Articles | Volume 12, issue 12
https://doi.org/10.5194/gmd-12-5077-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-5077-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A regional atmosphere–ocean climate system model (CCLMv5.0clm7-NEMOv3.3-NEMOv3.6) over Europe including three marginal seas: on its stability and performance
Cristina Primo
CORRESPONDING AUTHOR
Institute for Atmospheric and Environmental Sciences, Goethe
University, Frankfurt am Main, Germany
Fanni D. Kelemen
Institute for Atmospheric and Environmental Sciences, Goethe
University, Frankfurt am Main, Germany
Hendrik Feldmann
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Naveed Akhtar
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht,
Geesthacht, Germany
Bodo Ahrens
Institute for Atmospheric and Environmental Sciences, Goethe
University, Frankfurt am Main, Germany
Related authors
Jonathan Demaeyer, jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-465, https://doi.org/10.5194/essd-2022-465, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of Central Europe, and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2-meter temperature forecasts is performed.
Cristina Primo
Adv. Sci. Res., 13, 113–120, https://doi.org/10.5194/asr-13-113-2016, https://doi.org/10.5194/asr-13-113-2016, 2016
Short summary
Short summary
Warnings have become a standard product in meteorological centres since they help the public prevent major disasters and minimize costs or losses. They happen rarely and add a new temporal dimension, namely the time window of the forecasted event. Thus, specific verification methods are required to verify warnings. This paper analyses the warning verification issues and includes a real life example, the verification of wind gust warnings at the German Meteorological Centre (Deutscher Wetterdienst).
Patrick Ludwig, Florian Ehmele, Mário J. Franca, Susanna Mohr, Alberto Caldas-Alvarez, James E. Daniell, Uwe Ehret, Hendrik Feldmann, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Michael Kunz, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 1287–1311, https://doi.org/10.5194/nhess-23-1287-2023, https://doi.org/10.5194/nhess-23-1287-2023, 2023
Short summary
Short summary
Heavy precipitation in July 2021 led to widespread floods in western Germany and neighboring countries. The event was among the five heaviest precipitation events of the past 70 years in Germany, and the river discharges exceeded by far the statistical 100-year return values. Simulations of the event under future climate conditions revealed a strong and non-linear effect on flood peaks: for +2 K global warming, an 18 % increase in rainfall led to a 39 % increase of the flood peak in the Ahr river.
Susanna Mohr, Uwe Ehret, Michael Kunz, Patrick Ludwig, Alberto Caldas-Alvarez, James E. Daniell, Florian Ehmele, Hendrik Feldmann, Mário J. Franca, Christian Gattke, Marie Hundhausen, Peter Knippertz, Katharina Küpfer, Bernhard Mühr, Joaquim G. Pinto, Julian Quinting, Andreas M. Schäfer, Marc Scheibel, Frank Seidel, and Christina Wisotzky
Nat. Hazards Earth Syst. Sci., 23, 525–551, https://doi.org/10.5194/nhess-23-525-2023, https://doi.org/10.5194/nhess-23-525-2023, 2023
Short summary
Short summary
The flood event in July 2021 was one of the most severe disasters in Europe in the last half century. The objective of this two-part study is a multi-disciplinary assessment that examines the complex process interactions in different compartments, from meteorology to hydrological conditions to hydro-morphological processes to impacts on assets and environment. In addition, we address the question of what measures are possible to generate added value to early response management.
Jonathan Demaeyer, jonas Bhend, Sebastian Lerch, Cristina Primo, Bert Van Schaeybroeck, Aitor Atencia, Zied Ben Bouallègue, Jieyu Chen, Markus Dabernig, Gavin Evans, Jana Faganeli Pucer, Ben Hooper, Nina Horat, David Jobst, Janko Merše, Peter Mlakar, Annette Möller, Olivier Mestre, Maxime Taillardat, and Stéphane Vannitsem
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-465, https://doi.org/10.5194/essd-2022-465, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
A benchmark dataset is proposed to compare different statistical postprocessing methods used in forecasting centers to properly calibrate ensemble weather forecasts. This dataset is based on ensemble forecasts covering a portion of Central Europe, and includes the corresponding observations. Examples on how to download and use the data are provided, a set of evaluation methods is proposed, and a first benchmark of several methods for the correction of 2-meter temperature forecasts is performed.
Marie Hundhausen, Hendrik Feldmann, Natalie Laube, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-283, https://doi.org/10.5194/nhess-2022-283, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
Using a convection permitting regional climate ensemble, the magnitude of heat waves (HW) over Germany is projected to increase by 26 % (100 %) in a 2 K (3 K) warmer world. The increase is especially strong in late summer, relatively homogeneous in space, and accompanied by increasing variance of HW length. Tailored parameters to climate adaptation to heat revealed dependency on the major landscapes and a non-linear, exponential increase for parameters characterizing strong heat stress is expected.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Praveen Kumar Pothapakula, Amelie Hoff, Anika Obermann-Hellhund, Timo Keber, and Bodo Ahrens
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2022-24, https://doi.org/10.5194/esd-2022-24, 2022
Preprint withdrawn
Short summary
Short summary
The Vb-cyclones simulated with a coupled regional climate model with two different driving data sets are compared against each other in historical period, thereafter the future climate predictions were analyzed. The Vb-cyclones in two simulations agree well in terms of their occurrence, intensity and track in two simulations, though there are discrepancies in seasonal cycles and their process linking Mediterranean Sea in historical period. So significant changes were observed in the future.
