
Geosci. Model Dev., 12, 2797–2809, 2019
https://doi.org/10.5194/gmd-12-2797-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Weather and climate forecasting with neural networks: using
general circulation models (GCMs) with different
complexity as a study ground
Sebastian Scher1 and Gabriele Messori1,2

1Department of Meteorology and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
2Department of Earth Sciences, Uppsala University, Uppsala, Sweden

Correspondence: Sebastian Scher (sebastian.scher@misu.su.se)

Received: 21 February 2019 – Discussion started: 4 March 2019
Revised: 15 May 2019 – Accepted: 29 May 2019 – Published: 10 July 2019

Abstract. Recently, there has been growing interest in the
possibility of using neural networks for both weather fore-
casting and the generation of climate datasets. We use a
bottom–up approach for assessing whether it should, in prin-
ciple, be possible to do this. We use the relatively simple gen-
eral circulation models (GCMs) PUMA and PLASIM as a
simplified reality on which we train deep neural networks,
which we then use for predicting the model weather at lead
times of a few days. We specifically assess how the complex-
ity of the climate model affects the neural network’s forecast
skill and how dependent the skill is on the length of the pro-
vided training period. Additionally, we show that using the
neural networks to reproduce the climate of general circula-
tion models including a seasonal cycle remains challenging
– in contrast to earlier promising results on a model without
seasonal cycle.

1 Introduction

Synoptic weather forecasting (forecasting the weather at lead
times of a few days up to 2 weeks) has for decades been
dominated by computer models based on physical equations
– the so-called numerical weather prediction (NWP) models.
The quality of NWP forecasts has been steadily increasing
since their inception (Bauer et al., 2015), and these mod-
els remain the backbone of virtually all weather forecasts.
However, the fundamental nature of the weather forecasting
problem can be summarized as follows: starting from today’s
state of the atmosphere, we want to predict the state of the

atmosphere x days in the future. Thus posed, the problem
is a good candidate for supervised machine learning. While
this was long thought unfeasible, the recent success of ma-
chine learning techniques in highly complex fields such as
image and speech recognition warrants a review of this pos-
sibility. Machine learning techniques have already been used
to improve certain components of NWP and climate mod-
els – mainly parameterization schemes (Krasnopolsky and
Fox-Rabinovitz, 2006; Rasp et al., 2018; Krasnopolsky et al.,
2013; O’Gorman and Dwyer, 2018), to aid real-time decision
making (McGovern et al., 2017) to exploit observations and
targeted high-resolution simulations to enhance earth sys-
tem models (Schneider et al., 2017), for El Niño predictions
(Nooteboom et al., 2018), and to predict weather forecast un-
certainty (Scher and Messori, 2018).

Recently, in addition to using machine learning to enhance
numerical models, there have been ambitions to use it to
tackle weather forecasting itself. The holy grail is to use ma-
chine learning, and especially “deep learning”, to completely
replace NWP models, although opinions may diverge on if
and when this will happen. Additionally, it is an appealing
idea to use neural networks or deep learning to emulate very
expensive general circulation models (GCMs) for climate re-
search. Both these ideas have been tested with some suc-
cess for simplified realities (Dueben and Bauer, 2018; Scher,
2018). In Scher (2018), a neural network approach was used
to skillfully forecast the “weather” of a simplified climate
model, as well as emulate its climate. Dueben and Bauer
(2018), based on their success in forecasting reanalysis data
regridded to very low resolution, concluded that it is “funda-
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mentally” possible to produce deep-learning based weather
forecasts.

Here, we build upon the approach from Scher (2018) and
apply it to a range of climate models with different complex-
ity. We do this in order to assess (1) how the skill of the neural
network weather forecasts depends on the available amount
of training data; (2) how this skill depends on the complex-
ity of the climate models; and (3) under which conditions
it may be possible to make stable climate simulations with
the trained networks and how this depends on the amount of
available training data. Question (1) is of special interest for
the idea of using historical observations in order to train a
neural network for weather forecasting. As the length of his-
torical observations is strongly constrained (∼ 100 years for
long reanalyses assimilating only surface observations and
∼ 40 years for reanalyses assimilating satellite data), it is cru-
cial to assess how many years of past data one would need
in order to produce meaningful forecasts. The value of (2)
lies in evaluating the feasibility of climate models as a “sim-
plified reality” for studying weather forecasting with neural
networks. Finally, (3) is of interest when one wants to use
neural networks not only for weather forecasting, but for the
distinct yet related problem of seasonal and longer forecasts
up to climate projections.

