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Abstract. The leaf area index (LAI) is a crucial parameter
for understanding the exchanges of mass and energy between
terrestrial ecosystems and the atmosphere. In this study, the
Data Assimilation Research Testbed (DART) has been suc-
cessfully coupled to the Community Land Model with ex-
plicit carbon and nitrogen components (CLM4CN) by as-
similating Global Land Surface Satellite (GLASS) LAI data.
Within this framework, four sequential assimilation algo-
rithms, including the kernel filter (KF), the ensemble Kalman
filter (EnKF), the ensemble adjust Kalman filter (EAKF), and
the particle filter (PF), are thoroughly analyzed and com-
pared. The results show that assimilating GLASS LAI into
the CLM4CN is an effective method for improving model
performance. In detail, the assimilation accuracies of the
EnKF and EAKF algorithms are better than those of the KF
and PF algorithm. From the perspective of the average and
RMSD, the PF algorithm performs worse than the EAKF and
EnKF algorithms because of the gradually reduced accep-
tance of observations with assimilation steps. In other words,
the contribution of the observations to the posterior proba-
bility during the assimilation process is reduced. The EAKF
algorithm is the best method because the matrix is adjusted
at each time step during the assimilation procedure. If all the
observations are accepted, the analyzed LAI seem to be bet-
ter than that when some observations are rejected, especially
in low-latitude regions.

1 Introduction

Land surface processes play an important role in the earth
system because all the physical, biochemical, and ecologi-
cal processes occurring in the soil, vegetation, and hydro-
sphere influence the mass and energy exchanges during land–
atmosphere interactions (Bonan, 1995; Pitman, 2003; Pit-
man et al., 2009, 2012). The leaf area index (LAI) is a key
biophysical parameter of vegetation in land surface models
(LSMs) and influences their simulation performance. There-
fore, high-quality, spatially and temporally continuous LAI
inputs are extremely important (Bonan et al., 1992; Li et
al., 2015).

Real-time monitoring of LAI on a large scale is a world-
wide problem. The lack of spatial representativeness caused
by the sparse distribution of conventional observations makes
it difficult to achieve a global observational LAI dataset. Re-
mote sensing can provide global data with high spatial and
temporal resolutions, but the inversion accuracy is associ-
ated with different plant functional types (PFTs) and vegeta-
tion fractions. Furthermore, although advanced land surface
models (LSMs, e.g., the Community Land Model version 4,
CLM4) can predict LAI variation, the model performance is
greatly affected by the model structure, meteorological forc-
ing, and initial and boundary conditions of the input (Dai et
al., 2003; Luo et al., 2003; Levis et al., 2004). Data assimila-
tion (DA), through optimally combining both dynamical and
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physical mechanisms with real-time observations, can effec-
tively reduce the estimation uncertainties caused by spatially
and temporally sparse observations and poor observed data
accuracy (Kalnay, 2003).

As a link between observations and dynamic model states,
mathematical algorithms play an important role in calcu-
lating the increments and adjusting the state vector during
assimilation (Kalnay et al., 2007). The two basic data as-
similation algorithms are the variational DA based on opti-
mal control theory and sequential algorithms based on the
Kalman filter (Dimet and Talagrand, 1986; Gordon et al.,
1993; Bannister, 2017; Vetra-Carvalho et al., 2018). Because
the Kalman filter algorithm is based on the linear model error
assumption, many new sequential algorithms have been pro-
posed. For example, the extended Kalman filter (EKF) was
developed to meet the need for a nonlinear observation oper-
ator, but the tangent operator needs to be developed (Kalnay,
2003). Based on the Monte Carlo method and focused on the
nonlinear operator, the ensemble Kalman filter (EnKF) was
developed (Evensen, 1994) and was first used in the study of
atmospheric science (Houtekamer and Mitchell, 1998). Since
then, the EnKF has been widely applied for the assimilation
of ocean, land surface, and atmospheric data (Houtekamer et
al., 2005; Evensen, 2007). In recent years, the Monte Carlo
methods have been proposed to allow the assimilation of in-
formation from sources that have non-Gaussian errors.