Alberto Caldas-Alvarez, Hendrik Feldmann, Etor Lucio-Eceiza, and Joaquim G. Pinto
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-11, https://doi.org/10.5194/wcd-2022-11, 2022
Revised manuscript accepted for WCD
Short summary
Short summary
High-resolution climate models simulate better extreme precipitation. We investigate the dependency of these improvements with precipitation thermodynamical process. We revisited an index, to detect extreme events and derived statistically, environmental conditions leading to those extremes. We found that high-resolution simulations simulate larger (lower) precipitation at low terrain if moisture transports and instability are likewise larger (lower) than in coarser resolutions.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, Yi He, Martin Kadlec, Fanni D. Kelemen, Hilke S. Lentink, Patrick Ludwig, Desmond Manful, and Joaquim G. Pinto
Nat. Hazards Earth Syst. Sci., 22, 677–692, https://doi.org/10.5194/nhess-22-677-2022, https://doi.org/10.5194/nhess-22-677-2022, 2022
Short summary
Short summary
For various applications, it is crucial to have profound knowledge of the frequency, severity, and risk of extreme flood events. Such events are characterized by very long return periods which observations can not cover. We use a large ensemble of regional climate model simulations as input for a hydrological model. Precipitation data were post-processed to reduce systematic errors. The representation of precipitation and discharge is improved, and estimates of long return periods become robust.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Praveen Kumar Pothapakula, Cristina Primo, Silje Sørland, and Bodo Ahrens
Earth Syst. Dynam., 11, 903–923, https://doi.org/10.5194/esd-11-903-2020, https://doi.org/10.5194/esd-11-903-2020, 2020
Short summary
Short summary
Information exchange (IE) from the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO) to Indian summer monsoon rainfall (ISMR) is investigated. Observational data show that IOD and ENSO synergistically exchange information on ISMR variability over central India. IE patterns observed in three global climate models (GCMs) differ from observations. Our study highlights new perspectives that IE metrics could bring to climate science.
Florian Ehmele, Lisa-Ann Kautz, Hendrik Feldmann, and Joaquim G. Pinto
Earth Syst. Dynam., 11, 469–490, https://doi.org/10.5194/esd-11-469-2020, https://doi.org/10.5194/esd-11-469-2020, 2020
Short summary
Short summary
This study presents a large novel data set of climate model simulations for central Europe covering the years 1900–2028 at a 25 km resolution. The focus is on intensive areal precipitation values. The data set is validated against observations using different statistical approaches. The results reveal an adequate quality in a statistical sense as well as some long-term variability with phases of increased and decreased heavy precipitation. The predictions of the near future show continuity.
Mark Reyers, Hendrik Feldmann, Sebastian Mieruch, Joaquim G. Pinto, Marianne Uhlig, Bodo Ahrens, Barbara Früh, Kameswarrao Modali, Natalie Laube, Julia Moemken, Wolfgang Müller, Gerd Schädler, and Christoph Kottmeier
Earth Syst. Dynam., 10, 171–187, https://doi.org/10.5194/esd-10-171-2019, https://doi.org/10.5194/esd-10-171-2019, 2019
Short summary
Short summary
In this study, the regional MiKlip decadal prediction system is evaluated. This system has been established to deliver highly resolved forecasts for the timescale of 1 to 10 years for Europe. Evidence of the general potential for regional decadal predictability for the variables temperature, precipitation, and wind speed is provided, but the performance of the prediction system depends on region, variable, and system generation.
Lisa-Ann Kautz, Florian Ehmele, Patrick Ludwig, Hilke S. Lentink, Fanni D. Kelemen, Martin Kadlec, and Joaquim G. Pinto
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-77, https://doi.org/10.5194/hess-2019-77, 2019
Manuscript not accepted for further review
Short summary
Short summary
To quantify the flooding risk for Europe it is necessary to run hydrological models. As input for these models, a consistent stochastic precipitation dataset is needed. In the present study, a combined approach is presented on how to generate such a dataset based on dynamical downscaling and subsequent bias correction. Empirical quantile mapping was identified as suitable bias correction method as it led to improvements for specific severe river floods as well as in a climatological perspective.
Cristina Primo
Adv. Sci. Res., 13, 113–120, https://doi.org/10.5194/asr-13-113-2016, https://doi.org/10.5194/asr-13-113-2016, 2016
Short summary
Short summary
Warnings have become a standard product in meteorological centres since they help the public prevent major disasters and minimize costs or losses. They happen rarely and add a new temporal dimension, namely the time window of the forecasted event. Thus, specific verification methods are required to verify warnings. This paper analyses the warning verification issues and includes a real life example, the verification of wind gust warnings at the German Meteorological Centre (Deutscher Wetterdienst).
Anika Obermann, Benedikt Edelmann, and Bodo Ahrens
Adv. Sci. Res., 13, 107–112, https://doi.org/10.5194/asr-13-107-2016, https://doi.org/10.5194/asr-13-107-2016, 2016
Short summary
Short summary
Simulated surface winds in atmospheric models depend, among others, on the parameterization of the sea surface roughness. Three parameterizations (variation of Charnock parameter) were tested in the western Mediterranean area during Mistral events with the regional climate model COSMO-CLM. While the whole sea level pressure pattern did not change much, a larger Charnock parameter led to lower wind speeds and a rotation of the wind direction.
H. Tang, J. T. Eronen, A. Kaakinen, T. Utescher, B. Ahrens, and M. Fortelius
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-63-2015, https://doi.org/10.5194/cpd-11-63-2015, 2015
Preprint withdrawn
Short summary
Short summary
Our climate model results suggest that a stronger-than-present winter monsoon wind may account for the cooler winter temperature in southern China and northern India in the Late Miocene as indicated by the proxy data. The strong winter monsoon wind in the Late Miocene can be attributed to the lower elevation of the northern Tibetan Plateau and mountains north of it. The modern-like winter monsoon variation may not have been established in the Late Miocene.
