local PM and mineral
dust fractions (Qingyu et al., 2018).

The aerosol optical depth (AOD) is defined as the inte-
gral of the extinction coefficient of a medium in the vertical
direction, which describes the effect of aerosols on light re-
duction. A study conducted by Hidy in 2009 indicated that
the estimation of the PM2.5 concentration near the ground
by satellite remote sensing AOD has great research potential
(Hidy, 2009). The advantage is that satellite remote sensing
data are generally standardized data with high reliability and
a wide spatial coverage, providing wide-area, spatially con-
tinuous, and real-time monitoring information for regional
and global PM2.5 air quality assessment. There are many
ways to obtain the AOD from satellite sensors such as the
Geostationary Operational Environmental Satellites (GOES)
(Prados et al., 2007), the Advanced Very High Resolution
Radiometer (AVHRR) (Gao et al., 2016), and the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) (Levy
et al., 2013). MODIS data are one of the most widely used
data sources for deriving ground PM2.5 concentrations with
AOD (Hu et al., 2014). There are many ways to obtain AOD
through MODIS data. For example, Yang et al. used the data
collected by Landsat 8 satellite images to retrieve the AOD in
Beijing by means of the Dark Target method and the visible
near-infrared atmospheric correction method. The accuracy
was verified by the Aerosol Robotic Network (AERONET)
observation data (Ou et al., 2017). The Dark Blue AOD re-
trieval method was used to complement the Dark Target re-
sults by retrieving the AOD over bright arid land surfaces,
such as deserts (Sayer et al., 2013). In addition, a new method
that considers bidirectional reflectance of the surface was
proposed, which is suitable for calculating the AOD in arid
or semiarid regions (Xinpeng et al., 2018).

Although the relationship between the AOD and PM has
been proven by many scholars, since the PM concentration
level is usually measured at the surface, the correlation be-
tween them is affected by the planetary boundary layer height
(PBLH) and relative humidity (RH) (Stirnberg et al., 2018;
Chen et al., 2017). When studying the seasonal PM10–AOD

correlation in northern Italy, Arvani et al. (2016) found that
the introduction of PBLH and RH correction can signifi-
cantly improve the bin-averaged PM–AOD correlation. After
the vertical and RH correction methods were applied to the
air quality station in Beijing, the determination coefficient
R2 of the AOD and PM10 increased by 0.13, and the corre-
lation between the AOD and PM2.5 increased from 0.48 to
0.62 (Wang et al., 2010). These calibration methods usually
require the use of meteorological data to perform the calcu-
lations, and the addition of meteorological data to the evalu-
ation of PM concentration can provide more reliable results.
For instance, Jung et al. (2017) joined meteorological data to
obtain an improved model of the surface PM2.5 from 2005
to 2015 to estimate the PM concentration for the entire main
island of Taiwan.

Many statistical models have been used for the ground
PM estimation of AOD and other predictors, such as linear
regression models (Kim et al., 2019), random forest mod-
els (Stafoggia et al., 2019), neural network models (Sow-
den et al., 2018), and generalized additive models (Chen et
al., 2018). However, with the introduction of new machine
learning models, the traditional regression model reflects the
inability to balance time, space, and random precision. The
time precision mentioned in this article refers to the accu-
racy of inputting time-series data to predict the subsequent
period results; the spatial precision refers to the accuracy of
inputting all-time data of spatial points to predict the result
of another spatial point; the random accuracy refers to the
accuracy of inputting data of any time and space to predict
the random selection data. One way to overcome these lim-
itations is the long short-term memory (LSTM) model. The
LSTM network is ideal for learning from experience so that
time series can be classified, processed, and predicted with
very long unknown time lags between important events. In
the study of PM2.5 monitoring and prediction in smart cities,
Chiou-Jye and Ping-Huan (2018) proposed that the predic-
tion accuracy of the convolutional neural network (CNN)-
LSTM model is the highest compared to the prediction accu-
racies of several other classic machine learning methods.

At present, air quality monitoring is still mainly based on
monitoring stations, and it is difficult to acquire large-scale
and accurate prediction results. In order to reduce the depen-
dence on monitoring stations and achieve the goal of broad,
rapid, and accurate air quality predictions, this paper aims to
use a machine learning algorithm, combined with AOD and
gaseous pollutant and meteorological data, to obtain a spa-
tially and temporally reliable prediction model. This paper
used a total of 59 AOD results for all of 2017 by the dense
dark vegetation (DDV) method using MODIS level-2 data of
Wuhan with a spatial resolution of 1 km. Since there were
only 10 air quality stations in Wuhan, to ensure accuracy,
the AOD values were extracted at the air quality station site,
and the integration of the AOD, air pollutants, and meteo-
rological data was also based on the station site. AOD∗ was
obtained by correcting AOD using the PBLH and RH. Then,
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the R2-based optimal subset selection method was used to
select the most relevant factor for PM2.5 /PM10 from the me-
teorological factors and air pollutants. Finally, the space and
timescales and random PM2.5 /PM10 predictions were deter-
mined and performed, respectively, via the LSTM model, and
the prediction results of the LSTM model and other classi-
cal models were compared and analyzed. The results showed
that the average error of the LSTM model prediction results
is very low, both spatially and temporally, and the stability of
the prediction model is significantly better than that of other
models.