Many previous studies focusing on the comparison of vari-
ational and sequential algorithms have been conducted to de-
termine the optimal assimilation method (Han and Li, 2008).
Wu et al. (2011) systematically compared the EnKF, 3DVAR,
and 4DVAR algorithms and found that the EnKF algorithm
was better than the 3DVAR method and the same as the
4DVAR method. For this reason, the application of the EnKF
algorithm has been expanded quickly, and many other forms
of the EnKF method have been developed, such as the dual
EnKF (Li et al., 2014), ensemble square root filter (EnSRF)
(Whitaker and Hamill, 2002), and ensemble adjust Kalman
filter (EAKF, Anderson, 2001). At the same time, combi-
nations of variational algorithms and sequential algorithms
have also been developed. For example, the maximum like-
lihood ensemble filter (MLEF, Zupanski, 2005), the combi-
nation of 3DVAR and PF algorithms (Leng and Song, 2013),
and the hybrid variational-ensemble data assimilation meth-
ods, i.e., the 4DEnKF (Hunt et al., 2004; Fertig et al., 2007;
Zhang et al., 2009) and the DrEnKF (Wan et al., 2009), have
been developed at NCEP and applied to improve model pre-
dictions (Whitaker et al., 2008).

A complete Land Data Assimilation System (LDAS) is
mainly composed of forcing datasets, initial and boundary
datasets, parameterization sets, dynamical models as physi-
cal constraints, assimilation algorithms, observational data,
and target output. In recent decades, studies of land data as-
similation have become very active, although this topic was
proposed later than the assimilation of atmospheric obser-
vations (Lahoz and De Lannoy, 2014). Land data assimila-

tion can implement both in situ observations and remotely
sensed data like satellite observation of soil moisture, snow
water equivalent (SWE), land surface temperature, and so on
to constrain the physical parametrization and initialization
of land surface state. (Liu et al., 2008; Reichle et al., 2014;
Zhang et al., 2014; Zhao et al., 2016; Zhao and Yang, 2018).
The widely acknowledged LDASs include the North LDAS
(NLDAS, Mitchell et al., 2004; NLDAS-2, Luo et al., 2003;
Xia et al., 2012), the Global LDAS (GLDAS, Rodell et al.,
2004), the European LDAS (ELDAS, Jacobs et al., 2008), the
West China LDAS (WCLDAS, Huang and Li, 2004), and the
Canadian LDAS (CaLDAS, Carrera et al., 2015).

Recent studies focusing on assimilation in terrestrial sys-
tems have tended to add multiple phenological observations
to constrain and predict biome variables and further improve
model performance (Knyazikhin et al., 1998; Xiao et al.,
2009; Viskari et al., 2015). Joint assimilation of surface inci-
dent solar radiation, soil moisture, and vegetation dynamics
(LAI) into land surface models or crop models is of great
importance since it can improve the model results for na-
tional food policy and security assessments (Sabater et al.,
2008; Ines et al., 2013; Sawada et al., 2015; Jin et al., 2018;
Mokhtari et al., 2018). Furthermore, the ability to simulate
river discharge, land evapotranspiration, and gross primary
production has been improved in Europe (Barbu et al., 2011;
Albergel et al., 2017). To date, such studies have been con-
ducted using a single sequential algorithm at a single site or
on regional scales (Montzka et al., 2012; Sawada, 2018).

The Data Assimilation Research Testbed (DART) is an
open-source community facility and includes several differ-
ent types of Kalman filter algorithms (Anderson et al., 2009).
It has been coupled to many high-order models and observa-
tions for ocean, atmosphere, land surface, and chemical con-
stituents. For example, DART has been coupled with CLM4
or CLM4.5 to improve snow and soil moisture estimations as
well as land carbon processes (Zhang et al., 2014; Kwon et
al., 2016; Zhao et al., 2016; Fox et al., 2018; Zhao and Yang,
2018). Utilizing the coupled DART–CLM4, the Global Land
Surface Satellite LAI (GLASS LAI) data are assimilated into
the Community Land Model with carbon and nitrogen com-
ponents (CLM4CN) in the present study to explore the opti-
mal assimilation algorithm for model performance. The ex-
perimental design and different assimilation algorithms are
described in Sect. 2. Section 3 describes the optimal algo-
rithm for LAI assimilation, and the proportion of observa-
tions is discussed in Sect. 4. Conclusions and discussions are
given in Sect. 5.

2 Data and methodology

A complete LDAS is mainly composed of meteorologi-
cal forcing, initial and boundary datasets, parameterization
sets, dynamical LSMs, assimilation algorithms, observa-
tional data, and target output. LSMs play an important role
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in the LDAS because they can add physical constraints to the
control variables during assimilation. In addition, the simu-
lation ability of LSMs can directly affect the output because
they provide the associated uncertainty for assimilation.

