Articles | Volume 12, issue 2
https://doi.org/10.5194/gmd-12-735-2019
https://doi.org/10.5194/gmd-12-735-2019
Methods for assessment of models
 | 
19 Feb 2019
Methods for assessment of models |  | 19 Feb 2019

Similarities within a multi-model ensemble: functional data analysis framework

Eva Holtanová, Thomas Mendlik, Jan Koláček, Ivanka Horová, and Jiří Mikšovský

Related authors

Historical changes in drought characteristics and its impact on vegetation cover over Madagascar
Herijaona Hani-Roge Hundilida Randriatsara, Eva Holtanova, Karim Rizwan, Hassen Babaousmail, Mirindra Finaritra Tanteliniaina Rabezanahary, Kokou Romaric Posset, Donnata Alupot, and Brian Odhiambo Ayugi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-191,https://doi.org/10.5194/nhess-2024-191, 2024
Revised manuscript under review for NHESS
Short summary
Imprints of climate forcings in global gridded temperature data
Jiří Mikšovský, Eva Holtanová, and Petr Pišoft
Earth Syst. Dynam., 7, 231–249, https://doi.org/10.5194/esd-7-231-2016,https://doi.org/10.5194/esd-7-231-2016, 2016
Short summary
Novel indices for the comparison of precipitation extremes and floods: an example from the Czech territory
M. Müller, M. Kašpar, A. Valeriánová, L. Crhová, E. Holtanová, and B. Gvoždíková
Hydrol. Earth Syst. Sci., 19, 4641–4652, https://doi.org/10.5194/hess-19-4641-2015,https://doi.org/10.5194/hess-19-4641-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Annan, J. D. and Hargreaves, J. C.: On the meaning of independence in climate science, Earth Syst. Dynam., 8, 211–224, https://doi.org/10.5194/esd-8-211-2017, 2017. 
Belda, M., Holtanová, E., Kalvová, J., and Halenka, T.: Global warming-induced changes in climate zones based on CMIP5 projections, Clim. Res., 71, 17–31, https://doi.org/10.3354/cr01418, 2017. 
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model projections of changes in European climate during this century, Clim. Change, 81(Supp. 1), 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007. 
Craven, P. and Wahba, G.: Smoothing noisy data with spline functions, Numerische Mathematik, 31, 377–403, 1978. 
Crhová, L. and Holtanová, E.: Simulated relationship between air temperature and precipitation over Europe: sensitivity to the choice of RCM and GCM, Int. J. Clim., 38, 1595–1604, https://doi.org/10.1002/joc.5256, 2018. 
Download
Short summary
We present a methodological framework for the analysis of climate model uncertainty based on the functional data analysis approach, an emerging statistical field. The novel method investigates the multi-model spread, taking into account the behavior of entire simulated climatic time series, encompassing both past and future periods. We also introduce an innovative way of visualizing climate model similarities based on a network spatialization algorithm that enables an unambiguous interpretation.
Share