S. Mieruch, H. Feldmann, G. Schädler, C.-J. Lenz, S. Kothe, and C. Kottmeier
Geosci. Model Dev., 7, 2983–2999, https://doi.org/10.5194/gmd-7-2983-2014, https://doi.org/10.5194/gmd-7-2983-2014, 2014
N. Akhtar, J. Brauch, A. Dobler, K. Béranger, and B. Ahrens
Nat. Hazards Earth Syst. Sci., 14, 2189–2201, https://doi.org/10.5194/nhess-14-2189-2014, https://doi.org/10.5194/nhess-14-2189-2014, 2014
Related subject area
Climate and Earth system modeling
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin
The impact of lateral boundary forcing in the CORDEX-Africa ensemble over southern Africa
Effects of complex terrain on the shortwave radiative balance: a sub-grid-scale parameterization for the GFDL Earth System Model version 4.1
Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project
Assessing methods for representing soil heterogeneity through a flexible approach within the Joint UK Land Environment Simulator (JULES) at version 3.4.1
Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition
Importance of ice nucleation and precipitation on climate with the Parameterization of Unified Microphysics Across Scales version 1 (PUMASv1)
UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
CMIP6 simulations with the compact Earth system model OSCAR v3.1
Application of a satellite-retrieved sheltering parameterization (v1.0) for dust event simulation with WRF-Chem v4.1
Various ways of using Empirical Orthogonal Functions for Climate Model evaluation
The pseudo-global-warming (PGW) approach: methodology, software package PGW4ERA5 v1.1, validation, and sensitivity analyses
AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics
Cell tracking of convective rainfall: sensitivity of climate-change signal to tracking algorithm and cell definition (Cell-TAO v1.0)
ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer and subkilometer scales
Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) – refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN – Part 1: Adaptive grid refinement in an idealized double-gyre case
Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean
stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts
URANOS v1.0 – the Ultra Rapid Adaptable Neutron-Only Simulation for Environmental Research
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Evaluation of native Earth system model output with ESMValTool v2.6.0
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
LandInG 1.0: A toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Accelerated photosynthesis routine in LPJmL4
C-Coupler3.0: an integrated coupler infrastructure for Earth system modeling
Improving scalability of Earth system models through coarse-grained component concurrency – a case study with the ICON v2.6.5 modelling system
Temperature forecasting by deep learning methods
Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios
Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0
Implementation and evaluation of the GEOS-Chem chemistry module version 13.1.2 within the Community Earth System Model v2.1
Assessment of JSBACHv4.30 as a land component of ICON-ESM-V1 in comparison to its predecessor JSBACHv3.2 of MPI-ESM1.2
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere-ice-ocean model of The Ross Sea
Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED)
Testing the reconstruction of modelled particulate organic carbon from surface ecosystem components using PlankTOM12 and Machine Learning
Impact of increased resolution on the representation of the Canary upwelling system in climate models
Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations
Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0)
Impact of physical parameterizations on wind simulation with WRF V3.9.1.1 under stable conditions at planetary boundary layer gray-zone resolution: a case study over the coastal regions of North China
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354, https://doi.org/10.5194/gmd-16-2343-2023, https://doi.org/10.5194/gmd-16-2343-2023, 2023
Short summary
Short summary
A statistical model called the sea level simulator is presented and made freely available. The sea level simulator integrates mean sea level rise and sea level extremes into a joint probabilistic framework that is useful for flood risk estimation. These flood risk estimates are contingent on probabilities given to different emission scenarios and the length of the planning period. The model is also useful for uncertainty quantification and in decision and adaptation problems.
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233, https://doi.org/10.5194/gmd-16-2215-2023, https://doi.org/10.5194/gmd-16-2215-2023, 2023
Short summary
Short summary
This study proposes (i) the structural k-means (S k-means) algorithm for clustering spatiotemporally structured climate data and (ii) the clustering uncertainty evaluation framework (CUEF) based on the mutual-information concept.
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117, https://doi.org/10.5194/gmd-16-2095-2023, https://doi.org/10.5194/gmd-16-2095-2023, 2023
Short summary
Short summary
Climate projections of a high-CO2 future are highly uncertain. A new study provides a novel approach to identifying key regions that dynamically explain the model uncertainty. To yield an accurate estimate of the future North Atlantic carbon uptake, we find that a correct simulation of the upper- and interior-ocean volume transport at 25–30° N is key. However, results indicate that models rarely perform well for both indicators and point towards inconsistencies within the model ensemble.
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023, https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Rubina Ansari, Ana Casanueva, Muhammad Usman Liaqat, and Giovanna Grossi
Geosci. Model Dev., 16, 2055–2076, https://doi.org/10.5194/gmd-16-2055-2023, https://doi.org/10.5194/gmd-16-2055-2023, 2023
Short summary
Short summary
Bias correction (BC) has become indispensable to climate model output as a post-processing step to render output more useful for impact assessment studies. The current work presents a comparison of different state-of-the-art BC methods (univariate and multivariate) and BC approaches (direct and component-wise) for climate model simulations from three initiatives (CMIP6, CORDEX, and CORDEX-CORE) for a multivariate drought index (i.e., standardized precipitation evapotranspiration index).
Maria Chara Karypidou, Stefan Pieter Sobolowski, Lorenzo Sangelantoni, Grigory Nikulin, and Eleni Katragkou
Geosci. Model Dev., 16, 1887–1908, https://doi.org/10.5194/gmd-16-1887-2023, https://doi.org/10.5194/gmd-16-1887-2023, 2023
Short summary
Short summary
Southern Africa is listed among the climate change hotspots; hence, accurate climate change information is vital for the optimal preparedness of local communities. In this work we assess the degree to which regional climate models (RCMs) are influenced by the global climate models (GCMs) from which they receive their lateral boundary forcing. We find that although GCMs exert a strong impact on RCMs, RCMs are still able to display substantial improvement relative to the driving GCMs.
