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Abstract. Despite the abundance of available global climate
model (GCM) and regional climate model (RCM) outputs,
their use for evaluation of past and future climate change
is often complicated by substantial differences between in-
dividual simulations and the resulting uncertainties. In this
study, we present a methodological framework for the anal-
ysis of multi-model ensembles based on a functional data
analysis approach. A set of two metrics that generalize the
concept of similarity based on the behavior of entire simu-
lated climatic time series, encompassing both past and future
periods, is introduced. To our knowledge, our method is the
first to quantitatively assess similarities between model sim-
ulations based on the temporal evolution of simulated values.
To evaluate mutual distances of the time series, we used two
semimetrics based on Euclidean distances between the simu-
lated trajectories and based on differences in their first deriva-
tives. Further, we introduce an innovative way of visualizing
climate model similarities based on a network spatialization
algorithm. Using the layout graphs, the data are ordered on
a two-dimensional plane which enables an unambiguous in-
terpretation of the results. The method is demonstrated using
two illustrative cases of air temperature over the British Isles
(BI) and precipitation in central Europe, simulated by an en-
semble of EURO-CORDEX RCMs and their driving GCMs
over the 1971–2098 period. In addition to the sample results,
interpretational aspects of the applied methodology and its
possible extensions are also discussed.

1 Introduction

While numerical climate models serve as the cardinal tool
of contemporary climatology, their outputs are typically bur-
dened by distinct uncertainties, manifesting through substan-
tial differences between individual simulations. Here, we ad-
dress the issue of comparing various climate simulations and
quantifying their differences by introducing a methodology
for analysis of multi-model ensembles and the relationship
between nested regional climate model simulation and its
driving global climate model (GCM) run. We propose use of
a metric generalizing the concept of similarity, based on the
information contained in the entire simulated climate series,
extending from historical to future periods. The evaluation
framework is based on functional data analysis (further de-
noted as FDA; Ramsay and Silverman, 2005, 2007; Ferraty
and Vieu, 2006).

The analysis of uncertainties in climate model outputs is
a key research topic, especially due to the use of model
simulations as inputs for studies of possible future climate
change impacts. The results of the respective analyses serve
as the basis for important adaptation and mitigation deci-
sions, with a critical role belonging to the information on
reliability of the projections and the structure of the rele-
vant uncertainties. Climate model outputs are subject to un-
certainties coming from various sources, including imperfect
initial and boundary conditions, parameterizations of small
scale processes, or necessary choices and simplifications in
the model structure (numerical schemes, spatial resolution,
etc.). For detailed discussion, see, for example, Tebaldi and
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Knutti (2007). When considering regional climate models
(RCMs), it is necessary to take into account some additional
factors, mainly connected to the limited integration domain
(Laprise et al., 2008) or possible inconsistencies of parame-
terization schemes between driving and nested models (De-
nis et al., 2002). The estimate of the uncertainties in climate
model outputs must accompany any future climate change
scenario.

One of the most frequently used ways of uncertainty as-
sessment is the analysis of multi-model ensemble (MME)
spread (e.g., Belda et al., 2017; Holtanová et al., 2010; Prein
et al., 2011). The main aim of MMEs is to sample the un-
certainty stemming from choices in model structure, param-
eterization schemes and, in the case of RCMs, also bound-
ary conditions. Estimating the uncertainty range based on
the MME spread is not a straightforward task, as currently
available MMEs suffer from various deficiencies. One obsta-
cle is raised by the deficiencies in the statistical experimental
design: models are developed voluntarily from institutions
worldwide. This problem is further amplified when designing
an ensemble of RCMs. An RCM is driven by a GCM, which
has a substantial effect on the nested simulation (Déqué et
al., 2007, 2012; Heinrich et al., 2014). It is not computation-
ally feasible to run all combinations of RCMs with every
GCM. Therefore, for a proper uncertainty assessment it is
crucial to investigate the interactions between driving GCMs
and nested RCMs and their respective influence on the total
MME spread (e.g., Déqué et al., 2012; Holtanová et al., 2014;
Heinrich et al., 2014; Holtanová and Mikšovský, 2016).