2.1 CLM4CN

Developed by the National Center for Atmospheric Research
(NCAR), the Community Land Model (CLM) can simulate
energy, momentum, and water exchanges between the land
surface and the overlying atmosphere at each computational
grid. The CLM is designed mainly for coupling with the at-
mospheric numerical model and providing the surface albedo
(direct and scattered light within the visible and infrared
bands), upward longwave radiation, sensible heat flux, latent
heat flux, water vapor flux, and east-to-west and south-to-
north surface stress needed by the atmospheric model. These
parameters are controlled by many ecological and hydro-
logical processes. The model can also simulate leaf phenol-
ogy and physiological processes, as well as water circulation
through plant pores. Ecological differences between vegeta-
tion types and thermal and hydrological differences between
different soil types are also considered. Each grid cell can be
covered by several different land use types. Each cell con-
tains several land units, each land unit contains a different
number of soil and snow cylindrical blocks, and each cylin-
drical block may contain several types of vegetation func-
tions. The CLM employs 10 soil layers to resolve soil mois-
ture and temperature dynamics and uses PFTs to represent
subgrid vegetation heterogeneity (Oleson et al., 2010).

There are two ways to update LAI in CLM4. The LAI
is treated as a diagnostic variable that is linearly interpo-
lated from a 30-year averaged satellite dataset, and there is
no annual LAI variation for CLM4 with satellite phenology
(CLM4SP) (Lawrence and Chase, 2007). For CLM4CN, the
prognostic LAI is calculated by the leaf carbon pool and an
assumed vertical gradient of specific leaf area (SLA) (Thorn-
ton and Zimmermann, 2007). Carbon and nitrogen are ob-
tained by plant storage pools in one growing season and then
retained and distributed in the subsequent year. All carbon
and nitrogen state variables in vegetation, litter, and soil or-
ganic matter (SOM) are prognostic based on the prescribed
vegetation phenology. The CLM4CN offline mode with pre-
scribed meteorological forcing is used in this study.

2.2 DART (the Lanai version)

DART is developed and maintained by the Data Assimila-
tion Research Section (DAReS) at NCAR. The purpose of
DART is to provide a flexible tool for data assimilation (DA),
and it has been coupled with many high-order models. As
a software environment, DART makes it easy to explore a
variety of data assimilation methods and observations with
different numerical models. The DART system includes sev-
eral different types of sequential algorithms, which are se-

lected at runtime by a namelist setting. The Lanai version
of DART, which supports many existing models including
the CESM climate component, the MPAS (Model for Pre-
diction Across Scales) models, and the NOAH land model,
is used in this study. Released in December 2013, the Lanai
version of DART can process many new observation types
and sources and include new diagnostic routines as well as
new utilities. Detailed settings for DART can be found at
https://www.image.ucar.edu/DAReS/DART/ (last access: 1
July 2019).

Currently, the coupled DART–CLM4 model has produced
many reanalysis data for snow and soil moisture. It has been
found that snow DA can improve temperature predictions,
especially over the Tibetan Plateau, implying great impli-
cations for future land DA and seasonal climate prediction
studies (Lin et al., 2016). Furthermore, the coupled DART–
CLM framework would be employed to assimilate other vari-
ables, such as LAI, from various satellite sources and ground
observations (i.e., truly multimission, multiplatform, multi-
sensor, multisource, and multiscale). Ultimately, this would
allow earth system models to be constrained by all types of
observations to improve model performance for seasonal and
decadal prediction skills.

2.3 Sequential assimilation algorithms

According to Anderson (2001), Eq. (1) is used to express
how new sets of observations modify the prior joint state con-
ditional probability distribution obtained from predictions
based on previous observation sets.

p(zt,k|Yt,k)= p(yot,k|zt,k)p(zt,k|Yt,k−1)/p(yo
t,k|Yt,k−1), (1)

in which Yt,k is defined as the superset of all observation
subsets, yo

t,k is the kth subset of observations at time t , and
zt,k is the joint state–observation vector for a given t and
k. In ensemble applications, generally there is no need to
compute the denominator of Eq. (1). Four algorithms for ap-
proximating the product in the numerator of Eq. (1) are pre-
sented below, and detailed information can be found in An-
derson (2001).

2.3.1 Kernel filter (KF)

The kernel filter (KF) mechanism, first proposed by Lind-
gren et al. (1993) and further developed by Anderson and
Anderson (1999), has been incorporated into DART and can
be extended to the joint state space. A detailed calculation
process can be found in Anderson (2001). The KF is poten-
tially general, because the values and expected values of the
mean and covariance and higher-order moments of the re-
sulting ensemble are functions of high-order moments of the
prior distribution. However, when applied to large models,
computational efficiency will be an issue for the application
of the algorithm.
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2.3.2 Ensemble Kalman filter (EnKF)

The Kalman filter (Kalman, 1960) algorithm has not been
widely used because of computing limitations and the lin-
ear model error assumption. The EnKF was proposed based
on a Monte Carlo approximation, for which the background
error covariance is approximated using an ensemble of fore-
casts (Evensen, 1994). The EnKF algorithm can be utilized
for nonlinear systems and can also reduce the computing re-
quirement of DA (Burgers et al., 1998; Evensen, 2003, 2007).