Enrico Zorzetto, Sergey Malyshev, Nathaniel Chaney, David Paynter, Raymond Menzel, and Elena Shevliakova
Geosci. Model Dev., 16, 1937–1960, https://doi.org/10.5194/gmd-16-1937-2023, https://doi.org/10.5194/gmd-16-1937-2023, 2023
Short summary
Short summary
In this paper we develop a methodology to model the spatial distribution of solar radiation received by land over mountainous terrain. The approach is designed to be used in Earth system models, where coarse grid cells hinder the description of fine-scale land–atmosphere interactions. We adopt a clustering algorithm to partition the land domain into a set of homogeneous sub-grid
tiles, and for each tile we evaluate solar radiation received by land based on terrain properties.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Heather S. Rumbold, Richard J. J. Gilham, and Martin J. Best
Geosci. Model Dev., 16, 1875–1886, https://doi.org/10.5194/gmd-16-1875-2023, https://doi.org/10.5194/gmd-16-1875-2023, 2023
Short summary
Short summary
The Joint UK Land Environment Simulator (JULES) uses a tiled representation of land cover but can only model a single dominant soil type within a grid box; hence there is no representation of sub-grid soil heterogeneity. This paper evaluates a new surface–soil tiling scheme in JULES and demonstrates the impacts of the scheme using several soil tiling approaches. Results show that soil tiling has an impact on the water and energy exchanges due to the way vegetation accesses the soil moisture.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Andrew Gettelman, Hugh Morrison, Trude Eidhammer, Katherine Thayer-Calder, Jian Sun, Richard Forbes, Zachary McGraw, Jiang Zhu, Trude Storelvmo, and John Dennis
Geosci. Model Dev., 16, 1735–1754, https://doi.org/10.5194/gmd-16-1735-2023, https://doi.org/10.5194/gmd-16-1735-2023, 2023
Short summary
Short summary
Clouds are a critical part of weather and climate prediction. In this work, we document updates and corrections to the description of clouds used in several Earth system models. These updates include the ability to run the scheme on graphics processing units (GPUs), changes to the numerical description of precipitation, and a correction to the ice number. There are big improvements in the computational performance that can be achieved with GPU acceleration.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023, https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023, https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023, https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
Short summary
The traditional tropospheric zenith hydrostatic delay (ZHD) model's bias is usually thought negligible, yet it still reaches 10 mm sometimes and would lead to millimeter-level position errors for space geodetic observations. Therefore, we analyzed the bias’ characteristics and present a grid model to correct the traditional ZHD formula. When verifying the efficiency based on data from the ECMWF (European Centre for Medium-Range Weather Forecasts), ZHD biases were rectified by ~50 %.
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023, https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Short summary
Due to computational limits, lower-complexity models (LCMs) were developed as a complementary tool for accelerating comprehensive Earth system models (ESMs) but still lack a good precipitation emulator for LCMs. Here, we developed a data-calibrated precipitation emulator (PREMU), a computationally effective way to better estimate historical and simulated precipitation by current ESMs. PREMU has potential applications related to land surface processes and their interactions with climate change.
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023, https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
Yann Quilcaille, Thomas Gasser, Philippe Ciais, and Olivier Boucher
Geosci. Model Dev., 16, 1129–1161, https://doi.org/10.5194/gmd-16-1129-2023, https://doi.org/10.5194/gmd-16-1129-2023, 2023
Short summary
Short summary
The model OSCAR is a simple climate model, meaning its representation of the Earth system is simplified but calibrated on models of higher complexity. Here, we diagnose its latest version using a total of 99 experiments in a probabilistic framework and under observational constraints. OSCAR v3.1 shows good agreement with observations, complex Earth system models and emerging properties. Some points for improvements are identified, such as the ocean carbon cycle.
Sandra L. LeGrand, Theodore W. Letcher, Gregory S. Okin, Nicholas P. Webb, Alex R. Gallagher, Saroj Dhital, Taylor S. Hodgdon, Nancy P. Ziegler, and Michelle L. Michaels
Geosci. Model Dev., 16, 1009–1038, https://doi.org/10.5194/gmd-16-1009-2023, https://doi.org/10.5194/gmd-16-1009-2023, 2023
Short summary
Short summary
Ground cover affects dust emissions by reducing wind flow over the immediate soil surface. This study reviews a method for estimating ground cover effects on wind erosion from satellite-detected terrain shadows. We conducted a case study for a US dust event using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Adding the shadow-based method for ground cover effects markedly improved simulated results and may lead to better dust modeling outcomes in vegetated drylands.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
EGUsphere, https://doi.org/10.5194/egusphere-2022-1385, https://doi.org/10.5194/egusphere-2022-1385, 2023
Short summary
Short summary
A mathematical method known as 'common EOFs' is not widely used within the climate research community, but they offer innovative ways of evaluating climate models. We show how they can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say they represent a kind of machine learning (ML) for dealing with "Big data".
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Yan Zhang, Xuantong Wang, Yuhao Sun, Chenhui Ning, Shiming Xu, Hengbin An, Dehong Tang, Hong Guo, Hao Yang, Ye Pu, Bo Jiang, and Bin Wang
Geosci. Model Dev., 16, 679–704, https://doi.org/10.5194/gmd-16-679-2023, https://doi.org/10.5194/gmd-16-679-2023, 2023
Short summary
Short summary
We construct a new ocean model, OMARE, that can carry out multi-scale ocean simulation with adaptive mesh refinement. OMARE is based on the refactorization of NEMO with a third-party, high-performance piece of middleware. We report the porting process and experiments of an idealized western-boundary current system. The new model simulates turbulent and temporally varying mesoscale and submesoscale processes via adaptive refinement. Related topics and future work with OMARE are also discussed.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Dagmawi Teklu Asfaw, Michael Bliss Singer, Rafael Rosolem, David MacLeod, Mark Cuthbert, Edisson Quichimbo Miguitama, Manuel F. Rios Gaona, and Katerina Michaelides
Geosci. Model Dev., 16, 557–571, https://doi.org/10.5194/gmd-16-557-2023, https://doi.org/10.5194/gmd-16-557-2023, 2023
Short summary
Short summary
stoPET is a new stochastic potential evapotranspiration (PET) generator for the globe at hourly resolution. Many stochastic weather generators are used to generate stochastic rainfall time series; however, no such model exists for stochastically generating plausible PET time series. As such, stoPET represents a significant methodological advance. stoPET generate many realizations of PET to conduct climate studies related to the water balance, agriculture, water resources, and ecology.
Markus Köhli, Martin Schrön, Steffen Zacharias, and Ulrich Schmidt
Geosci. Model Dev., 16, 449–477, https://doi.org/10.5194/gmd-16-449-2023, https://doi.org/10.5194/gmd-16-449-2023, 2023
Short summary
Short summary
In the last decades, Monte Carlo codes were often consulted to study neutrons near the surface. As an alternative for the growing community of CRNS, we developed URANOS. The main model features are tracking of particle histories from creation to detection, detector representations as layers or geometric shapes, a voxel-based geometry model, and material setup based on color codes in ASCII matrices or bitmap images. The entire software is developed in C++ and features a graphical user interface.