In addition, climate models (even across developing in-
stitutions) are known to share certain components, leading
to inter-model similarities and dependencies. This makes it
difficult to justify the independence assumption when quan-
tifying the uncertainty of MMEs with standard statistical
models. Recently, innovative methods have been developed
to identify groups of similar climate models (e.g., Knutti et
al., 2013) and account for the similarities (Annan and Harg-
reaves, 2017). However, these methods quantify model sim-
ilarity based on either their behavior in approximating the
historical climate or purely on their projected climate change
signals. Some studies included evaluation of the relationship
between the driving GCM and nested RCM based on more
advanced climatic characteristics (e.g., Rajczak and Schär,
2017; Crhová and Holtanová, 2018), but their approach to the
issue was rather qualitative. To our knowledge, our method
is the first to quantitatively assess similarities between model
simulations based on the temporal evolution of simulated val-
ues.

To illustrate a possible application of the proposed
methodology we analyze similarities and dissimilarities be-
tween members of the EURO-CORDEX multi-model en-
semble (Jacob et al., 2013) and their driving GCMs. The
inter-model distances between the trajectories of the tempo-
ral development of running 30-year mean changes in sea-
sonal mean air temperature and precipitation are evaluated.

We first assessed the similarities between ensemble mem-
bers for time series averaged over eight large European re-
gions defined by Christensen and Christensen (2007) that
have been widely used for climate model assessments (e.g.,
Rajczak and Schär, 2017; Holtanová and Mikšovský, 2016;
Mendlik and Gobiet, 2016). Here we show the results for
only two chosen cases, namely the winter mean air temper-
ature over the British Isles (BI) and mean summer precipita-
tion over eastern Europe (EA). These two cases were chosen
to illustrate two distinct cases of GCM–RCM interaction.

The paper is structured as follows. In Sect. 2 the EURO-
CORDEX regional climate models and their driving global
climate models are briefly introduced. In Sect. 3 the method-
ology is described, including the basic information about the
FDA approach. Section 4 explains the application of method-
ological framework, and Sect. 5 is devoted to description of
the results of the case study. Section 6 summarizes key fea-
tures of the proposed framework and offers possible further
applications.

2 Data

The methodological framework is presented with the sam-
ple of RCM simulations from the EURO-CORDEX initia-
tive (Jacob et al., 2013; http://www.euro-cordex.net/, last ac-
cess: 30 April 2018) together with their driving GCMs. We
use 13 RCM simulations driven by nine different GCMs.
All RCM simulations have 0.44◦ horizontal resolution. The
RCM simulations were conducted for the period 1951–2100,
with some of them starting in 1971 or ending in 2098. We
therefore concentrate on the period 1971–2098. After the
year 2006 model simulations incorporated the representative
concentration pathway RCP8.5 (van Vuuren et al., 2011).
The GCM simulations were performed under the CMIP5
protocol (Taylor et al., 2012). The list of models is given
in Table 1, and the GCM–RCM simulation matrix is given
in Table 2. To identify individual simulations, we use the
acronyms consisting of the abbreviations for the RCM and
GCM (as defined in Table 1) connected with the underscore
character. In the case of the driving GCM simulation, we use
“dGCM” instead of the RCM identification.

We concentrate on running 30-year mean changes in sea-
sonal mean air temperature and precipitation (changes of
running 30-year mean averages throughout the period 1971–
2098 in comparison to the reference period 1971–2000). For
the purpose of introducing the methodology, we only present
two illustrative cases: winter mean air temperature changes
over the British Isles (denoted as DJF tas over BI; data are
shown in Fig. 1a) and summer precipitation changes over
eastern Europe (JJA pr over EA; Fig. 2a).

Geosci. Model Dev., 12, 735–747, 2019 www.geosci-model-dev.net/12/735/2019/

http://www.euro-cordex.net/


E. Holtanová et al.: Similarities within a multi-model ensemble 737

Table 1. List of regional climate models and driving global climate models incorporated in the present study. The first column contains the
acronyms used throughout the text. The type column indicates whether the model is regional (RCM) or global (GCM).