To avoid confusion, we use the following naming conven-
tions throughout the paper: “model” always refers to physical
models (i.e., the climate models used in this study) and will
never refer to a “machine learning model”. The neural net-
works are referred to by the term “network”.

2 Methods

2.1 Climate models

To create long climate model runs of different complex-
ity, we used the Planet Simulator (PLASIM) intermediate-
complexity GCM, and its dry dynamical core: the Portable
University Model of the Atmosphere (PUMA) (Fraedrich
et al., 2005). Each model was run for 830 years with two dif-
ferent horizontal resolutions (T21 and T42, corresponding to
∼ 5.65 and ∼ 2.8◦ latitude, respectively) and 10 vertical lev-
els. The first 30 years of each run were discarded as spin-up,
leaving 800 years of daily data for each model. The runs will
from now on be referred to as plasimt21, plasimt42, pumat21
and pumat42. All the model runs produce a stable climate
without drift (Figs. S1–S10 in the Supplement). Additionally,
we regridded plasimt42 and pumat42 (with bilinear interpo-
lation) to a resolution of T21. These will be referred to as
plasimt42_regridT21 and pumat42_regridT21.

The PUMA runs do not include ocean and orography and
use Newtonian cooling for diabatic heating or cooling. The
PLASIM runs include orography, but no ocean model. The
main difference between PLASIM and standard GCMs is
that sub-systems of the Earth system other than the atmo-

sphere (e.g., the ocean, sea ice and soil) are reduced to sys-
tems of low complexity. We used the default integration time
step for all four model setups, namely 30 min for plasimt42,
20 min for plasimt21, and 60 min for pumat21 and pumat42.
We regrid all fields to regular lat–long grids on pressure lev-
els for analysis. An additional run was made with PUMA at
resolution T21, but with the seasonal cycle switched off (eter-
nal boreal winter). This is the same configuration as used in
Scher (2018) and will be referred to as pumat21_noseas.

In order to contextualize our results relative to previous
studies, we also run a brief trial of our networks on ERA5
(C3S, 2017) reanalysis data (Sect. 3.5), similar to Dueben
and Bauer (2018).

2.2 Complexity

Ranking climate models according to their “complexity” is
a nontrivial task, as it is very hard to define what complex-
ity actually means in this context. We note that here we use
the term loosely and do not refer to any of the very pre-
cise definitions of complexity that exist in various scientific
fields (e.g., Johnson, 2009). Intuitively, one might simply
rank the models according to their horizontal and vertical
resolutions and the number of physical processes they in-
clude. However, it is not clear which effects would be more
important (e.g., is a model with higher resolution but less
components or processes more or less complex than a low-
resolution model with a larger number of processes?). Addi-
tionally, more physical processes do not necessarily imply a
more complex output. For example, very simple models like
the Lorenz63 model (Lorenz, 1963) display chaotic behav-
ior, yet it is certainly possible to design a model with more
parameters and a deterministic behavior.

To circumvent this conundrum, we adopt a very prag-
matic approach based solely on the output of the models and
grounded in dynamical systems theory. We quantify model
complexity in terms of the local dimension d: a measure of
the number of degrees of freedom of a system active locally
around a given instantaneous state. In our case, this means
that we can compute a value of d for every time step in a
given model simulation. While not a measure of complex-
ity in the strict mathematical or computational senses of the
term, d provides an objective indication of a system’s dy-
namics around a given state and, when averaged over a long
time series, of the system’s average attractor dimension. An
example of how d may be computed for climate fields is
provided in Faranda et al. (2017), while for a more formal
discussion and derivation of d, we point the reader to Ap-
pendix A in Faranda et al. (2019). The approach is very flex-
ible and may be applied to individual variables of a system
(which represent projections of the full phase-space dynam-
ics onto specific subspaces, called Poincaré sections), mul-
tiple variables or, with adequate computational resources, to
the whole available dataset. The exact algorithm used here is
outlined in Appendix A.
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Figure 1. Averages of the local dimension d (here used as a data-
based measure of complexity) for the 500 hPa geopotential height
of the models used in this study and of the ERA-Interim reanalysis.