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023, https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Short summary
Models that are used to simulate and predict climate often have trouble representing specific cloud types, such as stratocumulus, that are particularly thin in the vertical direction. It has been found that increasing the model resolution can help improve this problem. In this paper, we develop a novel framework that increases the horizontal and vertical resolutions only for areas of the globe that contain stratocumulus, hence reducing the model runtime while providing better results.
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023, https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool for routine evaluation of Earth system models. Originally, ESMValTool was designed to process reformatted output provided by large model intercomparison projects like the Coupled Model Intercomparison Project (CMIP). Here, we describe a new extension of ESMValTool that allows for reading and processing native climate model output, i.e., data that have not been reformatted before.
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023, https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
Short summary
More and more researchers use deep learning models to replace physics-based parameterizations to accelerate weather simulations. However, embedding the ML models within the weather models is difficult as they are implemented in different languages. This work proposes a coupling framework to allow ML-based parameterizations to be coupled with the Weather Research and Forecasting (WRF) model. We also demonstrate using the coupler to couple the ML-based radiation schemes with the WRF model.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-291, https://doi.org/10.5194/gmd-2022-291, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a new toolbox for generating input datasets for terrestrial ecosystem models from diverse and partially conflicting data sources. The toolbox documents the sources and processing of data and is designed to make inconsistencies between source datasets transparent, so that users can make their own decisions on how to resolve these, should they not be content with our default assumptions. As an example, we use the toolbox to create input datasets at two different spatial resolutions.
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023, https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.
Jenny Niebsch, Werner von Bloh, Kirsten Thonicke, and Ronny Ramlau
Geosci. Model Dev., 16, 17–33, https://doi.org/10.5194/gmd-16-17-2023, https://doi.org/10.5194/gmd-16-17-2023, 2023
Short summary
Short summary
The impacts of climate change require strategies for climate adaptation. Dynamic global vegetation models (DGVMs) are used to study the effects of multiple processes in the biosphere under climate change. There is a demand for a better computational performance of the models. In this paper, the photosynthesis model in the Lund–Potsdam–Jena managed Land DGVM (4.0.002) was examined. We found a better numerical solution of a nonlinear equation. A significant run time reduction was possible.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-257, https://doi.org/10.5194/gmd-2022-257, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features. i.e., a series of parallel optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g., more than 100 million horizontal grid cells).
Leonidas Linardakis, Irene Stemmler, Moritz Hanke, Lennart Ramme, Fatemeh Chegini, Tatiana Ilyina, and Peter Korn
Geosci. Model Dev., 15, 9157–9176, https://doi.org/10.5194/gmd-15-9157-2022, https://doi.org/10.5194/gmd-15-9157-2022, 2022
Short summary
Short summary
In Earth system modelling, we are facing the challenge of making efficient use of very large machines, with millions of cores. To meet this challenge we will need to employ multi-level and multi-dimensional parallelism. Component concurrency, being a function parallel technique, offers an additional dimension to the traditional data-parallel approaches. In this paper we examine the behaviour of component concurrency and identify the conditions for its optimal application.
Bing Gong, Michael Langguth, Yan Ji, Amirpasha Mozaffari, Scarlet Stadtler, Karim Mache, and Martin G. Schultz
Geosci. Model Dev., 15, 8931–8956, https://doi.org/10.5194/gmd-15-8931-2022, https://doi.org/10.5194/gmd-15-8931-2022, 2022
Short summary
Short summary
Inspired by the success of deep learning in various domains, we test the applicability of video prediction methods by generative adversarial network (GAN)-based deep learning to predict the 2 m temperature over Europe. Our video prediction models have skill in predicting the diurnal cycle of 2 m temperature up to 12 h ahead. Complemented by probing the relevance of several model parameters, this study confirms the potential of deep learning in meteorological forecasting applications.
Thomas Bossy, Thomas Gasser, and Philippe Ciais
Geosci. Model Dev., 15, 8831–8868, https://doi.org/10.5194/gmd-15-8831-2022, https://doi.org/10.5194/gmd-15-8831-2022, 2022
Short summary
Short summary
We developed a new simple climate model designed to fill a perceived gap within the existing simple climate models by fulfilling three key requirements: calibration using Bayesian inference, the possibility of coupling with integrated assessment models, and the capacity to explore climate scenarios compatible with limiting climate impacts. Here, we describe the model and its calibration using the latest data from complex CMIP6 models and the IPCC AR6, and we assess its performance.
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022, https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Short summary
In this study, we implement a hardening mortality scheme into CTSM5.0-FATES-Hydro and evaluate how it impacts plant hydraulics and vegetation growth. Our work shows that the hydraulic modifications prescribed by the hardening scheme are necessary to model realistic vegetation growth in cold climates, in contrast to the default model that simulates almost nonexistent and declining vegetation due to abnormally large water loss through the roots.
Peter Ukkonen and Robin Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2022-1047, https://doi.org/10.5194/egusphere-2022-1047, 2022
Short summary
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it’s computationally too costly to simulate precisely. This has led to attempts to replace radiation codes using physical equations with neural networks (NNs), that are faster but highly uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs to predict optical properties is much more accurate.
Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Haipeng Lin, Elizabeth W. Lundgren, Steve Goldhaber, Steven R. H. Barrett, and Daniel J. Jacob
Geosci. Model Dev., 15, 8669–8704, https://doi.org/10.5194/gmd-15-8669-2022, https://doi.org/10.5194/gmd-15-8669-2022, 2022
Short summary
Short summary
We bring the state-of-the-science chemistry module GEOS-Chem into the Community Earth System Model (CESM). We show that some known differences between results from GEOS-Chem and CESM's CAM-chem chemistry module may be due to the configuration of model meteorology rather than inherent differences in the model chemistry. This is a significant step towards a truly modular Earth system model and allows two strong but currently separate research communities to benefit from each other's advances.