2 Study area

Wuhan is the provincial capital of Hubei Province. The ad-
ministrative extent is between 113.683 and 115.083◦ E and
29.967 and 31.367◦ N, and the total area is 8494.41 km2

(Zhou and Chen, 2018). The largest distance is between the
eastern and western parts of Wuhan and is 134 km, and the
maximum distance from north to south is 155 km. Wuhan
is the city with the largest population, is the largest provin-
cial capital city, has the most complicated road traffic, and
has the most developed economy in the central part of the
country (Jiao et al., 2017). The Yangtze River flows through
Wuhan, and there are hundreds of lakes in Wuhan. The ter-
rain of Wuhan is mainly plains, with low levels in the mid-
dle of the region and low mountains, hills, and ridges to the
south and north. The climate type is a humid, north subtropi-
cal monsoon climate with high temperatures in summer, low
temperatures in winter, and an annual average temperature of
15.9 ◦C. Sunshine hours and total radiation are also at high
levels, and the annual average precipitation is approximately
1300 mm. June and August receive the most precipitation
in Wuhan, and summer precipitation accounts for approxi-
mately 40 % of the annual rainfall. In recent years, the air
quality in Wuhan has been improved. In 2017, the number
of days in which the annual air quality level was acceptable
was 255 d, and the acceptability rate was 69.9 %. At the same
time, the number of days with light pollution, moderate pol-
lution, heavy pollution, and severe pollution were 86, 17, 6,
and 1 d, respectively.

3 Data

The data that our environmental monitoring station can mon-
itor is only real-time data with no predicting of subsequent
data in advance. If we want to predict the state of the air af-
terwards, we can use other relevant factors for reference. The
AOD, which has a great relationship with PM, is an impor-
tant parameter in the study of atmospheric aerosols. Gaseous
pollutants are also a key factor in air quality. In addition,
changes in meteorological conditions have an impact on PM.
Therefore, we used the true air quality data from the ground
monitoring stations as the inspection standard for verification

and extracted the values of PM2.5, PM10, and gaseous pollu-
tant with the data from the monitoring stations. After retriev-
ing the AOD with the MODIS images five times a month,
on average, in 2017, the AOD values at the monitoring sta-
tions were extracted, and the values of the meteorological
data were also interpolated at the same point. Then, the AOD
was corrected to obtain the AOD∗, and gaseous pollutant data
at the monitoring stations were added. The best set that pre-
dicted air quality was selected, and machine learning tech-
niques were used to obtain models that can make space and
time series predictions (Fig. 2).

3.1 AOD retrieval

MODIS is an important sensor on the Terra and Aqua satel-
lites. The Terra satellite passes from north to south at approx-
imately 10:30 LT, and Aqua moves from south to north at
13:30 LT. Wuhan is located in the central and eastern parts of
Hubei Province at the southeast corner of the h27v05 frame;
therefore, we chose to use the images collected by Terra be-
cause of its higher image quality. The MODIS data have 36
spectral bands, ranging from 0.4 to 14.4 µm, of which seven
bands can be used to retrieve the AOD, while the best bands
for over-land aerosol retrieval are 0.47, 0.66, and 2.12 µm,
especially in areas with dense vegetation. We downloaded
the MOD02_L1B data for the region in Wuhan in 2017 via
the website (https://ladsweb.modaps.eosdis.nasa.gov, last ac-
cess: 8 June 2018) and removed a number of days with a large
amount of clouds, finally obtaining 59 images with a spatial
resolution of 1 km. According to the DDV method (Li et al.,
2014), after radiation correction, geometric correction, an-
gle data resampling, and angle data geometric correction and
synthesis, cloud detection processing was performed; then, a
lookup table file was generated according to the “6S” (second
simulation of the satellite signal in the solar spectrum) atmo-
spheric radiation model, and the AOD was acquired (Fig. 3).
After verifying with the MOD04_L2 aerosol product data
released by the National Aeronautics and Space Adminis-
tration (NASA), the results of the retrieval were considered
valid and used later. Figure 4 shows the results of the AOD
retrieval on 18 July.

3.2 Ground-level air quality and gaseous pollutant data

The Ministry of Ecology and Environment of China has
established 10 national environmental quality control sta-
tions in Wuhan. The shortest distance between points is
more than 3 km, and the average distance is about 10 km.
Each station continuously collects hourly average concen-
tration values of PM2.5, PM10, SO2, NO2, O3, and CO
and publishes the daily average concentration values. The
calculations in this paper were based on these daily aver-
aged data, which were released by the China National En-
vironmental Monitoring Center (http://webinterface.cnemc.
cn/cskqzlrbxsb2092932.jhtml, last access: 14 May 2018).
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Figure 1. Location of the study area in China (a: map of China; b: map of Wuhan area using bands 4, 3, and 2 of Landsat 8 OLI (Operational
Land Imager) image).

