Articles | Volume 12, issue 10
Development and technical paper
08 Oct 2019
Development and technical paper |  | 08 Oct 2019

SKRIPS v1.0: a regional coupled ocean–atmosphere modeling framework (MITgcm–WRF) using ESMF/NUOPC, description and preliminary results for the Red Sea

Rui Sun, Aneesh C. Subramanian, Arthur J. Miller, Matthew R. Mazloff, Ibrahim Hoteit, and Bruce D. Cornuelle

Related authors

Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere-ice-ocean model of The Ross Sea
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
EGUsphere,,, 2022
Short summary
Waves in SKRIPS: WaveWatch III coupling implementation and a case study of cyclone Mekunu
Rui Sun, Alison Cobb, Ana B. Villas Bôas, Sabique Langodan, Aneesh C. Subramanian, Matthew R. Mazloff, Bruce D. Cornuelle, Arthur J. Miller, Raju Pathak, and Ibrahim Hoteit
EGUsphere,,, 2022
Short summary

Related subject area

Climate and Earth system modeling
Hydrological modelling on atmospheric grids: using graphs of sub-grid elements to transport energy and water
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606,,, 2023
Short summary
The sea level simulator v1.0: a model for integration of mean sea level change and sea level extremes into a joint probabilistic framework
Magnus Hieronymus
Geosci. Model Dev., 16, 2343–2354,,, 2023
Short summary
Structural k-means (S k-means) and clustering uncertainty evaluation framework (CUEF) for mining climate data
Quang-Van Doan, Toshiyuki Amagasa, Thanh-Ha Pham, Takuto Sato, Fei Chen, and Hiroyuki Kusaka
Geosci. Model Dev., 16, 2215–2233,,, 2023
Short summary
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
Nadine Goris, Klaus Johannsen, and Jerry Tjiputra
Geosci. Model Dev., 16, 2095–2117,,, 2023
Short summary
Evaluating wind profiles in a numerical weather prediction model with Doppler lidar
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094,,, 2023
Short summary

Cited articles

Abdou, A. E. A.: Temperature trend on Makkah, Saudi Arabia, Atmospheric and Climate Sciences, 4, 457–481, 2014. a
Aldrian, E., Sein, D., Jacob, D., Gates, L. D., and Podzun, R.: Modelling Indonesian rainfall with a coupled regional model, Clim. Dynam., 25, 1–17, 2005. a
Anderson, J. L. and Collins, N.: Scalable implementations of ensemble filter algorithms for data assimilation, J. Atmos. Ocean. Tech., 24, 1452–1463, 2007. a
Barbariol, F., Benetazzo, A., Carniel, S., and Sclavo, M.: Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling, Renewable Energ., 60, 462–471, 2013. a
Bender, M. A. and Ginis, I.: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: effects on hurricane intensity, Mon. Weather Rev., 128, 917–946, 2000. a
Short summary
A new regional coupled ocean–atmosphere model, SKRIPS, is developed and presented. The oceanic component is the MITgcm and the atmospheric component is the WRF model. The coupler is implemented using ESMF according to NUOPC protocols. SKRIPS is demonstrated by simulating a series of extreme heat events occurring in the Red Sea region. We show that SKRIPS is capable of performing coupled ocean–atmosphere simulations. In addition, the scalability test shows SKRIPS is computationally efficient.