Articles | Volume 12, issue 7
Development and technical paper
22 Jul 2019
Development and technical paper |  | 22 Jul 2019

Comparison of different sequential assimilation algorithms for satellite-derived leaf area index using the Data Assimilation Research Testbed (version Lanai)

Xiao-Lu Ling, Cong-Bin Fu, Zong-Liang Yang, and Wei-Dong Guo

Related authors

Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere,,, 2024
Short summary
Development of a plant carbon-nitrogen interface coupling framework in a coupled biophysical-ecosystem-biogeochemical model (SSiB5/Triffid/DayCent-SOM v1.0): Its parameterization, implementation, and evaluation
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
EGUsphere,,, 2023
Short summary
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151,,, 2023
Short summary
An ensemble of 48 physically perturbed model estimates of the 1∕8° terrestrial water budget over the conterminous United States, 1980–2015
Hui Zheng, Wenli Fei, Zong-Liang Yang, Jiangfeng Wei, Long Zhao, Lingcheng Li, and Shu Wang
Earth Syst. Sci. Data, 15, 2755–2780,,, 2023
Short summary
A plant carbon-nitrogen interface coupling framework in a coupled biophysical-ecosystem-biogeochemical model, SSiB version5/TRIFFID/DayCent-SOM: Its parameterization, implementation, and evaluation
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
EGUsphere,,, 2022
Preprint archived
Short summary

Related subject area

Climate and Earth system modeling
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154,,, 2024
Short summary
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992,,, 2024
Short summary
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918,,, 2024
Short summary
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948,,, 2024
Short summary
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974,,, 2024
Short summary

Cited articles

Albergel, C., Munier, S., Leroux, D. J., Dewaele, H., Fairbairn, D., Barbu, A. L., Gelati, E., Dorigo, W., Faroux, S., Meurey, C., Moigne, P. L., Decharme, B., Mahfouf, J. F., and Calvet, J. C.: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Develop., 10, 3889–3912,, 2017. 
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903,<2884:AEAKFF>2.0.CO;2, 2001. 
Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642,<0634:ALLSFF>2.0.CO;2, 2003. 
Anderson, J. L.: An adaptive covariance inflation error correction algorithm for ensemble filters, Tellus, 59, 210–224,, 2007. 
Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev, 127, 2741–2758,<2741:AMCIOT>2.0.CO;2, 1999. 
Short summary
Observation and simulation can provide the temporal and spatial variation of vegetation characteristics, while they are not satisfactory for understanding the mechanism of the exchange between ecosystems and atmosphere. Data assimilation (DA) can combine the observation and models via mathematical statistical analysis. Results show that the ensemble adjust Kalman filter (EAKF) is the optimal algorithm. In addition, models perform better when the DA accepts a higher proportion of observations.