The EnKF procedure is divided into two stages: predic-
tion and analysis. (1) In the prediction stage, the ensemble
forecast field is generated from the ensemble initial condi-
tion, and the error covariance matrix of the ensemble fore-
cast is calculated. (2) In the analysis stage, the simulation of
each member of the ensemble is updated using the covariance
matrix of the observation vector error and state vector error.
The traditional EnKF, an ensemble of Kalman filters with
each member using a different sample estimate of the prior
mean and observations, is used in this study (Houtekamer
and Mitchell, 1998).

2.3.3 Ensemble adjust Kalman filter (EAKF)

Although the forms of expression are different, the proposed
EnSRF (Whitaker and Hamill, 2002) and EAKF (Anderson,
2001) are the same algorithm.

The difference between the EAKF and the traditional
EnKF lies in the adjustment of the gain matrix to avoid fil-
tering the divergence problem by increasing the premise of
the analysis error covariance (Anderson, 2003, 2007; Wang
et al., 2007). In the EAKF algorithm, ensemble observation
members are calculated by the observation operator, and the
increment of each observation member is calculated as 1Yi .

The increment 1Xij for each ensemble sample of each
state variable in terms of 1Yi can then be calculated as fol-
lows:

1Xij =
σ

p
jo

σ
p
o + σ

p
jo

1Yi, (2)

where i indicates the ensemble member, j is the state vector
member, σ p

jo
is the prior covariance of the state vector and

observation, and σ p
o is the prior variance of observation.

2.3.4 Particle filter (PF)

The particle filter (PF) is also a sequential Monte Carlo
method, which is based on the Bayesian sequential impor-
tance sampling method (SIS). The PF algorithm finds a set of
random samples in the state space to approximate the prob-
ability density function and then replaces the integral opera-
tion with the sample mean to obtain the process of minimum
variance distribution of the state (Moradkhani et al., 2005).
The procedure of the PF algorithm can also be divided into
two frameworks: forecast and analysis.

If there are enough observations, the posterior density at k
can be approximated as

p
(
Xa
k |Y1:k

)
≈

N∑
i=1

wi,kδ(X
a
k −X

a
i,k), (3)

where δ (∗) is the Dirac function and
N∑
i=1

wi,k,= 1,

in which p
(
Xa
k|Y1:k

)
is the posterior probability distribution,

Xa
i,k is the particle element, wi,k is the weight of each par-

ticle, and N is the number of particles. Unlike the EnKF al-
gorithm, the PF method takes into account the weights of
different particles and can be better applied to nonlinear sys-
tems. However, in association with the DA, there are a lim-
ited number of particles with large weights, and too many
computing resources are distributed to particles with weights
of approximately 0. This situation is called particle degra-
dation (Doucet et al., 2000). Effective methods to solve this
issue include resampling or selecting more reasonable impor-
tance functions.

2.4 Datasets

2.4.1 Ensemble meteorological forcing and initial
conditions

The ensemble initial conditions and background error (Hu et
al., 2014) are produced from ensemble analysis products gen-
erated by running DART and the Community Atmosphere
Model (CAM4) (Raeder et al., 2012). DART–CAM4 pro-
duced 80 atmospheric forcing datasets with 6 h time intervals
for the period of 1998–2010. These ensemble meteorological
data have been widely employed in DA for ocean, snow, soil
moisture, and many other related studies (Danabasoglu et al.,
2012). By considering computational cost and filter perfor-
mance, 40 members among the ensemble forcing datasets are
chosen to drive the CLM4CN.

To achieve a steady state solution for all state variables,
the CLM4CN was run for 4000 years using Qian’s forcing
(Qian et al., 2006) at the resolution of 1.9◦ latitude by 2.5◦

longitude (Shi et al., 2013). The CLM4CN was then forced
by the ensemble mean of selected 40 members of DART–
CAM datasets for 1000 years. In the last step, the ensemble
simulation during the time period from 1998 to 2001 was
treated as a spin-up process, and 40 ensemble initial condi-
tions were obtained. Aiming at a global scale and considering
the computational cost, only 1-year assimilation and ensem-
ble simulation were conducted. Our goal is to first find out
the best experiment and then conduct long-term simulation
or assimilation in the future.

2.4.2 LAI datasets

The Global Land Surface Satellite (GLASS) LAI dataset is
used in this study as observations for assimilation (Zhao et
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Table 1. Experimental design for LAI assimilation using DART–CLM4CN.