The local dimension was computed for 38 years of each
model run, as well as for the ERA-Interim reanalysis on a
1◦× 1◦ grid over 1979–2016 (Dee et al., 2011). The choice
of 38 years was made because this is the amount of available
years in ERA-Interim, and the length of the data series can
affect the estimate of d (Buschow and Friederichs, 2018).
Figure 1 shows the results for 500 hPa geopotential height.
The complexity of PUMA increases with increasing resolu-
tion, whereas both the low- and the high-resolution PLASIM
model have a complexity approaching that of ERA-Interim.
Thus – at least by this measure – they are comparable to
the real atmosphere. The high-resolution runs regridded to
T21 have nearly the same complexity as the original high-
resolution runs. The ranking is the same for nearly all vari-
ables and levels (Fig. S11). For the rest of the paper, the term
complexity or “complex” always refers to the local dimen-
sion d .

2.3 Neural networks

Neural networks are in principle a series of nonlinear func-
tions with weights determined through training on data. Be-
fore the training, one has to decide the architecture of the
network. Here, we use the architecture proposed by Scher
(2018), which is a convolutional decoder–encoder, taking as
input 3-D model fields and outputting 3-D model fields of
exactly the same dimension. It was designed and tuned in or-
der to work well on pumat21 without seasonality (for details,
see Scher, 2018). In order to ease comparison with previous
results, in the main part of this study we use the same net-
work layout and hyperparameters as in Scher (2018), except
for the number of epochs (iterations over the training set)
the network is trained over. In the original configuration only
10 epochs were used. It turned out that, especially for the
more complex models, the training was not saturated after

10 epochs. Therefore, here we train until the skill of the vali-
dation data has not increased for 5 epochs, with a maximum
of 100 epochs. The layout is depicted in Fig. 2. The possibil-
ity of retuning the network and its implications are discussed
in Sect. 3.4. For the networks targeted to create climate sim-
ulations (hereafter called climate networks), we deviate from
this setup: here, we include the day of year as additional in-
put to the network, in the form of a separate input channel. To
remain consistent with the encoder–decoder setup, the output
also contains the layer with the day of year. However, when
producing the network climate runs, the predicted day of the
year is discarded.

The last 10 % samples of the training data are used for
validation. This allows us to monitor the training progress,
control overfitting (the situation where the network works
very well on the training data, but very poorly on the test
data) and potentially limit the maximum number of training
epochs. As input to the neural networks we use four variables
(u, v, t and z) at 10 pressure levels; each variable at each
level is represented as a separate input layer (channel). These
four variables represent the full state of the PUMA model.
PLASIM has three additional atmospheric variables related
to the hydrological cycle (relative humidity, cloud liquid wa-
ter content and cloud cover). In order to keep the architecture
the same, these are not included in the standard training and
only used for a test in Sect. 3.5.

All networks are trained to make 1 d (1 day) forecasts.
Longer forecasts are made by iteratively feeding back the
forecast into the network. We did not train the network di-
rectly on longer lead times, based on the finding of Dueben
and Bauer (2018) that it is easier to make multiple short fore-
casts compared to a single long one. Due to the availability
of model data and in keeping with Scher (2018), we chose
1 d forecasts as opposed to the shorter forecast step (1 h) in
Dueben and Bauer (2018). For each model, the network was
trained with a set of 1, 2, 5, 10, 20, 50, 100, 200, 400 and
800 years. Since with little training data the network is less
constrained, and the training success might strongly depend
on exactly which short period out of the model run is cho-
sen, the training for periods up to and including 20 years was
repeated four times, shifting the start of the training data by
10, 20, 30 and 40 years. The impact of the exact choice of
training period is discussed where appropriate. All the analy-
ses shown in this paper are performed on the forecasts made
on the first 30 years of the model run, which were never used
during training and therefore provide objective scores (the
“test” dataset).