Acronym Type Model ID Institute

CCLM RCM CCLM4-8-17 Climate Limited-area Modelling Community
(CLM-Community)

REMO RCM REMO2009 Helmholtz-Zentrum Geesthacht, Climate Service
Center, Max Planck Institute for Meteorology

RCA4 RCM RCA4 Swedish Meteorological and Hydrological Institute
– Rossby Centre

ALAD RCM ALADIN53 Centre National de Recherches Météorologiques

CUNI RCM RegCM4 Charles University

CanESM GCM CanESM2 Canadian Centre for Climate Modelling and Analy-
sis

CNRMCM GCM CNRM-CM5 Centre National de Recherches Météorologiques –
Météo-France; Centre Europeén de Recherches et
de Formation Avancée en Calcul Scientifique

CSIROx GCM CSIRO-Mk3.6.0 CSIRO; Queensland Climate Change Centre of Ex-
cellence

GFDLES GCM GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory

HadGEM GCM HadGEM2-ES Met Office Hadley Centre

IPSLCM GCM IPSL-CM5A-MR Institut Pierre Simon Laplace, Paris, France

MIROC5 GCM MIROC5 University of Tokyo, National Institute for Envi-
ronmental Studies, Japan Agency for Marine-Earth
Science and Technology

MPIESM GCM MPI-ESM-LR Max Planck Institute for Meteorology

NorESM GCM NorESM1-ME Norwegian Climate Centre

Table 2. Matrix of regional climate model simulations and their driving global climate models that are incorporated in the present study.

Driving global climate models

CanESM CNRMCM CSIROx GFDLES HadGEM IPSLCM MIROC5 MPIESM NorESM
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s CCLM x

RCA4 x x x x x x x x x

ALAD x

CUNI x

REMO x

3 Methodology

3.1 Functional data analysis approach

We analyzed similarities and dissimilarities between the tem-
poral development of simulated 30-year running mean air

temperature and precipitation changes. The original dataset
consisted of simulated values yik at central years of the 30-
year periods, tk , k = 1, ..., K , ranging from 1986 to 2083
(henceK = 98) for each model, i = 1, ..., n. These sequences
of simulations were converted to functional form using the
B-spline basis system, Bj (t), j = 1, ..., N . Each sequence
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Figure 1. (a) Temporal development of running 30-year mean changes in winter (DJF) mean air temperature (changes of running 30-year
mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000) averaged over the British Isles region.
(b) Smoothed functional data from (a), created as described in Sect. 3. The lines in both panels are colored according to the driving global
climate model (GCM), and the type of line corresponds to regional climate model (RCM). The acronyms of the model simulations are
explained in Sect. 2; dGCM stands for the driving global climate model simulation.

Figure 2. The same as Fig. 1, but for running 30-year mean changes in summer (JJA) mean precipitation (relative changes of running 30-
year mean averages throughout the period 1971–2098 in comparison to the reference period 1971–2000), averaged over the eastern European
region.

was approximated by a spline function xi(t) in the form

xi(t)=
∑N

j=1
cijBj (t), i = 1, . . .,n. (1)

The B-splines Bj (t) were polynomials of order four with 20
equally spaced knots, and cij values were real coefficients
in the B-spline basis. Such use of order-four B-splines im-
plied N = 22 basis functions. Spline functions xi(t) were
constructed in order to minimize the penalized squared er-
ror

∑n

i=1

∑K

k=1

[
yij − xi(tk)

]2
+ λ

tK∫
t1

[
d2

dt2
xi(t)

]2

dt, (2)

with respect to the coefficients cij . The smoothing parameter
λ was selected via the cross-validation method. The cross-

validation method was based on the minimization of the fol-
lowing expression:∑n

i=1

∑K

k=1

[
yij − xi(tk,λ,−k)

]2
, (3)

where xi(tkλ,−k) denotes the leave-one-out estimator of
xi(t) omitting the k-th observation (tk,yik). The actual cal-
culation is based on minimization of the error of xi(t,λ,−k)
using a smoothing operator – see, for example, Craven and
Wahba (1978) for details. The representative examples of the
functional data from panel (a) of Figs. 1 and 2 are depicted
in panel (b) of the respective figures.

One of the aims of this study was to explore the first
derivative of the response function. Thus, the first derivative
curves x′i(t) were expressed in a similar manner, using the
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same B-spline basis with coefficients c′ij :

x′i(t)=
∑N

j=1
c′ijBj (t), i = 1, . . .,n. (4)

All subsequent analyses were conducted separately for both
xi(t) and x′i(t).

For the representation of functional data in statistical soft-
ware R (R Core Team, 2013), we used the package fda (Ram-
say et al., 2017). It provides several basis options for func-
tional data including the B-splines presented above and fur-
ther functional data processing techniques.