Assimilated Updated Assimilation Accept all
Experiment variables variables algorithm observation

Algorithms GLASS LAI LAI, Leaf C, Leaf N EAKF, EnKF, KF, PF No
Algorithms without GLASS LAI LAI, Leaf C, Leaf N EAKF Yes
observation rejection

Figure 1. Spatial distributions of global LAI values in 2002 for (a) GEOV2 LAI in July, (b) ensemble mean of simulations in July, (c) GEOV2
LAI in November, and (d) ensemble mean of simulations in November.

al., 2013). Since the ensemble simulation or assimilation is
run at the resolution of 0.9◦ latitude by 1.25◦ longitude, the
original spatial resolution of 0.05◦ of the GLASS LAI is up-
scaled to the same resolution.

An independent LAI dataset from the Copernicus Global
Land Service (CGLS) with version 2 (GEOV2 LAI) was uti-
lized to validate the assimilation result. The GEOV2 LAI
is derived from the vegetation instruments on Satellite Pour
I’Observation de la Terre (SPOT-VGT) and on board the
PROBA satellite (PROBA-V satellites) (Verger et al., 2014).
The resolution of GEOV2 LAI is 1 km, which is also up-
scaled to the grid level to evaluate the analysis of LAI and
assimilation effect.

2.5 Experimental design

To determine the optimal assimilation algorithm, five exper-
iments corresponding to the KF, EnKF, EAKF, and PF meth-
ods are designed and shown in Table 1, in which the “Al-
gorithms” experiments would reject some observations un-
der certain conditions using the KF, EnKF, EAKF, and PF
algorithms. The expected value of the difference between

the prior mean and observation is
√
σ 2

prior+ σ
2
obs, in which

σprior and σobs are standard deviations of the prior probabil-
ity density function (PDF) and observation PDF respectively.
DART will reject the observation if the bias of the prior
mean and observations is larger than 3 times the expected
value. The “Algorithms without observation rejection” ex-
periments would accept all the observed LAI. During assim-
ilation, CLM stops and writes restart and history files at a
frequency of 8 d. If there are available observational GLASS
LAI data, they are assimilated into the CLM4CN. DART ex-
tracts the state vector; the increments are calculated by filter-
ing at each time step; and the LAI, leaf carbon (Leaf C), and
leaf nitrogen (Leaf N) are updated. The adjusted DART state
vector is resent to the CLM restart files as a new initial con-
dition for the next time step. All the simulation and assimi-
lation are conducted at the spatial resolution of 0.9◦ latitude
by 1.25◦ longitude. The ensemble assimilation is conducted
point wise, indicating that spatial covariances are not consid-
ered.

www.geosci-model-dev.net/12/3119/2019/ Geosci. Model Dev., 12, 3119–3133, 2019
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Figure 2. Differences between global LAI from assimilation experiments with the methods of (a) EAKF, (b) EnKF, (c) KF, and (d) PF and
GEOV2 LAI in July 2002.

Figure 3. Same as Fig. 2 but for RMSE of ensemble members.

3 The optimal algorithm for DART–CLM4CN

The spatial distributions of global LAI in 2002 for
(a) GEOV2 LAI in July, (b) ensemble mean of simulations in
July, (c) GEOV2 LAI in November, and (d) ensemble mean
of simulations in November are shown in Fig. 1. The obser-
vations in Fig. 1 are from the upscaled GEOV2 LAI dataset
with a spatial resolution of 0.9◦ latitude by 1.25◦ longitude.

There are two latitudinal belts of high LAI values located
in the tropics and at 50–65◦ N in July. These two regions
are mainly dominated by evergreen broadleaf forests and bo-
real forests, respectively. There are three high-LAI regions
located in the tropics: the Amazon, central Africa, and some
islands in Southeast Asia. Because of the presence of deserts,
plateaus, and bare ground, the LAI is low in northern Africa,
western North America, western Australia, southern Africa,

Geosci. Model Dev., 12, 3119–3133, 2019 www.geosci-model-dev.net/12/3119/2019/
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Figure 4. RMSDs of ensemble means of simulation and assimilation versus GEOV2 LAI for (a) global, (b) boreal (45–65◦ N), (c) northern
temperate (23–45◦ N), (d) northern equatorial (0–23◦ N), (e) southern equatorial (0–23◦ S), and (f) southern temperate (23–90◦ S).