2.4 Metrics

All network forecasts are validated against the underlying
model the network was trained on (e.g., for the forecasts of
the network trained on plasimt21, the “truth” is the evolution
of the plasimt21 run). We specifically adopt two widely used
forecast verification metrics, namely the root mean square er-
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Figure 2. Architecture of the neural network for the models with resolution T21 (left) and T42 (right). Each box describes a network layer,
with the numbers indicating the dimension of (None, lat, long, level). “None” refers to the time dimension that is not relevant here but which
we include in the schematic since it is part of the basic notation of the software library used. Figure based on Fig. S1 from Scher (2018).

ror (RMSE) and the anomaly correlation coefficient (ACC).
The RMSE is defined as

RMSE=
√

(prediction− truth)2, (1)

where the overbar denotes a mean over space and time (for
global measures) or over time only (for single grid points).
The ACC measures the spatial correlation of the forecast
anomaly fields with the true anomaly fields for a single fore-
cast. The anomalies are computed with respect to a 30 d run-
ning climatology, computed on 30 years of model data (sim-
ilar to how the European Centre for Medium Range Weather

Forecasts computes its scores for forecast validation).

ACCt = correlation([
truth1, 1− clim1, 1, . . ., truthnlat, nlon− climnlat, nlon

]
,[

prediction1, 1− clim1, 1, . . ., predictionnlat, nlon− climnlat, nlon
])

(2)

To compute a score over the whole period, the ACCs for
all individual forecasts are simply averaged:

ACC= [ACC1, . . ., ACCnforecast (3)

The ACC ranges from −1 to 1, with 1 indicating a perfect
correlation of the anomaly fields and 0 no correlation at all.
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For the evaluation of the brief ERA5 test in Sect. 3.6, we
use the mean absolute error instead of RMSE to keep in line
with Dueben and Bauer (2018). The mean absolute error is
defined as

MAE= |prediction− truth|. (4)

3 Results

3.1 Forecast skill in a hierarchy of models

We start by analyzing the RMSE and ACC of two of the most
important variables: 500 hPa geopotential height (hereafter
zg500) and 800 hPa temperature (hereafter ta800). The first is
one of the most commonly used validation metrics in NWP;
the second is very close to temperature at 850 hPa, which is
another commonly used validation metric. We focus on the
networks trained with 100 years of training data, which is the
same length as in Scher (2018) and is of special interest be-
cause it is roughly the same length as is available in current
century-long reanalyses like ERA-20C and the NCEP/NCAR
20CR (Compo et al., 2011; Poli et al., 2016). Figure 3 shows
the global mean RMSE of network forecasts at lead times of
up to 14 d for all models for both zg500 and ta800. Addition-
ally, the skill of persistence forecasts (using the initial state
as forecast) is shown with dashed lines. As expected, the skill
of the network forecasts decreases monotonically with lead
time. Unsurprisingly, the network for pumat21_noseas – the
least complex model – has the highest skill (lowest error) for
all lead times for both variables, followed by the network
for pumat21. The network for pumat42, which is more com-
plex than pumat21 but less complex than the two PLASIM
runs, lies in between. At a lead time of 1 d, the networks for
both PLASIM runs have very similar skill, but the plasimt42
network has higher errors at longer lead times, despite their
very similar complexity. Here we have to note that at long
lead times and near-zero ACC, RMSE can be hard to inter-
pret since it can be strongly influenced by biases in the fore-
casts. When looking at the ACC instead (higher values bet-
ter), the picture is very similar. The network forecasts outper-
form the persistence baseline (dashed lines) at nearly all lead
times, except for the plasimt21 and plasimt42 cases, where
the RMSE of the network forecasts is higher from around
9 d onwards (depending on the variable). The periodic be-
havior of the persistence forecast skill for PUMA is caused
by eastwards traveling Rossby waves, whose structure is rel-
atively simple in the PUMA model. For the T42 runs that
were regridded to T21 before the training the results are as
follows: for PUMA, the skill of the network in predicting
the regridded version of the T42 is very similar to the skill
on the original T42 run. For PLASIM the skill of the regrid-
ded T42 run is comparable to both the skill of T42 and of
T21 runs, albeit closer to the latter. Indeed, the skills of the
original PLASIM T42 and T21 runs are much closer to each
other than for PUMA. Regridding the network predictions of

the two T42 runs to the T21 grid thus results in only very
small changes relative to the difference between the models,
especially at longer lead times (not shown).

