Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-893-2019
https://doi.org/10.5194/gmd-12-893-2019
Model description paper
 | 
08 Mar 2019
Model description paper |  | 08 Mar 2019

LPJ-GM 1.0: simulating migration efficiently in a dynamic vegetation model

Veiko Lehsten, Michael Mischurow, Erik Lindström, Dörte Lehsten, and Heike Lischke

Related authors

Peatland trees record strong and temporally stable hydroclimate information in tree-ring δ13C and δ18O
Karolina Janecka, Kerstin Treydte, Silvia Piccinelli, Loïc Francon, Marçal Argelich Ninot, Johannes Edvardsson, Christophe Corona, Veiko Lehsten, and Markus Stoffel
EGUsphere, https://doi.org/10.5194/egusphere-2025-79,https://doi.org/10.5194/egusphere-2025-79, 2025
Short summary
Tree migration in the dynamic, global vegetation model LPJ-GM 1.1: efficient uncertainty assessment and improved dispersal kernels of European trees
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022,https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
Genetic functional potential displays minor importance in explaining spatial variability of methane fluxes within a Eriophorum vaginatum dominated Swedish peatland
Joel Dawson White, Lena Ström, Veiko Lehsten, Janne Rinne, and Dag Ahrén
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-353,https://doi.org/10.5194/bg-2021-353, 2022
Revised manuscript not accepted
Short summary
Future supply and demand of net primary production in the Sahel
Florian Sallaba, Stefan Olin, Kerstin Engström, Abdulhakim M. Abdi, Niklas Boke-Olén, Veiko Lehsten, Jonas Ardö, and Jonathan W. Seaquist
Earth Syst. Dynam., 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017,https://doi.org/10.5194/esd-8-1191-2017, 2017
Short summary
Forests, savannas, and grasslands: bridging the knowledge gap between ecology and Dynamic Global Vegetation Models
M. Baudena, S. C. Dekker, P. M. van Bodegom, B. Cuesta, S. I. Higgins, V. Lehsten, C. H. Reick, M. Rietkerk, S. Scheiter, Z. Yin, M. A. Zavala, and V. Brovkin
Biogeosciences, 12, 1833–1848, https://doi.org/10.5194/bg-12-1833-2015,https://doi.org/10.5194/bg-12-1833-2015, 2015

Related subject area

Biogeosciences
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025,https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025,https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025,https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025,https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025,https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary

Cited articles

Bradshaw, R. H. W. and Lindbladh, M.: Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia, Ecology, 86, 1679–1686, https://doi.org/10.1890/03-0785, 2005. 
Bronstein, I. N., Semendjajew, K. A., Musiol, C., and Mühlig, H.: Taschenbuch der Mathematik, Verlag Harri Deutsch, Frankfurt am Main, 1995. 
Bugmann, H. K. M., Brang, P., Elkin, C., Henne, P., Jakoby, O., Lévesque, M., Lischke, H., Psomas, A., Rigling, A., Wermelinger, B., and Zimmermann, N. E.: Climate change impacts on tree species, forest properties, and ecosystem services, in: CH2014-Impacts (2014): Toward Quantitative Scenarios of Climate Change Impacts in Switzerland, edited by: Foen, O., Meteoswiss, 2014. 
Clarke, L., Glendinning, I., and Hempel, R.: The MPI Message Passing Interface Standard, in: Programming Environments for Massively Parallel Distributed Systems, edited by: Decker, R. R. and Birkhäuser, K. M., Basel, 1994. 
Cooley, J. W. and Tukey, J. W.: An Algorithm for the Machine Calculation of Complex Fourier Series Mathematics of Computation An Algorithm for the Machine Calculation of Complex Fourier Series, Source, Math. Comput., 19, 297–301, https://doi.org/10.2307/2003354, 1965. 
Download
Short summary
To assess the effect of climate on vegetation, dynamic vegetation models simulate their response e.g. to climate change. Most currently used dynamic vegetation models ignore the fact that for colonization of a new area not only do the climatic conditions have to be suitable, but seeds also need to arrive at the site to allow the species to migrate there. In this paper we are developing a novel method which allows us to simulate migration within dynamic vegetation models even at large scale.
Share