Figure 2. A flow chart of the research process.

The monthly average concentration data of PM2.5, PM10,
and gaseous pollutants obtained from these data in 2017 are
shown in Table 1. During the year, the trends in PM2.5 and
PM10 were roughly the same. The maximum values of PM2.5
and PM10 reached 121.17 and 167.42 µgm−3, respectively, in

Figure 3. A flow chart of the AOD retrieval.

February. From February to July, the values dropped rapidly,
reaching minimum levels in July of 24.23 and 53.13 µgm−3,
respectively. After July, the concentration of PM2.5 contin-
ued to rise, and the growth rate accelerated. The concen-
tration of PM10 also increased after July but decreased be-
tween September and October. NO2 is mainly derived from
the high-temperature combustion process of fossil fuels. The
combustion of nitrogen-containing fuels (such as coal) and
nitrogen-containing chemicals can directly release NO2. In
general, motor vehicle emissions are one of the main sources
of urban NO2. SO2 is a ubiquitous pollutant in cities. The
SO2 in the air mainly comes from the industrial production
of thermal power generation and other industries, such as the
following: the combustion of fixed-source fuels; the produc-
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Figure 4. AOD retrieval on 18 July.

tion of nonferrous metals; the production of steel, chemical,
and sulfur plants; and discharge from small heating boilers
and civil coal furnaces. Natural processes, such as volcanic
activity, also emit a certain amount of SO2. CO is a color-
less, odorless, flammable, and toxic gas that is a product of
the incomplete combustion of carbonaceous fuels. The con-
centrations of SO2, NO2, and CO showed regularity. The
concentration in summer was the lowest, followed by spring
and autumn, and the highest was in winter. The lowest value
was in June or July, and the highest was in December. O3 is
a representative pollutant for photochemical smog, which is
formed and enriched by nitrogen oxides and hydrocarbons in
the air under intense sunlight and through a series of complex
atmospheric chemical reactions. Although O3 in the upper
stratosphere has important anti-radiation protection for life
on Earth, O3 at low altitudes in cities is a very harmful pollu-
tant. The trend in the O3 concentration was different, where
the winter value was low and then increased in spring with
time. In summer, the O3 concentration fluctuated at a higher
level and decreased in autumn.

3.3 Meteorological data

The quality of air is closely related to meteorological con-
ditions. The meteorological data obtained in this paper de-
rive from the National Meteorological Information Center of
China’s National Meteorological Information Network (http:
//data.cma.cn/site/index.html, last access: 9 October 2018)
and include average rainfall, evaporation capacity, RH, sun-

shine intensity, average surface temperature, average wind
velocity, average air pressure, and average temperature. The
data obtained were daily average data in 2017. A total of
five meteorological stations exist near the Wuhan area. To
obtain meteorological data near the air quality monitoring
stations, data from the meteorological stations needed to be
interpolated. We believe that the kriging method is the most
appropriate for examining the spatial characteristics of me-
teorological data. The kriging method is a multistep process
that includes exploratory statistical analysis of the data, var-
iogram modeling, surface creation, and studying the vari-
ous surfaces. The kriging method interpolates unknown sam-
ples according to the distribution characteristics of a few
well-known data points in a finite neighborhood. After tak-
ing into account the size, shape, and spatial orientation of
the sample points, combining the spatial relationship be-
tween the known sample points and the unknown samples,
and adding the structural information provided by the vari-
ogram, kriging performs a linear unbiased optimal estimation
of the unknown samples in the spatial range. After compar-
ing the kriging, natural neighbor, spline, and inverse distance
weighted methods, we found that the results acquired by set-
ting 12 interpolation points and using the spherical model
of the kriging method were smoother and more suitable for
the study area. The monthly averages of the meteorological
data at all of the calculated sites are shown in Table 2. The
seasonal changes reflected by several meteorological data re-
sults were more obvious. The average surface temperature
and average temperature were higher in summer and lower
in winter. The average air pressure had a completely oppo-
site trend. The sunshine intensity and evaporation capacity
were lower in winter and fluctuated in the other three quar-
ters. The rainfall was concentrated in summer and autumn,
while the average wind velocity and RH had no obvious sea-
sonal characteristics.

4 Methods

4.1 AOD correction

The PBLH refers to the thickness of the planetary bound-
ary layer and is an important physical parameter for
numerical atmospheric models and environmental evalu-
ations (Su et al., 2018). The PBLH is calculated by
a commonly used national standard method in China.
The national standard method is performed according
to the method specified in the Chinese national stan-
dard GB/T13201-91 (http://www.mee.gov.cn/gzfw_13107/
kjbz/qthjbhbz/qt/201605/t20160522342349.shtml, last ac-
cess: 14 December 2019). This method assumes that the ther-
mal conditions of the near-surface layer depend, to a large
extent, on the degree of ground heating and cooling. This
method takes into account the thermal and dynamic factors
and quantifies the solar elevation angle, cloud volume, and
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Table 1. Monthly average concentrations of PM2.5, PM10, and gaseous pollutants in Wuhan in 2017.