Since the time series analyzed in the present study are rel-
atively smooth, a metric and a semimetric were constructed
to represent the distance separation between two curves (note
that the smaller the cross distance, the more similar the two
curves are). Such an approach seems to be appropriate, e.g.,
Pokora et al.(2017). Let f1 and f2 be two curves, specifi-
cally two cubic smoothing splines in our case. A well-known
and widely-used distance between given curves f1 and f2 is
the L2 metric, d0(f1,f2). It is a nonnegative number, whose
square is defined as the integral

d2
0 (f1f2)=

tK∫
t1

[
f1(t)− f2(t)

]2dt. (5)

Let us call this common metric d0 distance (Euclidean dis-
tance).

Similarly, a common way to build a semimetric between
two curves is to consider the L2 distance between the first
derivatives of the curves. More precisely, given two curves f1
and f2, we define the d1 distance d1(f1,f2) as a nonnegative
number, whose square is given by the integral

d2
1 (f1f2)=

tK∫
t1

[
f ′1(t)− f

′

2(t)
]2dt. (6)

Figure 3 illustrates examples of two parts of time series
that are evaluated as quite different with a large distance
d0 = 112.8 but are similar with a relatively small distance
d1 = 1.56. The main point is that the values of the semimet-
rics are inferred solely based on the chosen feature (e.g., Eu-
clidean distance for d0) and are independent of other time
series characteristics. In Fig. 3 it is clearly seen that unlike
d0, the d1 semimetric does not take into account the mutual
bias of the two time series. It only focuses on the character of
their temporal development. The analysis of sensitivity to the
amount of smoothing was carried out. The mutual distances
of the curves do not strongly depend on the smoothing pa-
rameter, as shown in Figs. 4 and 5.

3.2 Visualization of the similarities

For visualization of mutual distances based on FDA semi-
metrics we use layout graphs created using the ForceAt-
las2 algorithm (Jacomy et al., 2014) within the Gephi soft-
ware (https://gephi.org/, last access: 31 May 2018). In these

Figure 3. Illustration of the functional data analysis approach for
evaluation of time series similarity. The two arbitrarily chosen time
series shown here (Model 1 and 2) are evaluated to be quite different
when based on d0 but are similar when based on d1.

graphs individual members of the multi-model ensemble are
visualized as nodes (each model simulation corresponding to
a single node). The ForceAtlas2 algorithm creates a force-
directed layout of the underlying data. The network of the
nodes is created by simulating a physical system and its
movement. The nodes are repulsed from each other in anal-
ogy to charged particles. At the same time the edges between
the nodes attract them like springs (Jacomy et al., 2014). The
iterative procedure of finding the nodes positions results in
an equilibrium state which corresponds to the final network.

The interpretation of the layout graphs is straightforward.
The closer the nodes are to each other, the lower the mu-
tual distance of corresponding simulations, according to the
semimetric of interest. The larger the node, the higher the
number of close neighbors, meaning more similar simula-
tions (with similarity defined by the values of selected semi-
metric). The edges between nearest 10 % of neighbors are
made visible. The colors indicate the driving GCM.

4 Application of the methodology

Figures 1 and 2 illustrate the data used for the presented anal-
ysis. The lines are colored according to the driving GCM, and
the type of line corresponds to RCM. The purpose of the pre-
sented methodology is to describe the structure of the multi-
model ensemble based on mutual relationships between sim-
ulations over the whole investigated time period and evaluate
whether the temporal development of the simulated changes
is influenced more strongly by the driving GCM or the nested
RCM. The first step is the calculation of mutual distances be-
tween the curves corresponding to individual ensemble mem-
bers using the FDA semimetrics d0 and d1 defined in Sect. 3.
In order to compare two semimetrics with substantially dif-
ferent ranges, we transform the values to the interval [0,1] in
both cases. To facilitate viewing, we display the results in a

www.geosci-model-dev.net/12/735/2019/ Geosci. Model Dev., 12, 735–747, 2019
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Figure 4. Normalized d0 distances between simulated air temperature curves (data are shown in Fig. 1a) of randomly selected model and
other models, which depend on amount of smoothing. Starting values represent d0 distances between original curves, and values at the end
represent d0 distances for oversmoothed data. The vertical line depicts the amount of smoothing used in the presented study.

Figure 5. The same as Fig. 4, but for distances d1.

pixel plot (see Figs. 6 and 7) with a temperature–color code
(or heat map, with a redder color for more similarity and a
brighter color for less similarity).

