Articles | Volume 12, issue 11
Geosci. Model Dev., 12, 4901–4921, 2019
https://doi.org/10.5194/gmd-12-4901-2019
Geosci. Model Dev., 12, 4901–4921, 2019
https://doi.org/10.5194/gmd-12-4901-2019
Model description paper
27 Nov 2019
Model description paper | 27 Nov 2019

WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core

Nicholas K.-R. Kevlahan and Thomas Dubos

Related authors

WAVETRISK-2.1: an adaptive dynamical core for ocean modelling
Nicholas Keville-Reynolds Kevlahan and Florian Lemarié
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-365,https://doi.org/10.5194/gmd-2021-365, 2021
Preprint under review for GMD
Short summary
Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization
N. K.-R. Kevlahan, T. Dubos, and M. Aechtner
Geosci. Model Dev., 8, 3891–3909, https://doi.org/10.5194/gmd-8-3891-2015,https://doi.org/10.5194/gmd-8-3891-2015, 2015
Short summary

Related subject area

Climate and Earth system modeling
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
Maria Chara Karypidou, Eleni Katragkou, and Stefan Pieter Sobolowski
Geosci. Model Dev., 15, 3387–3404, https://doi.org/10.5194/gmd-15-3387-2022,https://doi.org/10.5194/gmd-15-3387-2022, 2022
Short summary
On the impact of dropsondes on the ECMWF Integrated Forecasting System model (CY47R1) analysis of convection during the OTREC (Organization of Tropical East Pacific Convection) field campaign
Stipo Sentić, Peter Bechtold, Željka Fuchs-Stone, Mark Rodwell, and David J. Raymond
Geosci. Model Dev., 15, 3371–3385, https://doi.org/10.5194/gmd-15-3371-2022,https://doi.org/10.5194/gmd-15-3371-2022, 2022
Short summary
Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022,https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)
Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, and Ross Dixon
Geosci. Model Dev., 15, 3205–3231, https://doi.org/10.5194/gmd-15-3205-2022,https://doi.org/10.5194/gmd-15-3205-2022, 2022
Short summary
An evaluation of the E3SMv1 Arctic ocean and sea-ice regionally refined model
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022,https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary

Cited articles

Aechtner, M., Kevlahan, N.-R., and Dubos, T.: A conservative adaptive wavelet method for the shallow water equations on the sphere, Q. J. Roy. Meteor. Soc., 141, 1712–1726, https://doi.org/10.1002/qj.2473, 2015. a, b, c, d, e, f, g
Behrens, J.: Adaptive Atmospheric Modelling, Springer, 2009. a, b
Bryan, G. L., Norman, M. L., O'Shea, B. W., Abel, T., Wise, J. H., Turk, M. J., Reynolds, D. R., Collins, D. C., Wang, P., Skillman, S. W., Smith, B., Harkness, R. P., Bordner, J., Kim, J.-h., Kuhlen, M., Xu, H., Goldbaum, N., Hummels, C., Kritsuk, An. G., Tasker, E., Skory, S., Simpson, C. M., Hahn, O., Oishi, J. S., So, G. C., Zhao, F., Cen, R., Li, Y., and Enzo Collaboration: ENZO: An Adaptive Mesh Refinement Code for Astrophysics, Astrophys. J. Suppl. S., 211, 19, https://doi.org/10.1088/0067-0049/211/2/19, 2014. a
Chan, T., Golub, G., and LeVeque, R.: Algorithms for computing the sample variance: Analysis and recommendations, The American Statistician, 37, 242–247, 1983. a
Domingues, M. O., Gomes, S. M., Roussel, O., and Schneider, K.: An adaptive multiresolution scheme with local time stepping for evolutionary PDEs, J. Comput. Phys., 227, 3758–3780, https://doi.org/10.1016/j.jcp.2007.11.046, 2008. a
Download
Short summary
WAVETRISK-1.0 is a new adaptive dynamical core for global climate modelling. It uses multiscale adaptive wavelet methods to adjust the grid resolution of the model at each time to guarantee error and make optimal use of computational resources. This technique has the potential to make climate simulations more accurate and allow much higher local resolutions. This "zoom" capability could also be used to focus on significant phenomena (such as hurricanes) or particular regions of the Earth.