Figure 5. Globally or regionally averaged RMSDs for the simula-
tion and assimilation results and GEOV2 LAI.

and southern South America, where shrubs and/or grass are
dominant. Globally, the CLM4CN can simulate the LAI dis-
tribution characteristics, except that it systematically over-
estimates LAI, especially at low latitudes and boreal forest
regions, with the largest bias of 5 m2 m−2. The global LAI is
lower in November than in July. The LAI values in the high
latitudes of the Northern Hemisphere are higher in July than
in November because November is not the growing season
for most of the vegetation in the Northern Hemisphere.

The differences between the methods of (a) EAKF,
(b) EnKF, (c) KF, and (d) PF and GEOV2 LAI are dis-
played in Fig. 2. Globally, the differences between assimi-
lation with the four methods and GEOV2 LAI are larger in
lower-latitude regions, indicating that assimilation also over-
estimates the LAI value in these regions. The biases of as-
similation and observation reduce to 2 m2 m−2 in the low-

latitude regions compared with the biases of simulation and
observation in Fig. 1, where they are dominated by BET trop-
ical and mixed forest types. The LAI values from the assimi-
lation experiment are always 1 m2 m−2 higher in the middle-
and high-latitude regions, especially in western North Amer-
ica, northwestern China, and western Australia, where open
shrublands and grasslands are dominant. Assimilation al-
ways underestimates the LAI values in eastern North Amer-
ica, northeastern China, and the 50–65◦ N latitude regions
of Eurasia, where they are dominated by NET boreal forests
and mixed forest types. The assimilation with the EAKF and
EnKF algorithms displays a lower bias than the KF and PF
algorithms compared to GEOV2 LAI, especially in the north-
ern and eastern Amazon, central Africa, southern Eurasia,
and Southeast Asia. Notably, the correction of overestimated
LAI is significantly better than that of underestimated LAI,
which is mainly attributed to the high dispersion of LAI in
those regions. In other words, high dispersion is beneficial to
assimilation.

The results also indicate that the EAKF and EnKF assim-
ilation algorithms are better than the KF and PF algorithms
in November (figures not shown). In detail, the EAKF al-
gorithm is better than the EnKF method in November, es-
pecially in the Amazon, central Africa, and southern Eura-
sia. The biases of assimilated LAI relative to the observed
LAI are higher in November in the 20–65◦ N region, which
may be because vegetation during this period in the North-
ern Hemisphere is not lush. In western Australia and central

www.geosci-model-dev.net/12/3119/2019/ Geosci. Model Dev., 12, 3119–3133, 2019
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Figure 6. The histograms of innovation and residuals of LAI globally and for all subregions during July 2002. (a–d) Global; (e–h) boreal;
(i–l) northern temperate; (m–p) northern equatorial; (q–t) southern equatorial; (u–x) southern temperate.

Eurasia, the improvement of the underestimation in Novem-
ber is not as significant as that in July, which indicates that
the system has a limited capability to simulate the vegeta-
tion process, especially for open shrubland and grassland.
From the perspective of the average and RMSE, the PF algo-
rithm performs worse than the EAKF and EnKF algorithms
because of the gradually reduced acceptance of observations
with assimilation steps (will discuss below). Note that the av-
erage and RMSE only make sense for the ensemble Kalman
filters. For the PF algorithm, the particle with the largest
weight (a posteriori maximum for the PDF) should be dis-
cussed separately.

The RMSEs of ensemble members are shown in Fig. 3 to
provide hints where the assimilation is the most efficient. The
RMSEs of ensemble members for the EAKF and EnKF al-
gorithm are larger than those for the KF and PF algorithms,
indicating that the EAKF and EnKF are more effective. In
July 2002, the RMSE of the ensemble estimates is the largest
in lower-latitude regions, with particularly high values in

central South America, central Africa, and Southeast Asia.
The regions with comparatively large ensemble spreads are
located in western North America and western Europe. The
large ensemble spreads areas are also transitional regions
with different vegetation types, indicating low capability of
the models to simulate complex vegetation types.

The globally mean LAI and the LAI in five latitudinal
bands were chosen for analysis in this study. The five bands
are boreal (45–65◦ N), northern temperate (23–45◦ N), north-
ern equatorial (0–23◦ N), southern equatorial (0–23◦ S), and
southern temperate (23–90◦ S). Figure 4 presents the root-
mean-square deviation (RMSDs) of the ensemble means
of simulation and assimilation versus GEOV2 LAI for
(a) global, (b) boreal, (c) northern temperate, (d) northern
equatorial, (e) southern equatorial, and (f) southern tem-
perate. Generally, although they all feature similar varia-
tion pattern characteristics, the RMSDs of all the assimila-
tion datasets relative to the GEOV2 LAI are less than those
of the simulation, indicating that all four assimilation algo-
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Figure 7. The proportion of accepted LAI observations for the four algorithms in the zonal regions.