Figures 6 and 7 present the values of d0 (panel a) and
d1 (panel b) distances for the two chosen datasets presented
in Figs. 1 and 2. Firstly, there are clear differences be-
tween the evaluation based on d0 and d1 semimetrics, be-
cause each of them is based on different aspects of evalu-
ated curves. It is well apparent from the comparison of max-
imum distances. In the case of JJA pr over EA (Fig. 7),
the d0 distance is the largest for the driving HadGEM
GCM (dGCM_HadGEM) and ALADIN RCM driven by CN-
RMCM (ALAD_CNRMCM). These two simulations effec-
tively represent lower and upper bounds of the multi-model

ensemble (Fig. 2). In contrast, according to d1 the most dis-
similar time series are GCM simulations by IPSLCM and
CNRMCM (Fig. 7b), because their temporal development
has largely an opposite sign, even though they do lie “inside”
the multi-model ensemble (Fig. 2).

The second step of the proposed methodology is to quan-
titatively evaluate and visualize the similarity between sim-
ulations and their clustering according to their mutual dis-
tances. This would traditionally be done by means of hi-
erarchical cluster analysis which arranges the members of
the multi-model ensemble into a dendrogram, as shown for
example in Fig. 8 for the DJF tas over BI based on d1 (R
heatmap.2 function from the gplots package was used for the
dendrogram creation; see Supplement). However, the inter-
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Figure 6. (a) Heat map of the d0 distances for running 30-year mean changes in winter (DJF) mean air temperature over British Isles (the
curves are shown in Fig. 1b, underlying data are shown in Fig. 1a) with redder color for more similarity and brighter color for less similarity
between respective curves. The values of the semimetric d0 are scaled to the interval [0,1]. The acronyms of the model simulations are
explained in Sect. 2. The definition of the distances is explained in Sect. 3.1. (b) is the same as (a), but for d1 distances.

Figure 7. The same as Fig. 6, but for running 30-year mean relative changes in summer (JJA) mean precipitation over eastern European
region (the curves are shown in Fig. 2b, underlying data are shown in Fig. 2a).

pretation of the dendrograms might not be straightforward,
and relatively similar simulations might be assigned to quite
remote clusters. In our example (Fig. 8) this is the case for
the simulations of HadGEM and CNRM GCMs which are
assigned to two remote clusters, even though their mutual

d1 distances are among the lowest in the whole ensemble
(the same applies to RCM simulations driven by these two
GCMs; Fig. 6b). A similar result can be seen in the case of
CNRM and MIROC5 GCMs. To overcome this hurdle we
propose an innovative method of visualization of the similar-
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Figure 8. An example of the dendrogram resulting from hierarchical cluster analysis based on d1 distances for running 30-year mean changes
in winter (DJF) mean air temperature over British Isles (underlying similarity matrix in Fig. 6b).

ities based on evaluated semimetrics distances, using the lay-
out graphs (see Sect. 3.2). Figures 9 and 10 show the layout
graphs for the two investigated cases. The main advantage of
the layout graphs in comparison to classical dendrograms is
that the structure of the ensemble is shown in 2-D, therefore
the mutual distances are seen easily. The relationships noted
above between the HadGEM, MIROC5 and CNRM clusters
are easily interpreted using the layout graph (Fig. 9b).

5 Case study results

The methodology described in Sect. 3 was applied to the
modeled temperature and precipitation changes from the
EURO-CORDEX multi-model ensemble and the respective
driving GCMs for eight large European domains (Chris-
tensen and Christensen, 2007). Here we only show two cases
in order to illustrate the ability of the proposed method to as-
sess the relationships within the members of the multi-model
ensemble. These two sample cases, DJF tas over BI and JJA
pr over EA, were chosen because they differ in terms of the
results obtained by application of the proposed methodology,
and the results are quite illustrative.

Since we analyze simulations incorporating RCP8.5,
which assumes a rise in greenhouse gas concentrations dur-
ing the whole 21st century, it is not surprising that all models
give a rise in DJF near surface air temperature over the BI
region throughout this period (Fig. 1). The RCMs tend to
give a generally lower temperature change than their driving
GCMs, except for RCMs driven by CNRMCM, MPIESM

and MIROC5. Regarding the simulated changes in summer
mean precipitation over the EA region (Fig. 2), the model
simulations disagree on the sign of precipitation change,
and the multi-model ensemble has quite a large variance.
Some RCMs project larger changes than their driving GCMs
(e.g., ALADIN driven by CNRMCM), and some give smaller
changes (RCA4 driven by IPSLCM).