Month PM2.5 PM10 SO2 NO2 O3 CO
(µgm−3) (µgm−3) (µgm−3) (µgm−3) (µgm−3) (mg m−3)

Jan 99.48 147.26 26.66 48.20 36.86 1.40
Feb 121.17 167.42 16.63 46.01 36.13 1.44
Mar 59.44 145.11 27.04 51.88 60.96 1.11
Apr 41.27 93.87 16.07 38.35 93.18 0.93
May 52.85 107.95 12.00 40.15 125.30 0.93
Jun 27.80 55.35 4.82 25.45 102.20 0.81
Jul 24.23 53.13 6.05 17.77 107.92 0.62
Aug 27.37 65.09 11.07 24.47 73.24 1.04
Sep 36.20 87.85 19.11 40.55 139.25 1.33
Oct 39.07 77.20 13.65 43.64 54.00 1.10
Nov 90.88 134.91 21.53 62.36 54.28 1.19
Dec 111.15 148.29 27.06 70.21 21.78 1.50

Table 2. Monthly averages of the meteorological data.

Month Average Evaporation Average surface Average Relative Sunshine Average Average
rainfall capacity temperature pressure humidity intensity temperature wind velocity

(0.1 mm) (0.1 mm) (0.1◦) (0.1 hPa) (−1 %) (0.1 h) (0.1◦) (0.1 m s−1)

Jan 0.00 18.09 62.19 10 230.27 63.91 58.06 47.78 16.51
Feb 38.84 19.55 108.27 10 151.31 72.03 24.23 103.45 29.35
Mar 0.00 29.34 140.11 10 166.74 64.14 94.10 115.67 14.52
Apr 0.00 35.81 211.98 10 103.29 69.60 105.93 181.67 16.16
May 0.00 36.81 288.18 10 062.96 66.83 103.69 240.91 10.72
Jun 30.49 37.48 289.44 10 002.23 84.54 64.80 261.32 18.69
Jul 2.33 57.25 366.30 10 011.06 70.70 112.87 317.36 22.14
Aug 24.15 37.88 318.01 10 017.01 81.09 84.67 296.38 18.88
Sep 0.00 45.47 289.04 10 093.00 69.64 106.04 242.16 19.61
Oct 20.54 19.50 199.33 10 138.21 84.03 61.31 176.99 11.60
Nov 0.00 21.36 157.65 10 180.33 75.21 85.71 131.89 13.28
Dec 0.00 15.80 59.94 10 222.16 67.78 76.57 42.91 9.12

wind speed. Then, according to the specified local parame-
ters, the atmospheric stability is classified into A, B, C, and
D categories according to the Pasquill stability classification:

h=
asU10

f
. (1)

When the atmospheric stability is E and F ,

h=
bs
√
U10

f
(2)

f = 2�sinϕ, (3)

where h (in meters) is the thickness of the mixing layer; U10
(in meters per second) is the average wind velocity at a height
of 10 m, which is 6 m s−1; as and bs are the mixing layer co-
efficients; f is the ground rotation parameter;� is the ground
rotation angular velocity, with a value of 7.29×10−5 rad s−1;
and ϕ (in degrees) is the geographic latitude.

The aerosol hygroscopic growth factor f (RH), where RH
is the relative humidity, describes the extent to which the

aerosol extinction cross section or scattering coefficient in-
creases with increasing RH, depending on a variety of fac-
tors, such as the temperature absorption properties of the
aerosol (Cai et al., 2018). The common formula for calcu-
lating f (RH) is

f (RH)= 1/(1−RH/100). (4)

Since the parameters describing atmospheric physical con-
ditions, such as air pressure, atmospheric temperature and at-
mospheric humidity change, existing much more in the ver-
tical than horizontal direction, it is often assumed that the
atmosphere has a structure in which the horizontal direction
is uniform and the vertical direction is layered. For the single
homogeneous distribution of spherical aerosol particles, the
near-surface particle concentration can be obtained by mea-
suring a dry air sample. The expression is as follows:

PM=
4
3
πρ

∫
r3n(r)dr, (5)
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where ρ (in grams per cubic meter) is the average density
of the particles and n(r) is the particle spectral distribution
function under ambient humidity, which is related to the par-
ticle size.