rithms can improve the LAI estimation. For boreal regions,
there are two maxima for the RMSD in May and Septem-
ber respectively, which is also the period with abrupt vari-
ation for the LAI value. During the growing season, the
RMSDs of LAI reach relatively low values, especially for
the regions in the middle and high latitudes of the North-
ern Hemisphere and high latitudes of the Southern Hemi-
sphere. In the low-latitude region covered by evergreen or
deciduous broadleaf forests, the RMSD does not present an
obvious annual change. The EnKF algorithm performed best
in the boreal region with the smallest RMSD, while it did
not perform as well in the northern temperate and northern
equatorial regions. The EAKF algorithm presented the low-
est RMSD in the southern equatorial and southern temperate
regions, as well as global regions. The assimilation is far less
efficient in the boreal region than in other areas, which is
partly attributed to the consistently low initial RMSD during
nongrowing seasons and limited capability of the models for
simulating processes associated with boreal forest type.

Figure 5 shows the globally or regionally averaged
RMSDs of simulation and assimilation and GEOV2 LAI.
The RMSDs of assimilation are lower than those of simu-
lation, implying that assimilating remotely sensed LAI data
into the CLM4CN is an effective method for improving the
model performance. The difference between simulation and

all four algorithms in the northern and southern equatorial re-
gions is larger than in other regions, indicating that the assim-
ilation is more efficient there. The global averaged RMSD for
LAI from the EAKF experiment is lower than the other three
algorithms, except for the boreal regions, indicating the bet-
ter performance in assimilation.

The background and analysis departures are calculated as
(1) innovations, which are the differences between the assim-
ilated LAI and model background; and (2) residuals, which
are the differences between the assimilated LAI and analysis
(Barbu et al., 2011). It was concluded that the LDAS system
is working well based on the condition that the residuals are
reduced compared to the innovations (Albergel et al., 2017).
Figure 6 shows the histograms of innovation and residuals of
LAI globally and for all subregions during July 2002. Gener-
ally, the distribution characteristics of both innovations and
residuals are similar for the algorithms of KF and PF, which
means that these two algorithms are not very efficient for LAI
assimilation. The distribution of residuals is more centered
on 0 than that of the innovations for the EAKF and EnKF
algorithms, especially for the EAKF algorithm. The innova-
tions dominantly exhibit a large negative bias, indicating that
the model always highly overestimates LAI. The residuals
can improve this overestimation situation, especially for the
EAKF algorithm. The analysis departures for the EAKF al-
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Figure 8. Differences between globally assimilated and GEOV2
LAIs for the methods of EAKF in (a) July and (b) November.

gorithm are more centered on 0 than the EnKF algorithm,
especially in global, northern temperate, and southern tem-
perate regions.

4 Effective observational proportion

The assimilation results depend not only on the algorithm
but also on the observations. This not only requires a suffi-
ciently strong degree of discretization for ensemble simula-
tions but also requires the observational variables to be suffi-
ciently trustworthy. In this section, the proportion of LAI ob-
servations that can be accepted for the four algorithms is dis-
cussed. During assimilation, DART can calculate the number
of nonassimilated observations when the difference of prior
mean and observations is larger than 3 times the expected
value. The proportion of accepted LAI observations is de-
fined as the number of accepted observations divided by the
number of total observations.

To explain the relationship between the assimilation algo-
rithms and observation rejection, Fig. 7 displays the propor-
tion of accepted LAI observations for the four algorithms in
the zonal regions. In general, the EnKF and EAKF methods
accepted many more observational LAI observations than the
PF and KF methods. In the low-latitude regions, the propor-
tion of accepted LAI observations is approximately 75 %,

which is lower than in the high-latitude regions. This may
be because the broadleaf forest in tropical regions can grow
unrestrictedly in the model, producing LAI values that are
much higher than the observations. At the very beginning
of assimilation, DART rejects the largest proportion of LAI
observations in the southern equatorial, northern equatorial,
and northern temperate zones due to large biases between
the simulation and the observations. Over time, the rejec-
tion proportion gradually decreases for the northern equato-
rial, southern equatorial, and southern temperate regions. As
ensemble-analyzed LAI values tend to be relatively fixed, the
rejection proportion increases over regions with small LAI
amplitudes, such as the northern temperate and boreal re-
gion. From May to September in the boreal region and from
April to September in the northern temperate region, the pro-
portion of accepted LAI observations is much smaller than
in the other regions. These two periods with abrupt varia-
tion for the LAI value are also when the model simulation
presents an obvious discrete characteristic. This experiment
illustrates the utility of the spin-up process for ensemble ini-
tial conditions. Furthermore, the KF and PF algorithms grad-
ually reduce the acceptance of observations as assimilation
progresses, which may partially explain their worse perfor-
mance than the EnKF and EAKF algorithms (see Fig. 5).