We next turn our attention to the spatial characteristics
of the forecast error. Figure 4 shows geographical plots of
the RMSE for 6 d forecasts of the networks trained with
100 years of data (the same training length as in Fig. 3).
In agreement with the global mean RMSE analyzed before,
the network for pumat21_noseas has the lowest errors every-
where (Fig. S12), followed by the network for pumat21. The
networks for plasimt21 and plasimt42 have a more compli-
cated spatial error structure, and the midlatitude storm tracks
emerge clearly as high-error regions. The zonally nonuni-
form distribution is likely caused by the influence of orog-
raphy (present in the PLASIM runs but not in the PUMA
runs). At lead time 1 d, the errors of the network forecasts for
pumat42 are nearly symmetric (not shown), but at longer lead
times a zonal asymmetry emerges (Fig. 4b). This is probably
related to the fact that the neural network used here does not
wrap around the boundaries.

3.2 Dependence of forecast skill on the amount of
training years

A key issue is the extent to which the above results, and more
generally the skill of the network forecasts, depend on the
length of the training period used. Figure 5 shows the skill
of the network forecasts for 500 hPa geopotential height for
different training lengths, for a lead time of 1 d (a, c) and 6 d
(b, d). As mentioned in the Methods section, the networks
with short training periods were trained several times with
different samples from the model runs. The shading in the
figure represents the uncertainty of the mean for these multi-
sample networks, which is negligibly small. For the 1 d fore-
casts (Fig. 5a, c), the results are as expected: the skill in-
creases with an increasing number of training years, both in
terms of RMSE and ACC. This increase is strongly nonlin-
ear, and, beyond ∼ 100 years, the skill benefit of increasing
the length of the training set is limited. This suggests that
the complete model space is already encompassed by around
100 years of daily data. More years will not provide new in-
formation to the network. However, it might also be the case
that there is in fact more information in more years but that
the network is not able to utilize this additional information
effectively. For the 6 d forecasts (Fig. 5b, d), the plasimt21
networks display a counterintuitive behavior: the skill (in
terms of RMSE) does not increase monotonically with in-
creasing length of the training period, but decreases from
100 to 200 years, while for > 200 years it increases again. A
similar result – albeit less pronounced – is also seen for the
plasimt42_regridT21 networks and also – in a slightly differ-
ent form – for the skill measured via the ACC. To interpret
this, one has to remember that the networks are all trained
on 1 d forecasts. For 1 d forecasts the skill does indeed in-
crease with increasing training length, and the pumat21 net-
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Figure 3. Root mean square error (RMSE) and anomaly correlation coefficient (ACC) of 500 hPa geopotential height (a, c) and 800 hPa
temperature (b, d) for network forecasts (solid lines) and persistence forecasts (dashed lines) for all models for different lead times (in days).
All forecasts are based on 100 years of training data.

Figure 4. Maps of RMSE of the 6 d network forecasts, for the networks trained with 100 years for pumat21 (a), pumat42 (b), plasimt21 (c)
and plasimt42 (d).

work trained on 200 years makes better forecasts than the
one trained on 100 years (Fig. 5a, c). Intuitively one would
assume this to translate to increased skill of the consecutive
forecasts used to create the 6 d forecasts. The fact that this is
not the case here might be caused by nonlinear error growth.
Some networks might produce slightly lower errors at lead
day 1, but those particular errors could be faster-growing than
those of a network with larger day-1 errors.

3.3 Climate runs with the networks

The trained networks are not limited to forecasting the model
weather but can also be used to generate a climate run starting
from an arbitrary state of the climate model. For this, we use
the climate networks that also include the day of year as input
(see Sect. 2). The question of whether the climate time series
obtained from the network is stable is of special interest. In
Scher (2018), the network climate for pumat21_noseas (us-
ing 100 years of training data) was stable and produced rea-
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Figure 5. Dependence of network forecast skill on the length of the training period. Shown is the root mean square error (RMSE) and
anomaly correlation coefficient (ACC) of the network-forecasted 500 hPa geopotential height for networks trained on different amounts of
training years. Each line represents one model. The shading on the left side of the plots represents the 5–95 uncertainty range of the mean
RMSE or ACC, estimated over networks with different training samples.

