Articles | Volume 12, issue 10
https://doi.org/10.5194/gmd-12-4297-2019
https://doi.org/10.5194/gmd-12-4297-2019
Development and technical paper
 | 
10 Oct 2019
Development and technical paper |  | 10 Oct 2019

Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation

Takuro Michibata, Kentaroh Suzuki, Tomoo Ogura, and Xianwen Jing

Related authors

A new method for diagnosing effective radiative forcing from aerosol-cloud interactions in climate models
Brandon M. Duran, Casey J. Wall, Nicholas J. Lutsko, Takuro Michibata, Po-Lun Ma, Yi Qin, Margaret L. Duffy, Brian Medeiros, and Matvey Debolskiy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3063,https://doi.org/10.5194/egusphere-2024-3063, 2024
Short summary
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024,https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Snow-induced buffering in aerosol–cloud interactions
Takuro Michibata, Kentaroh Suzuki, and Toshihiko Takemura
Atmos. Chem. Phys., 20, 13771–13780, https://doi.org/10.5194/acp-20-13771-2020,https://doi.org/10.5194/acp-20-13771-2020, 2020
Short summary
The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals
Takuro Michibata, Kentaroh Suzuki, Yousuke Sato, and Toshihiko Takemura
Atmos. Chem. Phys., 16, 15413–15424, https://doi.org/10.5194/acp-16-15413-2016,https://doi.org/10.5194/acp-16-15413-2016, 2016
Short summary
The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific
T. Michibata, K. Kawamoto, and T. Takemura
Atmos. Chem. Phys., 14, 11935–11948, https://doi.org/10.5194/acp-14-11935-2014,https://doi.org/10.5194/acp-14-11935-2014, 2014
Short summary

Related subject area

Atmospheric sciences
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024,https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Observational operator for fair model evaluation with ground NO2 measurements
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024,https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024,https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024,https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024,https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary

Cited articles

Bai, H., Gong, C., Wang, M., Zhang, Z., and L'Ecuyer, T.: Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites, Atmos. Chem. Phys., 18, 1763–1783, https://doi.org/10.5194/acp-18-1763-2018, 2018. a
Beheng, K. D.: A parameterization of warm cloud microphysical conversion processes, Atmos. Res., 33, 193–206, 1994. a
Berry, E. X.: Modification of the Warm Rain Process, in: Proc. First Conf. on Weather Modification, Albany, NY, Amer. Meteor. Soc, paper presented at 1st National Conf. on Weather Modification, 28 April–1 May, 81–85, 1968. a, b
Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S. A., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, https://doi.org/10.1175/2011BAMS2856.1, 2011. a, b
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and aerosols, Cambridge University Press, Cambridge, UK, 571–657, https://doi.org/10.1017/CBO9781107415324.016, 2013. a
Download
Short summary
A new diagnostic tool for cloud and precipitation microphysics has been added to the latest version of the Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP2). The tool generates warm rain process statistics from several instrument simulators online during the COSP execution. This online diagnostic is intended to serve as a tool that facilitates efficient model development and the evaluation of multiple climate models.