Given the wavelength of the radiation, the aerosol optical
thickness from the ground to a height of H can be expressed
as

AOD= π

H∫
0

∞∫
0

Qext,amb(r)namb(r)r
2drdz. (6)

To convertQext,amb under ambient humidity toQext,dry un-
der dry conditions, a hygroscopic growth factor f (RH) is re-
quired. This factor represents the ratio of normalized particle
scattering efficiency under ambient RH and dry conditions
and is a function of humidity:

AOD= πf (RH)

H∫
0

∞∫
0

Qext,dry(r)n(r)r
2drdz. (7)

A normalized particle scattering efficiency Qext and a pa-
rameterized expression of the effective radius reff are intro-
duced for replacement in the above formula:

Qext =

∫
r2Qext(r)n(r)dr∫

r2n(r)dr
(8)

reff =

∫
r3(r)n(r)dr∫
r2n(r)dr

. (9)

Finally, the relationship between the AOD and near-
surface PM2.5 mass concentration is introduced as follows:

AOD= PM2.5Hf (RH)
3Qext,dry

4ρreff
= PM2.5HS, (10)

where S (in square meters per gram) represents the spe-
cific extinction efficiency of the aerosol under ambient hu-
midity conditions. H stands for aerosol elevation. In prac-
tice, the PBLH approximation is often used instead of H .
According to the above relationship between the AOD and
PM2.5, it can be inferred that if the AOD is corrected by
the factors PBLH and f (RH), the corrected AOD∗, that is,
AOD/(PBLH×f (RH)), is expected to have better correla-
tion with PM. Taking the monthly average value as an exam-
ple, the parameters PBLH and f (RH) used by the AOD cor-
rection algorithm, and the corrected AOD∗ are shown in Ta-
ble 3. The monthly average data of PM2.5 /PM10, AOD, and
AOD∗ are shown in Fig. 5. In fact, after calculating the linear
correlations of the AOD and AOD∗ with PM2.5 /PM10, the
correlation increased from 0.838 to 0.873.

4.2 Selection factors

When choosing a subset, the choice of independent variables
should be practical. How to choose the best subset of vari-
ables in order to establish a better regression equation has

Table 3. Monthly average AOD, PBLH, f (RH), and AOD∗.

Month AOD (×10−1) PBLH f (RH) AOD∗ (×10−4)

Jan 12.610 428 4.00 7.366
Feb 12.343 444 3.85 7.221
Mar 9.200 461 4.00 4.989
Apr 5.192 713 4.00 1.820
May 5.625 686 4.00 2.050
Jun 4.000 631 5.00 1.268
Jul 3.895 686 5.56 1.021
Aug 5.083 686 5.26 1.409
Sep 6.375 741 4.35 1.978
Oct 4.964 395 4.00 3.142
Nov 10.06 412 3.85 6.345
Dec 15.263 412 3.57 10.377

Figure 5. A bar chart of monthly average PM2.5 /PM10, AOD, and
AOD∗.

been a hot research topic. The process of the optimal subset
method is as follows: first, in a set containing multiple inde-
pendent variables, freely selecting and combining from each
independent variable; next, combining all independent vari-
ables and dependent variables to establish all possible equa-
tions; and then the best independent variable combination
model is selected from all of the fitted regression equations.
The optimal subset method can determine an optimal regres-
sion equation from all possible subsets via some criteria and
has been widely used in weather and climate predictions. Us-
ing the correlation coefficient R2 as the evaluation index and
the optimal subset of PM2.5 /PM10 as the dependent vari-
able, the highest R2 is 0.461. The independent variables in
the subset are as follows: AOD∗; average rainfall; evapora-
tion capacity; RH; sunshine intensity; average wind velocity;
and SO2, CO, and O3 concentrations. The factors selected by
the optimal subset method are shown in Table 4. This table
shows the top 10 scores for R2 scores and the correspond-
ing factor combinations. The symbol “

√
” indicates that the

factor is selected.
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Table 4. Factors selected by the optimal subset method.

R2

Factors 0.461 0.460 0.460 0.457 0.455 0.455 0.454 0.453 0.452 0.452

CO
√ √ √ √ √ √ √ √ √ √

Average rainfall
√ √ √ √ √ √ √ √ √

Evaporation capacity
√ √ √ √ √ √ √ √ √ √

Relative humidity
√ √ √ √ √ √ √ √

Sunshine intensity
√ √ √ √ √ √ √ √ √

Average wind velocity
√ √ √ √ √ √ √ √ √

AOD∗
√ √ √ √ √ √ √ √ √ √

SO2
√ √ √ √ √ √ √ √ √ √

O3
√ √ √ √ √ √ √ √ √ √

Average air pressure
√ √ √ √

Average surface temperature
√ √ √ √

Average temperature
√

NO2
√

4.3 RNNs and the LSTM model

The recurrent neural network (RNN) is a powerful deep neu-
ral network that uses its internal memory to process input se-
quences with any timing. In the RNN model, compared with
the common multilayer neural network, the interconnection
layer is added between the nodes of the hidden layer, and the
directional loop is formed by the connection between the hid-
den layer neural units; then, the internal state of the network
is created, and the dynamic time series behavior is presented
(Bao and Zeng, 2013). The RNN can handle any sequence
length in principle, but in an actual situation, the standard
RNN model cannot store sequence information about the
past and lacks the ability to establish remote structure con-
nections. This kind of “forgetting” limitation cannot record
long-term information. Thus, these networks are more prone
to instability when generating sequences, resulting in a time
dependency problem. This problem is not unique to RNNs
but exists in almost all generation models. The LSTM model
is a network that is used to address long-term time-dependent
dependencies. It is a time RNN suitable for processing and
predicting important events with relatively long intervals and
delays in time series (Weninger et al., 2014, 2015; Pei et al.,
2015).