Rainer Schneck, Veronika Gayler, Julia E. M. S. Nabel, Thomas Raddatz, Christian H. Reick, and Reiner Schnur
Geosci. Model Dev., 15, 8581–8611, https://doi.org/10.5194/gmd-15-8581-2022, https://doi.org/10.5194/gmd-15-8581-2022, 2022
Short summary
Short summary
The versions of ICON-A and ICON-Land/JSBACHv4 used for this study constitute the first milestone in the development of the new ICON Earth System Model ICON-ESM. JSBACHv4 is the successor of JSBACHv3, and most of the parameterizations of JSBACHv4 are re-implementations from JSBACHv3. We assess and compare the performance of JSBACHv4 and JSBACHv3. Overall, the JSBACHv4 results are as good as JSBACHv3, but both models reveal the same main shortcomings, e.g. the depiction of the leaf area index.
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
EGUsphere, https://doi.org/10.5194/egusphere-2022-1135, https://doi.org/10.5194/egusphere-2022-1135, 2022
Short summary
Short summary
Simultaneous modelling of ocean, sea ice and atmosphere in coupled models is critical for understanding all of the processes that happen in the Antarctic. Here we have developed a coupled model for the Ross Sea, P-SKRIPS, that conserves heat and mass between the ocean and sea ice model (MITgcm) and the atmosphere model (PWRF). We have shown that our developments reduce the model drift, which is important for long-term simulations. P-SKRIPS shows good results in modelling coastal polynyas.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Anna Denvil-Sommer, Erik T. Buitenhuis, Rainer Kiko, Fabien Lombard, Lionel Guidi, and Corinne Le Quéré
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-224, https://doi.org/10.5194/gmd-2022-224, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Using outputs of global biogeochemical ocean model and Machine Learning methods we demonstrate that it will be possible to identify linkages between surface environmental and ecosystem structure and the export of carbon to depth by sinking organic particles using real observations. It will be possible to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
Adama Sylla, Emilia Sanchez Gomez, Juliette Mignot, and Jorge López-Parages
Geosci. Model Dev., 15, 8245–8267, https://doi.org/10.5194/gmd-15-8245-2022, https://doi.org/10.5194/gmd-15-8245-2022, 2022
Short summary
Short summary
Increasing model resolution depends on the subdomain of the Canary upwelling considered. In the Iberian Peninsula, the high-resolution (HR) models do not seem to better simulate the upwelling indices, while in Morocco to the Senegalese coast, the HR models show a clear improvement. Thus increasing the resolution of a global climate model does not necessarily have to be the only way to better represent the climate system. There is still much work to be done in terms of physical parameterizations.
Jadwiga H. Richter, Daniele Visioni, Douglas G. MacMartin, David A. Bailey, Nan Rosenbloom, Brian Dobbins, Walker R. Lee, Mari Tye, and Jean-Francois Lamarque
Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, https://doi.org/10.5194/gmd-15-8221-2022, 2022
Short summary
Short summary
Solar climate intervention using stratospheric aerosol injection is a proposed method of reducing global mean temperatures to reduce the worst consequences of climate change. We present a new modeling protocol aimed at simulating a plausible deployment of stratospheric aerosol injection and reproducibility of simulations using other Earth system models: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI).
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Entao Yu, Rui Bai, Xia Chen, and Lifang Shao
Geosci. Model Dev., 15, 8111–8134, https://doi.org/10.5194/gmd-15-8111-2022, https://doi.org/10.5194/gmd-15-8111-2022, 2022
Short summary
Short summary
A large number of simulations are conducted to investigate how different physical parameterization schemes impact surface wind simulations under stable weather conditions over the coastal regions of North China using the Weather Research and Forecasting model with a horizontal grid spacing of 0.5 km. Results indicate that the simulated wind speed is most sensitive to the planetary boundary layer schemes, followed by short-wave/long-wave radiation schemes and microphysics schemes.
Cited articles
Akhtar, N., Brauch, J., and Ahrens, B.: Climate modeling over the
Mediterranean Sea: impact of resolution and ocean coupling, Clim. Dynam., 51, 933–948, https://doi.org/10.1007/s00382-017-3570-8, 2017.
Akhtar, N., Krug, A., Brauch, J., Arsouze, T., Dieterich, C., and Ahrens, B.:
European Marginal Seas in a regional atmosphere-ocean coupled model and
their impact on Vb-cyclones and associated precipitation, Clim. Dynam., 53, 5945, https://doi.org/10.1007/s00382-019-04906-x, 2019.
Beuvier, J., Lebeaupin Brossier, C., Béranger, K., Arsouze, T.,
Bourdallé-Badie, R., Deltel, C., Drillet, Y., Drobinski, P., Ferry, N.,
Lyard, F., Sevault, F., and Somot, S.: MED12, Oceanic component for the
modeling of the regional Mediterranean earth system, Mercator Ocean
Quarterly Newsletter, 46, 2012.
Casanueva, A., Rodríguez-Puebla, C., Frías, M. D., and González-Reviriego, N.: Variability of extreme precipitation over Europe and its relationships with teleconnection patterns, Hydrol. Earth Syst. Sci., 18, 709–725, https://doi.org/10.5194/hess-18-709-2014, 2014.
Christensen, J. H.: Prediction of Regional Scenarios and Uncertainties for
Defining European Climate Change Risks and Effects (PRUDENCE), Final Report,
DMI, 269 p., 2005.
CLM: Climate Limited-area Modelling Community, available at: https://wiki.coast.hzg.de/clmcom, last access: 2 December 2019.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason,
B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S.,
Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M., Kruger,
A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F.,
Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century
Reanalysis Project, Quarterly J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Darmaraki, S., Somot, S., Sevault, F., Nabat, P., Cabos Narvaez, W. D.,
Cavicchia, L., Djurdjevic, V., Li, L., Sannino, G., and Sein, D. V.: Future
Evolution of Marine Heatwaves in the Mediterranean Sea, Clim. Dynam., 45,
1–22, https://doi.org/10.1007/s00382-019-04661-z, 2019.
