Articles | Volume 12, issue 7
https://doi.org/10.5194/gmd-12-2797-2019
https://doi.org/10.5194/gmd-12-2797-2019
Development and technical paper
 | 
10 Jul 2019
Development and technical paper |  | 10 Jul 2019

Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground

Sebastian Scher and Gabriele Messori

Related authors

Observed changes in the temperature and height of the globally resolved lapserate tropopause
Florian Ladstädter, Matthias Stocker, Sebastian Scher, and Andrea K. Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-2100,https://doi.org/10.5194/egusphere-2025-2100, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
The role of atmospheric large-scale patterns for recent warming periods in Greenland
Florina Roana Schalamon, Sebastian Scher, Andreas Trügler, Lea Hartl, Wolfgang Schöner, and Jakob Abermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4060,https://doi.org/10.5194/egusphere-2024-4060, 2025
Short summary
Technical Note: Temporal disaggregation of spatial rainfall fields with generative adversarial networks
Sebastian Scher and Stefanie Peßenteiner
Hydrol. Earth Syst. Sci., 25, 3207–3225, https://doi.org/10.5194/hess-25-3207-2021,https://doi.org/10.5194/hess-25-3207-2021, 2021
Short summary
A new view of heat wave dynamics and predictability over the eastern Mediterranean
Assaf Hochman, Sebastian Scher, Julian Quinting, Joaquim G. Pinto, and Gabriele Messori
Earth Syst. Dynam., 12, 133–149, https://doi.org/10.5194/esd-12-133-2021,https://doi.org/10.5194/esd-12-133-2021, 2021
Short summary
Generalization properties of feed-forward neural networks trained on Lorenz systems
Sebastian Scher and Gabriele Messori
Nonlin. Processes Geophys., 26, 381–399, https://doi.org/10.5194/npg-26-381-2019,https://doi.org/10.5194/npg-26-381-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025,https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary
Integrated Methane Inversion (IMI) 2.0: an improved research and stakeholder tool for monitoring total methane emissions with high resolution worldwide using TROPOMI satellite observations
Lucas A. Estrada, Daniel J. Varon, Melissa Sulprizio, Hannah Nesser, Zichong Chen, Nicholas Balasus, Sarah E. Hancock, Megan He, James D. East, Todd A. Mooring, Alexander Oort Alonso, Joannes D. Maasakkers, Ilse Aben, Sabour Baray, Kevin W. Bowman, John R. Worden, Felipe J. Cardoso-Saldaña, Emily Reidy, and Daniel J. Jacob
Geosci. Model Dev., 18, 3311–3330, https://doi.org/10.5194/gmd-18-3311-2025,https://doi.org/10.5194/gmd-18-3311-2025, 2025
Short summary

Cited articles

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Buschow, S. and Friederichs, P.: Local dimension and recurrent circulation patterns in long-term climate simulations, arXiv preprint arXiv:1803.11255, 2018. a
C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 7 June 2019), 2017. a, b
Coors, B., Paul Condurache, A., and Geiger, A.: Spherenet: Learning spherical representations for detection and classification in omnidirectional images, in: Proceedings of the European Conference on Computer Vision (ECCV), September 2018, Munich, Germany, 518–533, 2018. a
Download
Short summary
Currently, weather forecasts are mainly produced by using computer models based on physical equations. It is an appealing idea to use neural networks and “deep learning” for weather forecasting instead. We successfully test the possibility of using deep learning for weather forecasting by considering climate models as simplified versions of reality. Our work therefore is a step towards potentially using deep learning to replace or accompany current weather forecasting models.
Share