The key to distinguishing the LSTM model from the tradi-
tional RNN is that the traditional RNN has only one hidden
layer output value state h, and h changes with the convolu-
tion process and is insensitive to long-term or long-distance
events. The LSTM model adds a cell state c to store the long-
term status. The calculation process after adding c is shown
in Fig. 6, where x, h, and c are vectors. At time t , there are
three inputs to the LSTM: the input value xt of the current
time network, the output value ht−1 of the LSTM model at
the previous time, and the cell state ct−1 of the previous time.
The two outputs of the LSTM are the current time LSTM
output value ht and the current state of the unit ct .

Figure 6. The calculation process of unit c in the LSTM model.

Figure 6 emphasizes the calculation process of the cell
state c, and the overall process of the LSTM model is shown
in Fig. 7. The key point of the LSTM model is how to control
the state c. The idea of the LSTM model is to use three con-
trol switches to control it. The switches implemented in the
algorithm are known as “gates”, which are fully connected
layers whose input is a vector, and the output is a real vector
between 0 and 1 (Srivastava and Lessmann, 2018). The input
gate determines how much of the input xt of the network is
saved to the cell state ct at the current moment, the forget
gate determines how much the cell state ct−1 at the previous
moment is retained as the current moment ct , and the output
gate controls how much the cell state ct is output to the cur-
rent output value ht of the LSTM. AssumingW is the weight
vector of a gate and b is the bias value, then the gate can be
expressed as:

g(x)= s(Wx+ b) (11)

These three gates are defined as follows:

it = σ(Wi ·
[
ht−1,xt

]
+ bi) (12)

ft = σ(Wf ·
[
ht−1,xt

]
+ bf ) (13)

ot = σ(Wo ·
[
ht−1,xt

]
+ bo), (14)

where it , ft , and ot are the values of the input, forget, and
output gates, respectively; σ is the activation function; and

Geosci. Model Dev., 13, 1499–1511, 2020 www.geosci-model-dev.net/13/1499/2020/



X. Wu et al.: PM2.5 /PM10 ratio prediction based on LSTM neural network 1507

Figure 7. Architecture of the LSTM model.

bi , bf , and bo are their respective bias values. The structure
of the LSTM model is shown in Fig. 7. The inputs are in
terms of time, space, and randomness, and the outputs are
their results.

Time, space, and random prediction patterns can be used
to judge the practicability of the prediction model from vari-
ous perspectives. The time model took the first 57 data points
from 2017 as input and predicted the last 2 d by applying the
LSTM model. The spatial model used the data from the nine
stations throughout the year as the input and obtained predic-
tion results for the one remaining station. The random model
randomly extracted 578 data for the input and the remain-
ing 12 data for the verification. The error rate was obtained
by comparing the prediction results with the actual values
from monitoring. The implementation of the LSTM models
is based on Keras, which is a high-level neural network ap-
plication programming interface written in Python.

5 Results and discussion

To determine the appropriate number of layers for the LSTM
method, except for the data used for prediction, we divided
the data set involved in the model construction into three
parts: 40 % of the data were used as the training samples for
modeling, 30 % of the data were used as the test samples,
and the remaining 30 % of the data were used as verification
data. We tried to use various LSTM architecture layers for
the comparison. After obtaining the results of various LSTM
architecture layers, we found that the results obtained using
the LSTM architecture with four layers were the best, with
the first three layers and the dense layer as the last layer.
The role of the dense layer is to complete the final output of

unique values. Because the LSTM uses the activation func-
tion as the gate, the outputs of the gates must be between
0 and 1, and the output ranges of both types of activation
functions must be satisfied. We determined that the activa-
tion function for setting the forget gate and the input gate
was defined as a sigmoid function. After adjusting the num-
ber of neurons, the number of epochs, and the batch size, the
loss function we obtained has converged without overfitting.