sonable statistics compared to the climate model. We trained
our climate networks on both 30 and 100 years of data for
all models with seasonal cycle. While the networks were all
stable, they do not produce particularly realistic representa-
tions of the model climates. After some time, the storm tracks
look unrealistic and the seasonal cycle is also poorly rep-
resented (e.g., in some years, some seasons are skipped –
see Videos S1–S8 in the Supplement that show the evolu-
tion of zg500 and zonal wind speed at 300 hPa for the net-
work climate runs). Figure 6a shows the evolution of ta800
at a single grid point at 76◦ N for pumat21 and the climate
network trained on 30 years, started from the same (ran-
domly selected) initial state (results for different randomly
selected initial states are very similar, not shown). The net-
work is stable, but the variance is too high and some sum-
mers are left out. Surprisingly, the network for 30 years of
plasimt21 (Fig. 6b) produced a more realistic climate. Train-
ing on 100 years instead of 30 years does not necessarily
improve the quality of the climate runs (Fig. 6c, d). In fact,
for plasimt21 the network climate trained on 100 years is
the worse performer. Interestingly, the mean climate of the
plasimt21 network is reasonably realistic for the network
trained on 100 years (Fig. 7) and partly also for the network
trained on 30 years (not shown), whereas the mean climates
for the plasimt42 and pumat42 networks have large biases
(see Figs. S11–S17).

All our networks were trained to make 1 d forecasts. The
influence of the seasonal cycle on atmospheric dynamics –
and especially the influence of diabatic effects – may be very
small for 1 d predictions. This could make it hard for the net-
work to learn the influence of seasonality. To test this, we re-
peated the training of the climate network for plasimt21 but
now training on 5 d forecasts. This improved the seasonality
of ta800 at our example grid point (Fig. S19), but the spatial
fields of the climate run still become unrealistic (Video S9).

3.4 Impact of retuning

The design of this study was to use an already established
neural network architecture – namely one tuned on a very
simple model – and apply it to more complex models. How-
ever, it is of interest to know how much tuning the network
architecture to the more complex models might increase fore-
cast skill. Therefore, the same tuning procedure as in Scher
(2018) for pumat21_noseas was repeated for plasimt21. Sur-
prisingly, the resulting configuration for plasimt21 was ex-
actly the same as for pumat21_noseas. Thus, even with re-
tuning the results would be the same. As a caveat, we note
that tuning neural networks is an intricate process, and many
arbitrary choices have to be made. Notably, one has to prede-
fine the different configurations that are tried out in the tuning
(the “tuning space”). It is possible that with a different tun-
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Figure 6. Evolution of daily ta800 at a single grid point at 76◦ N in the GCM (orange) and in the climate network trained on the GCM (blue),
started from the same initial state. The networks were trained on 30 years of pumat21 (a), 30 years of plasimt21 (b), 100 years of pumat21
(c) and 100 years of plasimt21 (d).

Figure 7. Thirty-year mean of normalized 500 hPa geopotential height for plasimt21 (a) and the network trained on 100 years of
plasimt21 (b).

ing space for plasimt21, a different configuration would be
chosen than for pumat21_noseas. However, at least within
the tuning space we used, we can conclude that a setup that
works well for a very simple model (pumat21_noseas) is also
a good choice for a more complex model like plasimt21.

3.5 Impact of including hydrological cycle as input

PLASIM, in contrast to PUMA, includes a hydrological cy-
cle. This is represented by three additional 3-D state variables
in the model (relative humidity, cloud liquid water content
and cloud cover). To the test the impact of including these
variables in the neural networks, we retrained the network
for 100 years of plasimt21 including these three variables
(on 10 levels) as additional channels both in the input and
output of the network. The network thus has 70 instead of 40
in- and output channels. Quite surprisingly, including the hy-
drological cycle variables slightly deteriorated the forecasts
of zg500 and ta800, both in terms of RMSE and ACC, ex-

cept for the ACC of ta800 from lead times of 6 d onwards
(Fig. S20).

3.6 Performance on reanalysis data

In order to put our results into context, we also trained our
network architecture on coarse-grained (regridded to T21)
ERA5 (C3S, 2017) reanalysis data. We use exactly the same
dataset that Dueben and Bauer (2018) used, namely 7 years
(2010–2016) for training and 8 months for evaluation (Jan-
uary 2017–August 2017). ERA5 is available at hourly inter-
vals, allowing a thorough investigation of which time step is
best for training. As in Dueben and Bauer (2018), we only
use zg500 and therefore deviate from the setup used in the
rest of this study. We do this in order to be able to directly
compare the results in the two studies. We trained networks
on lead times ranging from 1 to 240 h, and computed the
skill of the zg500 forecasts. The results are shown in Fig. 8.
The blue line shows the error of persistence forecasts. The
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Figure 8. Mean absolute error of 500 hPa geopotential height for networks trained on coarse-grained (T21) ERA5 data. The training was
performed on different lead times. The x axis denotes the lead time of the forecast in hours and the colors the lead time used for training (in
hours). Also shown is the persistence forecast (thick blue line).