Based on d0, the distances calculated for JJA pr over EA
are mostly quite low (lower than 0.25) with a couple of out-
liers, namely ALAD_CNRMCM and driving simulations of
HadGEM and CSIRO (Fig. 7a). The d0 distances for DJF tas
over BI are more evenly distributed (Fig. 6a), because there
are not so many distinct outliers. The d1 distances are higher
than d0 values in both regions and are generally higher for
JJA pr over EA than for the other case (compare panel b in
Figs. 6 and 7). That means that there are fewer members of
the ensemble behaving in a similar manner for the EA case
than for the BI case.

Regarding the influence of the driving GCM on the nested
RCM simulation, based on both d0 and d1, for DJF tas over
BI, the simulations driven by the same GCM are more clus-
tered together than in the case of JJA pr over EA, which is
visible when comparing Figs. 6 and 7 and is confirmed in
Figs. 9 and 10. The clustering is stronger for d1 results. An
evaluation of Fig. 6b reveals that for DJF tas over BI the d1
distance of the RCM simulation and its driving GCM sim-
ulation is close to zero in most cases as well as the mutual
distances of RCA4 simulations driven by the same GCM
(e.g., MPIESM, NorESM and CNRMCM). In the case of
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Figure 9. (a) Layout graph based on d0 distances for running 30-year mean changes in winter (DJF) mean air temperature over the British
Isles (underlying similarity matrix in Fig. 6a). (b) The same as (a), but for d1 distances (underlying similarity matrix in Fig. 6b).

Figure 10. The same as Fig. 9, but for running 30-year mean relative changes in summer (JJA) mean precipitation over eastern European
region (underlying similarity matrices in respective panels of Fig. 7).

JJA pr over EA (Fig. 7b) the d1 distances tend to be higher
and rather independent of the driving GCM. For example,
the distance between the simulations of RCA4 and REMO,
both driven by MPIESM, is larger than the distances between
RCA4 simulations driven by different GCMs. What we “dig”
for in Figs. 6 and 7 is clearly seen at first sight in Figs. 9 and
10, respectively. The configuration of the layout graphs con-
firms a strong clustering according to the driving GCM in
the case of DJF tas over BI and a higher degree of interac-
tion between GCM and RCM in the case of JJA pr over EA
(compare the corresponding panels in Figs. 9 and 10).

It is clearly seen that when large-scale phenomena are re-
sponsible for output, as in the case of temperature changes
over the BI region, RCMs tend to be very close to the driv-

ing GCM, and different GCMs are apart from each other
(Figs. 1 and 9). On the contrary, when smaller scale pro-
cesses are more at play, such as in the case of JJA precipi-
tation changes over EA, the results are more influenced by
RCMs (Figs. 2 and 10). This does not automatically imply
any real added value in the sense of a more realistic simu-
lation. Rather, it points to differences in implementation of
the local processes in different RCMs. In our case, different
parameterization schemes employed to simulate convection,
microphysical processes in clouds and surface processes in-
cluding soil moisture are possible candidates.

Regarding the three RCM simulations driven by the CN-
RMCM GCM (RCMs denoted here as ALAD, CUNI and
RCA4), it has been recently revealed that the boundary con-
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ditions for the historical period have been flawed with an in-
consistency (personal communication with members of the
EURO-CORDEX community). Specifically, 2-D and 3-D
fields provided to the RCMs come from different members
of the ensemble of CNRMCM simulations with perturbed
initial conditions, therefore they are mutually out of phase.
However, our results do not show any anomalous behavior in
these simulations. When we calculated the distances for the
curves for the first twenty 30-year periods (i.e., those with
the central year before 2005, which is the end of the histor-
ical period) and for the last 20-year periods, we found out
that the distance of RCM simulations driven by CNRMCM
and their driving GCM is smaller for the future period than
for the reference period (not shown). That is probably partly
caused by above mentioned discrepancies in the boundary
conditions, but the effect is rather small.