5.1 Time pattern prediction

Using the input of the first 57 d in the 2017 data from 10 sites,
there were 570 input samples, and the data used to verify the
model were from the last 2 d in 2017. These 2 d were 25 and
31 December. In winter, with a high PM2.5 /PM10 value, the
ratios were more concentrated above 0.6. We compared the
prediction results of the LSTM model with the back propa-
gation (BP) neural network, support vector machine (SVM),
and chi-squared automatic interaction detection (CHAID)
decision tree models. Then, we calculated the error rate be-
tween the predicted value and the measured value (Table 5).
Among the four algorithms, the average error of the LSTM
model was the smallest, 15.7613, and its minimum error was
also the smallest, only 0.4319, but its maximum error value
was a little larger than SVM maximum errors values. The BP
network method and the SVM had similar prediction results;
the average error was not too large, and the maximum error
value was small, while the minimum error value was larger.
Although the average error of the CHAID model was small,
the minimum error and the maximum error values were both
bad. None of the four prediction methods could accurately
predict the case where the PM2.5 /PM10 value was greater
than 0.9. The maximum value that the LSTM was able to pre-
dict was 0.8067. In air quality research, predictions of higher
values are particularly important, because only a successful
prediction of poor air quality can be used to promptly remind
people to take preventive measures, such as wearing masks.
This table was produced in site order, i.e., the first and second
data entries are from the same site for the last 2 d of 2017, and
the third and fourth data are from another site. The actual data
for PM2.5 /PM10 on the first day were generally lower than
those on the next day, and the data from seven of the sites
on the last day were larger than 0.8. Only the LSTM model
can produce stable and higher predictions. In the other mod-
els, the average value of PM2.5 /PM10 on the day when the
air quality is bad is less than 0.7, while the average value of
PM2.5 /PM10 of the LSTM model is 0.726. This result indi-
cates that LSTM produced better predictions at higher values
than the other machine learning model algorithms.

5.2 Spatial pattern prediction

One station was used as the output to be predicted; the other
nine sites were inputs, and the prediction results of the spatial
pattern were obtained. The output site is located in the south-
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Table 5. The results and relative error rates of the time pattern predictions.

Measured value Predicted value Relative error rate (%)

LSTM BP SVM CHAID LSTM BP SVM CHAID

0.8212 0.6335 0.7786 0.6698 0.4853 22.8604 5.1875 18.4364 40.9036
0.7436 0.5610 0.6961 0.7841 0.4853 24.5491 6.3878 5.4465 34.7364
0.6629 0.7346 0.7074 0.8353 0.6753 10.8069 6.7129 26.0069 1.8706
0.6950 0.7949 0.6850 0.5628 0.6753 14.3746 1.4388 19.0216 2.8345
0.7816 0.7347 0.6871 0.8092 0.5145 5.9982 12.0906 3.5312 34.1735
0.6311 0.7605 0.5864 0.7032 0.6487 20.5089 7.0829 11.4245 2.7888
0.7959 0.7347 0.6870 0.8568 0.6973 7.6931 13.6826 7.6517 12.3885
0.8743 0.8067 0.6474 0.7451 0.6973 7.7307 25.9522 14.7775 20.2448
0.7204 0.6553 0.8106 0.7446 0.8206 9.0291 12.5208 3.3592 13.9089
0.9854 0.7128 0.7154 0.6760 0.8206 27.6610 27.4000 31.3984 16.7242
0.7079 0.7249 0.8321 0.6089 0.7959 2.4048 17.5449 13.9850 12.4311
0.9455 0.7790 0.7064 0.7285 0.7959 17.6108 25.2882 22.9508 15.8223
0.7200 0.4924 0.6692 0.8172 0.6931 31.6131 7.0556 13.5000 3.7361
0.8600 0.6521 0.6192 0.6907 0.6931 24.1694 28.0000 19.6860 19.4070
0.6571 0.6432 0.7011 0.8522 0.5812 2.1242 6.6961 29.6911 11.5508
0.9189 0.7175 0.6195 0.7146 0.5812 21.9150 32.5824 22.2331 36.7505
0.7640 0.7673 0.6549 0.5406 0.7870 0.4291 14.2801 29.2408 3.0105
0.9273 0.7896 0.6354 0.7155 0.7870 14.8513 31.4785 22.8405 15.1299
0.6277 0.4614 0.7308 0.5392 0.6951 26.4993 16.4250 14.0991 10.7376
0.8896 0.6904 0.6685 0.6694 0.7534 22.3909 24.8539 24.7527 15.3103
Mean: 15.7613 16.1330 17.7017 16.2230
Maximum: 31.6111 32.5824 31.3984 40.9036
Minimum: 0.4319 1.4388 3.3592 1.8706

west corner of Wuhan, which is the farthest from the other
stations, and the distance from the nearest station is 34.7 km.
Since the prediction site had no input data for the whole year
and is far away from the other nine stations, the prediction
result was less accurate than the time and random prediction
results. However, this prediction method can better reflect
the applicability of the model to spatial prediction. The rela-
tive error rates of the predicted results of the four models are
shown in Table 6. The average error rate of the LSTM model
was still the lowest, along with the maximum error value and
minimum error rate, which was much smaller than that of
the other models. In this spatial prediction, the accuracy of
the prediction result when the PM2.5 /PM10 ratio was lower
than 0.2 was the lowest, and the accuracy of the prediction
result when the PM2.5 /PM10 ratio was larger than 0.8 was
better than that when the PM2.5 /PM10 ratio was lower than
0.2. The prediction results in other cases were much better.
In addition, we also conducted experiments using one station
located in the central area of Wuhan as the output. The results
of the LSTM model showed that the prediction results at this
point were much better than those at the southwest point, and
the average error rate was 25.1664 %.