network trained on 1 h forecasts is not stable and has very
high forecast errors, in contrast to Dueben and Bauer who
only obtained good forecasts with training on a 1 h lead time.
The network trained with a 24 h lead time has comparable
skill to the network used by Dueben and Bauer (2018) (see
their Fig. 3a). For longer lead times, the networks trained on
longer lead times seem to work better. In general, it seems
that if one wishes to have forecasts for a certain lead time,
it is best to train directly on that lead time, at least for mean
absolute error.

4 Discussion and conclusions

We have tested the use of neural networks for forecasting the
“weather” in a range of simple climate models with differ-
ent complexity. For this we have used a deep convolutional
encoder–decoder architecture that Scher (2018) developed
for a very simple general circulation model without seasonal
cycle. The network is trained on the model in order to fore-
cast the model state 1 d ahead. This process is then iterated
to obtain forecasts at longer lead times. We also performed
“climate” runs, where the network is started with a random
initial state from the climate model run and then creates a run
of daily fields for several decades.

4.1 Potential improvements in the neural network
architecture

In the architecture used in this paper, lat–long grids are used
to represent the fields. The convolution layers consist of a
set of fixed filters that are moved across the domain. There-
fore, the same filter is used close to the poles and close to
the Equator, even though the area represented by a single
grid point is not the same close to the poles and close to the
Equator since the Earth is a globe. Using spherical convo-
lution layers as proposed in Coors et al. (2018) would tackle

this problem and may lead to improved forecasts and/or more
realistic long-term simulations. The tuning of the network ar-
chitecture used here tuned the depth of the convolution layers
but not the actual number of convolution layers. Therefore,
it would be interesting to explore whether deeper networks
(more convolution layers) could improve the performance of
the networks. Other possible improvements would be to

– include one or more locally connected layers in addition
to the convolution layers. While they can increase prob-
lems related with overfitting, locally connected layers
could learn “local dynamics”.

– include spatial dependence in height. In our architec-
ture, all variables at all heights are treated as individual
channels. One could for example group variables at one
height together or use 3d convolution.

Our results further support the idea – already proposed
by Dueben and Bauer (2018) and Scher (2018) – of train-
ing a neural network on the large amount of existing climate
model simulations, feeding the trained network with today’s
analysis of a NWP model and using the network to make a
weather forecast. The high computational efficiency of such
neural network forecasts would open up new possibilities, for
example of creating ensemble forecasts with much large en-
semble sizes than the ones available today. Therefore, this
approach would provide an interesting addition to current
weather forecasting practice and also a good example of ex-
ploiting the large amount of existing climate model data for
new purposes.

4.2 Networks for weather forecasts and climate runs

One of the aims of this study was to assess whether it is pos-
sible to use a simplified reality – in this case a very sim-
ple GCM without seasonal cycle – to develop a method that
also works on more complex GCMs. We showed that, for the
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problem of forecasting the model weather, this seems to be
the case: the network architecture developed by Scher (2018)
also worked on the more complex models used here, albeit
with lower skill. The latter point is hardly surprising, as one
would expect the time evolution of the more complex mod-
els to be harder to predict. The neural network forecast out-
performed a simple persistence forecast baseline at most lead
times also for the more complex models. The fact that we can
successfully forecast the weather in a range of simple GCMs
a couple of days ahead is an encouraging result for the idea
of weather forecasting with neural networks. We also tried
to retune the network architecture from Scher (2018) to one
of our more complex models. Surprisingly, the best network
configuration that came out of the tuning procedure was ex-
actly the same as the one obtained for the simpler model in
Scher (2018). This further supports the idea that methods de-
veloped on simpler models may be fruitfully applied in more
complex settings. Additionally, we tested the network archi-
tecture on coarse-grained reanalysis data, where its skill is
comparable to the method proposed by Dueben and Bauer
(2018). We also found that, in contrast to the findings of
Dueben and Bauer (2018), it seems possible to make valid
neural network forecasts of atmospheric dynamics using a
wide range of time steps (also much longer than 1 h). This
discrepancy might be caused by our use of convolutional lay-
ers, in contrast to the local deep neural network that Dueben
and Bauer used. A stack of convolution layers may be in-
terpreted as multiple layers, where each layer could possibly
make a short-term forecast and the whole stack a long-term
forecast.