Dieterich, C., Wang, S., Schimanke, S., Gröger, M.,
Klein, B., Hordoir, R., Samuelsson, P., Liu, Y., Axell, L.,
Höglund, A., and Meier, H. E. M.: Surface Heat Budget
over the North Sea in Climate Change Simulations, Atmosphere, 10,
272, https://doi.org/10.3390/atmos10050272, 2019.
Dommenget, D.: Analysis of the model climate sensitivity spread forced by
mean sea surface temperature biases, J. Climate, 25, 7147–7162, 2012.
Doms, G., Förstner, J., Heise, E., Herzog, H.-J.,
Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R.,
Schulz, J.-P., and Vogel, G.: A description of the nonhydrostatic regional COSMO
model. Part II: Physical parameterization. Deutscher Wetterdienst, Oenbach,
154 pp., available at: http://www.cosmo-model.org/ (last access: 2 December 2019), 2011.
DWD Climate Data Center (CDC): Historical daily station observations
(temperature, pressure, precipitation, sunshine duration, etc.) for Germany,
version v005, 2017.
Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), Geosci. Model Dev., 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, 2014.
Hartmann, D., Tank, A. K., Rusticucci, M., Alexander, L., Brönnimann,
S., Charabi, Y., Dentener, F., Dlugokencky, E., Easterling, D., Kaplan, A.,
Soden, B., Thorne, P., Wild, M., and Zhai, P.: Observations: atmosphere and
surface – Climate Change 2013: the Physical Science Basis, EU-FP6 project
ENSEMBLES & ECA&D project E-OBS gridded dataset, Website, accessed at
2016/1/22, available at: http://www.ecad.eu/download/ensembles/download.php (last access: 2 December 2019),
2016.
Gröger, M., Arneborg, L., Dieterich, C.,
Höglund, A., and Meier, H. E. M.: Summer Hydrographic
changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble
of climate scenarios downscaled with a coupled regional ocean-sea ice-
atmosphere, Clim. Dynam., 53, 5945, https://doi.org/10.1007/s00382-019-04908-9, 2019.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
Dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Haylock, M. R., Hofstra, N., Tank, A. K., Klok, E., Jones, P., and New, M.: A
European daily high-resolution gridded dataset of surface temperature and
precipitation, J. Geophys. Res., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019.
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model REMO, Meteorol. Atmos. Phys., 63, 119, https://doi.org/10.1007/BF01025368, 1997.
Jacob, R., Larson, J., and Ong, E.: M x N communication and parallel
interpolation in Community Climate System Model Version 3 using the model
coupling toolkit, Int. J. High Perform. C., 19, 293–307, 2005.
Janssen, F., Schrum, C., and Backhaus, J. O.: A Climatological Data Set of Temperature and Salinity for the Baltic Sea and the North Sea, Hydro. Z. German J. Hydro., Supplement 9, 245 pp., 1999.
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei,
D., Mikolajewicz, U., Notz, D., and Storch, J. S.: Characteristics of the
ocean simulations in MPIOM, the ocean component of the MPI-Earth system
model, J. Adv. Model. Earth Syst., 5, 422–446, 2013.
Karl, T. R., Nicholls, N., and Ghazi, A.: CLIVAR/GCOS/WMO workshop on indices
and indicators for climate extremes: Workshop summary, Clim. Change, 42,
3–7, 1999.
Kelemen, F. D., Primo, C., Feldmann, H., and Ahrens, B.: Added Value of
Atmosphere-Ocean Coupling in a Century-Long Regional Climate Simulation,
Atmosphere, 10, 537, https://doi.org/10.3390/atmos10090537, 2019.
Levitus, S., Antonov, J., and Boyer, T.: Warming of the world ocean 1955–2003,
Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592, 2005.
Li, L., Bozec, A., Somot, S., Béranger, K., Bouruet-Aubertot, P.,
Sevault, F., and Crépon, M.: Regional atmospheric, marine processes and
climate modelling, Dev. Earth Environ. Sci., 4,
373–397, https://doi.org/10.1016/s1571-9197(06)80010-8, 2006.
Lindström, G., Pers, C.P., Rosberg, R., Strömqvist, J., and
Arheimer, B.: Development and test of the HYPE (Hydrological Predictions for
the Environment) model – A water quality model for different spatial scales,
Hydrol. Res., 41, 295–319, https://doi.org/10.2166/nh.2010.007, 2010.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: major drivers for
ecosystem changes during past and future decades?, Prog. Oceanogr., 80,
199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Maisonnave, E. and Caubel, A.: LUCIA, load balancing tool for OASIS coupled
systems, TR-CMGC 14-63, CERFACS, 2014.
Madec, G.: NEMO ocean engine (version 3.3), Tech. Rep. 27, Note du Pole de
modeìlisation, Institut Pierre- Simon Laplace (IPSL), France, 2011.
Marotzke, J., Müller, W. A., Vamborg, F. S., Becker, P., Cubasch, U.,
Feldmann, H., Kaspar, F., Kottmeier, C., Marini, C., Polkova, I.,Prömmel, K., Rust,
H. W., Stammer, D., Ulbrich, U., Kadow, C., Köhl, A., Kröger, J.,
Kruschke, T., Pinto, J. G., Pohlmann, H., Reyers, M., Schröder, M.,Sienz, F.,
Timmreck, C., and Ziese, M.: MiKlip: A National Research Project on
Decadal Climate Prediction, B. Am. Meteorol. Soc., 97, 2379–2394,
https://doi.org/10.1175/BAMS-D-15-00184.1, 2016.
Müller, W. A., Matei, D., Bersch, M., Jungclaus, J. H., Haak, H., Lohmann,
K., Compo, P., Sardeshmukh, D., and Marotzke, J.: A twentieth-century
reanalysis forced ocean model to reconstruct the North Atlantic climate
variations during the 1920s, Clim. Dynam., 44, 1935–1955,
https://doi.org/10.1007/s00382-014-2267-5, 2015.
Obermann, A., Bastin, S., Belamari, S. Conte, D., Gaertner, M. A., Li, L., and
Ahrens, B.: Mistral and Tramontane wind speed and wind direction patterns in
regional climate simulations, Clim. Dynam., 51, 1059–1076,
https://doi.org/10.1007/s00382-016-3053-3, 2018.