6 Discussion and conclusions

We have presented an innovative methodology for assess-
ment of the structure of the multi-model ensemble and mu-
tual relationships between its members. A case study evaluat-
ing the similarities within the EURO-CORDEX multi-model
ensemble extended by the driving CMIP5 GCM simulations
has been performed. Attention has especially been paid to
the relationship between the driving GCM and nested RCM
simulations in terms of temporal development of simulated
temperature and precipitation changes over two European re-
gions. Contrary to previous studies, the assessment takes into
account not only simulated values for a certain time period
(reference or future) but also the character of the simulated
temporal development of studied variables as a whole. This is
done between two time series by generalization to functional
similarity. To evaluate mutual distances of the time series we
used two semimetrics based on the Euclidean distances be-
tween the simulated trajectories (d0) and on differences in
their first derivatives (d1). The similarity between an RCM
and its driving GCM points to a strong forcing and rather
low influence of RCM on the simulations of temporal de-
velopment of the variable of interest. The d1 distances are
bias invariant, while similarity evaluated by d0 is largely in-
fluenced by common biases of model simulations. A small
d1 mutual distance between two simulations does not auto-
matically imply similarity in the climate change signal for
a selected time period, it rather means that the shape of the
temporal development is similar.

In the current study we have chosen to concentrate on tem-
poral behavior of the time series averaged over the large Eu-
ropean regions. We have decided to omit the spatial infor-
mation, as the comparison of spatial fields from RCMs and
GCMs is complicated, mainly because of large differences in
spatial resolution and also because of differences in effective
spatial resolution (which depends on numerical methods in-
corporated in the models). We have not figured out how the

spatial information could be incorporated in our current set-
ting of the methodology. Spatial fields from GCMs are much
smoother than RCMs; therefore if we convert the fields into
functions, the results will be very different in nature. Smooth-
ing (regridding) the RCM fields to a GCM-like coarse reso-
lution would result in throwing away a lot of information.

In general, the d0 similarity indicates agreement in the bias
and climate change signal, which is influenced by various
feedbacks in the climate system and which might be dif-
ferently pronounced in different models. The d1 similarity
points to a similar rate (speed and sign) of climate change
in time that is partly modulated by internal variability of the
models, which again is governed by feedbacks and nonlin-
earities in the climate system.

Furthermore, we presented a new way to visualize climate
model similarities, based on a network spatialization algo-
rithm. Instead of arranging the data in a one-dimensional in-
cremental way (like in the case of hierarchical cluster analy-
sis resulting in dendrograms), the data are ordered on a two-
dimensional plane using the layout graphs, which enables an
unambiguous interpretation of the results. The interpretation
is only made harder by the fact that the graph can be rotated
subjectively; the algorithm (see Sect. 3.2) only places each
data node relatively to all other nodes, but no absolute coor-
dinate system is defined. Even so, it is a very illustrative way
of visualization of the mutual distances between the mem-
bers of a multi-model ensemble. Unlike the similar approach
of multidimensional scaling used in Sanderson et al. (2015),
which also results in two-dimensional visualization of inter-
model distances, the layout graphs do not require defining
any data node as a central (reference) point of the whole en-
semble.

Previously, in PRUDENCE and ENSEMBLES projects
(predecessors of EURO-CORDEX), the studies of uncer-
tainty and GCM–RCM interactions (mainly Déqué et al.,
2007, 2012) relied on the analysis of variance of the multi-
model ensemble. Their results were quite straightforward and
clearly interpretable but suffered from additional uncertainty
connected to the necessity to fill in values for missing GCM–
RCM pairs using some statistical approach. The methodol-
ogy proposed in the present paper overcomes this issue and
uses only the outputs of dynamical models that are available.
Further, as already mentioned above, the FDA similarities
evaluate the whole simulated time series and are not limited
to a reference or future time period.

The results of presented case study for two basic climatic
variables over two European regions show that the structure
of the multi-model ensemble and the GCM–RCM interac-
tions can differ substantially in individual cases. Therefore,
before the RCM outputs are used in any applied research
(e.g., studies on impacts of projected future climate change),
a thorough choice of RCMs to be used is necessary. The
present paper offers a convenient tool for such analysis.

The methodology could be extended to include more cli-
matic variables. Similarly, time series with different tempo-
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ral aggregation (e.g., monthly or annual time series) could
be used as input for the analysis. The results of multivari-
ate evaluation of the similarities and relationships within the
multi-model ensemble could be a basis for selection of rep-
resentative models to be used in impact studies. Previously
proposed procedures, such as in Mendlik and Gobiet (2016)
or Herger et al. (2018), could be modified to use the FDA
similarities introduced here.