The second problem we addressed was using the trained
networks to create climate runs. Scher (2018) found this gen-
erated a stable climate for the simplest model considered
here, which does not have a seasonal cycle. Here, we find
that this is to some extent also possible for more complex
models. However, even when training on relatively long peri-
ods (100 years), the climates produced by the networks have
some unrealistic properties, such as a poor seasonal cycle,
significant biases in the long-term mean values and often un-
realistic storm tracks. The fact that these problems do not
occur for the simplest GCM without seasonal cycle but do
occur for the same GCM with seasonal cycle indicates that
seasonality considerably complicates the problem. While not
a solution for creating climate runs, this suggests that for the
weather forecasting problem, it might be interesting to train
separate networks for different times of the year (e.g., one for
each month).

Code and data availability. The code developed and used
for this study is available in the accompanying repository at
https://doi.org/10.5281/zenodo.2572863 (Scher, 2019b). All
external libraries used here are open source. The trained networks
and the data underlying all the plots are available in the repository.
The model runs can be recreated with the control files (available
in the repository) and the source code of PUMA/PLASIM,
which is freely available at https://www.mi.uni-hamburg.de/en/
arbeitsgruppen/theoretische-meteorologie/modelle/PLASIM.html
(last access: 8 July 2019.). ERA-Interim data are freely available at
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/
(last access: 8 July 2019). ERA5 data are freely available at
https://climate.copernicus.eu/climate-reanalysis (last access: 8 July
2019).
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Appendix A: Computation of the local dimension

Here, we outline very briefly how the local dimension d

is computed. To foster easy reproducibility, we present the
computation in an algorithm-like fashion, as opposed to for-
mal mathematical notation. For a more rigorous theoretical
explanation the reader is referred to Faranda et al. (2019).
The code is available in the repository accompanying this
paper (see “Code and data availability”).

First, we define the distance between the 2-D atmospheric
fields at times t1 and t2 as

distt1, t2 =√((
xt1, 1− xt2, 1

)2
+
(
xt1, 2− xt2, 2

)2
+ . . .+

(
xt1, Nj

− xt2, Nj

)2)
,

(A1)

where j is the linear grid point index and Nj is the total num-
ber of grid points. To compute dt , namely the local dimension
of a field at time t , we first take the negative natural logarithm
of the distances between t and all other time steps ti (i.e., all
times before and after t),

gt, ti =− ln
(
distt, ti

)
, (A2)

and then retain only the distances that are above the 98th
percentile of gt, ti :

exceedances= gt, ti − 98th percentile
(
gt, ti

)
∀ gt, ti > 98th percentile

(
gt, ti

)
. (A3)

These are effectively logarithmic returns in phase space,
corresponding to cases where the field xti is very close to
the field xt . According to the Freitas–Freitas–Todd theorem
(Freitas et al., 2010), modified in Lucarini et al. (2012), the
probability of such logarithmic returns (in the limit of an in-
finitely long time series) follows the exponential member of
the generalized Pareto distribution (Pickands III, 1975). The
local dimension dt can then be obtained as the inverse of the
distribution’s scale parameter, which can also be expressed
as the inverse of the mean of the exceedances:

dt = 1/mean(exceedances) . (A4)

The local dimension is an instantaneous metric, and
Faranda et al. (2019) have shown that time averaging of the
data can lead to counterintuitive effects. The most robust
approach is therefore to compute d on instantaneous fields.
Here, in order to use the same data as for the machine learn-
ing, we have used daily means. We have verified that, at least
in ERA-Interim, this has a negligible effect on the average d

value for all variables except for geopotential height at 100
and 200 hPa (not shown).
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Video supplement. The videos in the Supplement show the evolu-
tion of the GCM (upper panels) and the evolution of the climate
network trained on the GCM (lower panels), both started from the
same initial conditions. The left panels show zg500, the right panels
wind speed at 300 hPa. Each video corresponds to one GCM. The
videos can be accessed at https://doi.org/10.5281/zenodo.3248691
(Scher, 2019a).
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