Pham, T., Brauch, J., Dieterich, D., Früh, B., and
Ahrens, B.: New coupled atmosphere-ocean-ice system COSMO-CLM/NEMO: On the
air temperature sensitivity on the North and Baltic Seas, Oceanologia, 56,
167–189, https://doi.org/10.5697/oc.56-2.167, 2014.
Pham, T., Brauch, J., Dieterich, D., Früh, B., and
Ahrens, B.: Added Decadal Prediction Skill with the Coupled Regional Climate
Model COSMO-CLM/NEMO, Meteorol. Z., 27, 391–99,
https://doi.org/10.1127/metz/2018/0872, 2018.
Primo, C., Kelemen, F. D., Feldmann, H., and Ahrens. B.:
A regional atmosphere-ocean climate system model over Europe including three marginal seas: on its stability and performance, zenodo, https://doi.org/10.5281/zenodo.2659205, 2019.
Raschendorfer, M.: The new turbulence parameterization of LM. COSMO
Newsletter, No. 1, Consortium for Small-Scale Modeling, Offenbach, Germany,
89–97, available at:
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf (last access: 2 December 2019), 2001.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late
nineteenth century, J. Geophys. Res., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An
improved in situ and satellite SST analysis for climate, J. Climate, 15,
1609–1625, 2002.
Ritter, B. and Geleyn, J.-F.: A comprehensive radiation scheme for numerical
weather prediction models with potential applications in climate
simulations, Mon. Weather Rev., 120, 303–325, https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992.
Rixen, M.: MEDAR/MEDATLAS-II, GAME/CNRM,
https://doi.org/10.6096/HyMeX.MEDAR/MEDATLAS-II.20120112, 2012.
Rockel, B., Will, A., and Hense, A.: The Regional Climate Model CLM,
Meteorol. Z., 17, 347–348, 2008.
Schrodin, R. and Heise, E.: The Multi-Layer Version of the DWD Soil Model
TERRA-LM, COSMO Tech. Rep. 2. Offenbach: Deutscher Wetterdienst, 2002.
Schrum, C.: Thermohaline stratification and instabilities at tidal mixing
fronts. Results of an eddy resolving model for the German Bight, Cont.
Shelf Res., 17, 689–716, 1997.
Schrum, C., Hubner, U., Jacob, D., and Podzun, R.: A Coupled
Atmosphere-Ice-Ocean Model for the North Sea and the Baltic Sea, Clim.
Dynam., 21, 123–145, 2003.
Seifert, A. and Beheng, K. D.: A double-moment parameterization for
simulating autoconversion, accretion and self-collection, Atmos. Res.,
59–60, 265–281, https://doi.org/10.1016/S0169-8095(01)00126-0, 2001.
Sevault, F., Somot, S., Alias, A., Dubois, C., Lebeaupin-Brossier, C.,
Nabat, P., Adloff, F., Deìqueì, M., and Decharme, B.: A fully coupled
Mediterranean regional climate system model: design and evaluation of the
ocean component for the 1980–2012 period, Tellus A, 66, 23967,
https://doi.org/10.3402/tellusa.v66.23967, 2014.
Somot, S., Sevault, F., Deìqueì, M., and Creìpon, M.: 21st century climate
change scenario for the Mediterranean using a coupled Atmosphere-Ocean
Regional Climate Model, Global Planet. Change, 63, 112–126,
https://doi.org/10.1016/j.gloplacha.2007.10.003, 2008.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model: ECHAM6,
J. Adv. Model. Earth Syst., 5, 1590–1601, https://doi.org/10.1002/jame.20015, 2013.
Sun, Y., Solomon, S., Dai, A., and Portmann, R.W.: How often does it rain?,
J. Climate, 19, 916–934, https://doi.org/10.1175/JCLI3672.1, 2006.
Tebaldi, C., Hayhoe, K., Arblaster, J. M., and Meehl, G. A.: Going to the
extremes: an intercomparison of model simulated historical and future
changes in extreme events, Clim. Change, 3–4, 185–211, 2006.
Tegen, I., Hoorig, P., Chin, M.,
Fung, I., Jacob, D., and Penner, J.: Contribution of different aerosol
species to the global aerosol extinction optical thickness: Estimates from
model results, J. Geophys. Res., 102, 23895–23915, https://doi.org/10.1029/97JD01864,
1997.
Tiedtke, M: A comprehensive mass flux scheme for cumulus
parameterization in large scale models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Morales Maqueda, M. A.: Simulating the mass balance and salinity of Arctic
and Antarctic sea ice. 1. Model description and validation, Ocean Modell.,
27, 33–53, https://doi.org/10.1016/j.ocemod.2008.10.005, 2009.
Will, A., Akhtar, N., Brauch, J., Breil, M., Davin, E., Ho-Hagemann, H. T. M., Maisonnave, E., Thürkow, M., and Weiher, S.: The COSMO-CLM 4.8 regional climate model coupled to regional ocean, land surface and global earth system models using OASIS3-MCT: description and performance, Geosci. Model Dev., 10, 1549–1586, https://doi.org/10.5194/gmd-10-1549-2017, 2017.
Zhang, X. B., Hegerl, G., Zwiers, F. W., and Kenyon, J.: Avoiding inhomogeneity
in percentile-based indices of temperature extremes, J. Climate, 18, 1641,
2005.
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in extremes
based on daily temperature and precipitation data, WIREs Clim. Change, 2,
851–870, https://doi.org/10.1002/wcc.147, 2011.
Short summary
The frequency of extreme events has changed, having a direct impact on human lives. Regional climate models help us to predict these regional climate changes. This work presents an atmosphere–ocean coupled regional climate model over the European domain, including three marginal seas: the Mediterranean, North, and Baltic Sea. We run a simulation for the complete 20th century with a spatial resolution of about 25 km to show that the system is stable and the benefit of coupling.
The frequency of extreme events has changed, having a direct impact on human lives. Regional...