As explained in the Introduction, the spread of multi-
model ensembles is considered to be an estimate of struc-
tural model uncertainty. For analysis of the influence of in-
ternal variability on the overall uncertainty, simulations with
perturbed initial conditions can be used. Unlike GCMs, for
RCMs these are not generally available. In Supplement 3, a
suite of figures showing FDA similarities between five sim-
ulations of the CNRM GCM with perturbed initial condi-
tions is provided. The aim of these figures is to illustrate the
range of uncertainty stemming from internal variability. We
chose the CNRM GCM to maximize the number of RCMs
driven by this GCM and the number of mini-ensemble mem-
bers. The figures suggest that for air temperature changes,
the spread of the CNRM mini-ensemble covers almost a half
of the multi-model ensemble spread (Fig. S2.1 in the Supple-
ment). In the case of precipitation, the portion of the spread
is smaller (Fig. S2.2). The d0 and d1 distances between the
members of CNRM mini-ensemble are shown in Figs. S2.3–
S2.6. To enable the comparison with the distances for the
multi-model ensemble, their values before normalization are
provided in Figs. S2.7–S2.10. For air temperature, the max-
imum inter-model distances are almost twice as large as the
inter-simulation distances within the CNRM mini-ensemble
(compare Figs. S2.3, S2.4 and S2.7, and S2.8). In the case of
precipitation, the d0 distances between the simulations with
perturbed initial conditions are very small in comparison to
inter-model distances (Figs. S2.5 and S2.9). However, for
d1 distances the difference is not so staggering (Figs. S2.6
and S2.10). The fact that the range of uncertainty connected
to internal variability is relatively larger (in comparison to
structural uncertainty) for air temperature than for precipita-
tion probably points to larger overall structural uncertainty in
simulation of precipitation compared to air temperature, i.e.,
the inter-model differences in simulation of processes con-
nected to precipitation changes are larger than in the case of
air temperature changes. However, we have to keep in mind
that presented results rely only on a limited number of simu-
lations from one GCM.

The presented methodology does not take model perfor-
mance explicitly into account. However, the influence of
model quality on similarity is implicitly included. Worse per-
forming models will likely be further away from good mod-
els. Furthermore, common modeling deficiencies can lead to
common similarities in the validation statistics, and the met-
ric used can account for it. A dissimilarity between the driv-
ing GCM and the nested RCM simulations can point to a
situation where the GCM does not simulate a certain phys-

ical process correctly, while the RCM improves it. More-
over, the methodology can be easily modified to serve as
a mean of model performance evaluation through perform-
ing the analysis for the reference period, including the ob-
served time series. In that case, the results could be used
for definition of model weights and calculation of weighted
multi-model mean. For example, in Sanderson et al. (2017)
the model weights are based on inter-model distance matri-
ces, with the distances defined by the root-mean-square dif-
ference (RMSD) between the simulations. The FDA simi-
larities between model simulations could be used instead of
the RMSD. Similarly, the inter-model distances, if calculated
for the whole CMIP5 GCM ensemble, could serve as a ba-
sis for the analysis of inter-model dependencies, as recently
discussed, for example, in Annan and Hargreaves (2017). Fi-
nally, it can be mentioned that the presented methodology
could be extended by using the functional principle compo-
nent analysis (PCA). Nowadays, the functional PCA is a very
popular and powerful exploratory technique. Its applications
on real data indicate that it could further improve our results.

Code and data availability. The analysis has been conducted
within the R environment and using the Gephi software, which are
both freely available. The R code is made available in the Supple-
ment of this paper (contained in the Rcode.R together with npfda.R
from Ferraty and Vieu, 2006, available at https://www.math.
univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/index.html). The
underlying data are available via the Earth System Grid Fed-
eration (ESGF) infrastructure (https://www.earthsystemcog.org/
projects/cog/, last access: 20 June 2018). The time series of the run-
ning 30-year mean temperature and precipitation changes used in
the presented case study are available in the form of .RData files in
the Supplement to this paper. The input files for Gephi software can
be prepared using the Rcode.R and prepare_graphs.py.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-12-735-2019-supplement.
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