The differences between globally assimilated and GEOV2
LAI with the methods of EAKF (with rejection) in (a) July
and (b) November are shown in Fig. 8 to illustrate the role
of observation proportion. It can be concluded that when ac-
cepting all the observations, the assimilation results seem to
be better than when some observations are rejected during as-
similation. Large negative biases occur in the Amazon, cen-
tral Africa, southern Eurasia, and the boreal region, where
the LAI is overestimated in the model. Large positive biases
occur in southeastern China, western North America, west-
ern Australia, and central South America in July, partly due
to the influence of topography. In November the positive bi-
ases are observed around the whole middle- and high-latitude
regions of the Northern Hemisphere, indicating the overesti-
mation for the LAI value in nongrowing seasons.

During assimilation, the assimilated observations (GLASS
LAI) are always treated as true values. The question thus
becomes how do the true values influence the assimila-
tion results? Figure 9 shows the RMSDs of simulation ex-
periments with and without rejection (EAKF_reject and
EAKF_noreject) and GEOV2 LAI over the (a) global,
(b) boreal, (c) northern temperate, (d) northern equatorial,
(e) southern equatorial, and (f) southern temperate regions.
In the EAKF_reject experimental design, if the observed LAI
is 3 times larger than the bias between the simulation and the
observations, the observation would be rejected by DART,
while in the EAKF_noreject experiment all observed LAIs
are assimilated. Generally, RMSDs for both simulation and
assimilation present obvious annual variations. The RMSD
of assimilation is far less than that of the simulation, al-
though their characteristic variation patterns are similar. This
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Figure 9. RMSDs of simulation experiments with and without rejection (EAKF_reject and EAKF_noreject) and GEOV2 LAI for the
(a) globe, (b) boreal (45–65◦ N), (c) northern temperate (23–45◦ N), (d) northern equatorial (0–23◦ N), (e) southern equatorial (0–23◦ S),
and (f) southern temperate (23–90◦ S) regions.

demonstrates the effectiveness of assimilation for improving
model simulation. The RMSD relative to the observations
was highest for the simulation, followed by the EAKF_reject
experiment, and was lowest for the EAKF_noreject experi-
ment. During assimilation, when accepting all the observa-
tions, the RMSD is smaller than when rejecting some ob-
servations. Compared with the EAKF_reject experiment and
other algorithms in Fig. 5, the globally and regionally aver-
aged RMSDs from the EAKF_noreject experiment is much
smaller, indicating the most efficient performance.

5 Conclusions and discussion

The Community Land Model version 4 with prognostic car-
bon and nitrogen components (CLM4CN) is coupled with the
Data Assimilation Research Testbed (DART) to determine
the optimal assimilation algorithm for leaf area index (LAI).
The kernel filter (KF), ensemble Kalman filter (EnKF), en-
semble adjust Kalman filter (EAKF), and particle filter (PF)
are discussed in this paper.

The results show that assimilating remotely sensed LAI
into the CLM4CN is an effective method for improving
model performance. Globally speaking, the EAKF and EnKF

assimilation algorithms are better than the KF and PF as-
similation algorithms. The LAI obtained by the EAKF al-
gorithm is more continuous than that obtained by the EnKF
algorithm and more consistent with observations in central
South American and central Africa, whereas the deviation
in the EnKF method can be from −4 to 4 m2 m−2. Further-
more, the assimilation shows better performance in the veg-
etation growing season. The lowest root-mean-square devia-
tion is associated with the EAKF algorithm, suggesting that
the EAKF algorithm is the best and has a robust performance.

The proportion of observations accepted by the land data
assimilation system is another topic of this research. The pro-
portion of accepted LAI observations is 10 %–20 % in the
low latitudes, which is lower than in the high latitudes be-
cause of large biases between the assimilation and the ob-
servations. In contrast, low observation acceptance does not
mean bad assimilation results, indicating that assimilation
performance relies on not only observation factor but also the
background error and ensemble model performance. When
all the observations are accepted, the RMSD of the results is
smaller than that when some observations are rejected.

The ensemble assimilation is conducted point wise with-
out considering spatial covariances, which will be consid-

www.geosci-model-dev.net/12/3119/2019/ Geosci. Model Dev., 12, 3119–3133, 2019



3130 X.-L. Ling et al.: Comparing algorithms for LAI assimilation

ered in the future. Furthermore, more evolved techniques are
needed to counteract the degeneracy of the particle filter.
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