5.3 Random pattern prediction

The random pattern prediction randomly selected 12 data
points as the outputs among all 590 data points. The ran-

Table 6. The results and relative error rates of the spatial pattern
prediction.

Models LSTM BP SVM CHAID

Mean: 27.9231 34.1333 34.0207 33.7718
Maximum: 178.0639 222.9295 204.7317 230.1367
Minimum: 0.0764 0.1124 0.9026 0.2396

domly selected measured data ranged from 0.2222 to 0.9843,
covering the entire range of monitored values. After calculat-
ing the prediction results and relative error rates of the four
models, the average, maximum, and minimum error rates of
the LSTM model were the smallest, and the results were sig-
nificantly better than those of the other methods (Table 7).
The predictions for the maximum and minimum values were
also relatively good. However, it could be found that the pre-
diction results obtained by these models were concentrated
between 0.35 and 0.75, and the prediction results of the mini-
mum and maximum values were generally poor. The random
pattern prediction was based on the completely random se-
lection of time and space aspects and can reflect the effect of
air quality prediction under various climatic conditions well.
The superiority of the LSTM model prediction in the ran-
dom prediction pattern was more obvious than in the other
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Table 7. The results and relative error rates of the random pattern prediction.

Measured value Predicted value Relative error rate (%)

LSTM BP SVM CHAID LSTM BP SVM CHAID

0.5870 0.6031 0.5762 0.6091 0.4928 2.7428 1.8399 3.7649 16.0477
0.6213 0.6581 0.6561 0.6826 0.6795 5.9231 5.6012 9.8664 9.3675
0.9843 0.4662 0.6247 0.6185 0.7422 52.6364 36.5336 37.1635 24.5962
0.8000 0.4198 0.4772 0.5231 0.4928 47.5250 40.3500 34.6125 38.4000
0.4638 0.4654 0.4773 0.5136 0.4928 0.3450 2.9107 10.7374 6.2527
0.7010 0.5762 0.6811 0.6675 0.6795 17.8031 2.8388 4.7789 3.0670
0.2222 0.2470 0.4292 0.3971 0.3737 11.1611 93.1593 78.7129 68.1818
0.5929 0.6418 0.6543 0.6598 0.6795 8.2476 10.3559 11.2835 14.6062
0.9571 0.5875 0.6246 0.6698 0.6164 38.6167 34.7404 30.0178 35.5971
0.7576 0.7095 0.5959 0.6398 0.4928 6.3490 21.3437 15.5491 34.9525
0.6277 0.6368 0.6935 0.6802 0.6795 1.4497 10.4827 8.3639 8.2523
0.8896 0.6508 0.7551 0.7353 0.7422 26.8435 15.1192 17.3449 16.5692
Mean: 18.3036 22.9396 21.8496 22.9909
Maximum: 52.6364 93.1593 78.7129 68.1818
Minimum: 0.3450 1.8399 3.7649 3.0670

patterns, which indicates that under irregular conditions, the
LSTM model is more suitable for making predictions.

6 Conclusions

AOD inversion based on remote sensing technology is be-
ing increasingly used for air quality research and is impor-
tant for monitoring and predicting air quality at a large scale.
The proposed PM2.5 /PM10 ratio reflects the air quality and
impact of human activities, which is strongest in winter and
summer and weakest in spring and autumn. In this paper, we
used the DDV method to invert the 59 AOD data points in
Wuhan in 2017 based on MODIS images. After the AOD
was corrected by the PBLH and RH, the AOD∗, which had a
greater correlation with PM2.5 /PM10, was obtained, which
indicated that the method of correction with the PBLH and
RH was effective. After combining gas pollutants and mete-
orological data, the optimal subset method was used to find
the set of factors that were most suitable for the prediction
of PM2.5 /PM10. Since the LSTM model uses the gates as
switches, better PM2.5 /PM10 prediction results can be ob-
tained. We can also obtain a model that can predict air pol-
lution anytime and anywhere by means of relative factors.
Therefore, we set up three prediction patterns: time, space,
and random patterns. Among the four intelligent models for
comparison, the LSTM model was the most effective, fol-
lowed by the SVM model, and the CHAID decision tree
model was the least effective. The relatively good results
of the LSTM model were reflected in not only a higher av-
erage prediction accuracy but also the better prediction of
maximum and minimum values. Moreover, the accuracy of
the LSTM model was more stable. Since LSTM is a time-
recurrent neural network that is suitable for processing and

predicting events with relatively long intervals and delays in
time series, the time pattern prediction results for the three
prediction models are the most accurate, and the spatial pat-
tern prediction results without any time data are the least ac-
curate. However, the predictions for the maximum and min-
imum values were always below average, especially the pre-
diction of the maximum value. The next focuses for improve-
ment will be the optimization of the algorithm and the im-
provement of the prediction accuracy.
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