Articles | Volume 12, issue 12
https://doi.org/10.5194/gmd-12-5097-2019
https://doi.org/10.5194/gmd-12-5097-2019
Development and technical paper
 | 
05 Dec 2019
Development and technical paper |  | 05 Dec 2019

Weakly coupled atmosphere–ocean data assimilation in the Canadian global prediction system (v1)

Sergey Skachko, Mark Buehner, Stéphane Laroche, Ervig Lapalme, Gregory Smith, François Roy, Dorina Surcel-Colan, Jean-Marc Bélanger, and Louis Garand

Related authors

Technical note: Reanalysis of Aura MLS chemical observations
Quentin Errera, Simon Chabrillat, Yves Christophe, Jonas Debosscher, Daan Hubert, William Lahoz, Michelle L. Santee, Masato Shiotani, Sergey Skachko, Thomas von Clarmann, and Kaley Walker
Atmos. Chem. Phys., 19, 13647–13679, https://doi.org/10.5194/acp-19-13647-2019,https://doi.org/10.5194/acp-19-13647-2019, 2019
Short summary
Harmonisation and diagnostics of MIPAS ESA CH4 and N2O profiles using data assimilation
Quentin Errera, Simone Ceccherini, Yves Christophe, Simon Chabrillat, Michaela I. Hegglin, Alyn Lambert, Richard Ménard, Piera Raspollini, Sergey Skachko, Michiel van Weele, and Kaley A. Walker
Atmos. Meas. Tech., 9, 5895–5909, https://doi.org/10.5194/amt-9-5895-2016,https://doi.org/10.5194/amt-9-5895-2016, 2016
Short summary
EnKF and 4D-Var data assimilation with chemical transport model BASCOE (version 05.06)
Sergey Skachko, Richard Ménard, Quentin Errera, Yves Christophe, and Simon Chabrillat
Geosci. Model Dev., 9, 2893–2908, https://doi.org/10.5194/gmd-9-2893-2016,https://doi.org/10.5194/gmd-9-2893-2016, 2016
Short summary
Comparison of the ensemble Kalman filter and 4D-Var assimilation methods using a stratospheric tracer transport model
S. Skachko, Q. Errera, R. Ménard, Y. Christophe, and S. Chabrillat
Geosci. Model Dev., 7, 1451–1465, https://doi.org/10.5194/gmd-7-1451-2014,https://doi.org/10.5194/gmd-7-1451-2014, 2014

Related subject area

Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024,https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024,https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024,https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024,https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Impact of ITCZ width on global climate: ITCZ-MIP
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024,https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary

Cited articles

Bauer, P. and Richardson, D.: New model cycle 40r1, ECMWF Newsletter, available at: https://www.ecmwf.int/node/14581 (last access: 30 September 2019), 2014. a
Bélair, S., Crevier, L.-P., Mailhot, J., Bilodeau, B., and Delage, Y.: Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part I: Warm Season Results, J. Hydrometeorol., 4, 352–370, https://doi.org/10.1175/1525-7541(2003)4<352:OIOTIL>2.0.CO;2, 2003. a, b
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data Assimilation Using Incremental Analysis Updates, Mon. Weather Rev., 124, 1256–1271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996. a
Brasnett, B.: The impact of satellite retrievals in a global sea-surface-temperature analysis, Q. J. Roy. Meteor. Soc., 134, 1745–1760, https://doi.org/10.1002/qj.319, 2008. a
Brasnett, B. and Colan, D. S.: Assimilating Retrievals of Sea Surface Temperature from VIIRS and AMSR2, J. Atmos. Ocean. Tech., 33, 361–375, https://doi.org/10.1175/JTECH-D-15-0093.1, 2016. a
Download
Short summary
The study presents a weakly coupled atmosphere–ocean data assimilation system that uses coupled atmosphere–ocean–ice short-term forecasts as background states for atmospheric and ocean systems that independently compute atmospheric and ocean analyses. This system leads to better agreement between the coupled atmosphere–ocean analyses and coupled forecasts that have been used operationally for the last year.