Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-1227-2019
https://doi.org/10.5194/gmd-12-1227-2019
Development and technical paper
 | 
29 Mar 2019
Development and technical paper |  | 29 Mar 2019

Improvements to stratospheric chemistry scheme in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions

Fraser Dennison, James Keeble, Olaf Morgenstern, Guang Zeng, N. Luke Abraham, and Xin Yang

Related authors

Global Methane Budget 2000–2020
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025,https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary

Cited articles

Angell, J. K.: On the Relation between Atmospheric Ozone and Sunspot Number, J. Climate, 2, 1404–1416, https://doi.org/10.1175/1520-0442(1989)002<1404:OTRBAO>2.0.CO;2, 1989. a
Bednarz, E. M., Maycock, A. C., Telford, P. J., Braesicke, P., Abraham, N. L., and Pyle, J. A.: Simulating the atmospheric response to the 11-year solar cycle forcing with the UM-UKCA model: the role of detection method and natural variability, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-129, in review, 2018. a, b, c, d, e
Bian, H. and Prather, M. J.: Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models, J. Atmos. Chem., 41, 281–296, 2002. a, b
Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N. L., Archibald, A., Telford, P., and Pyle, J. A.: Circulation anomalies in the Southern Hemisphere and ozone changes, Atmos. Chem. Phys., 13, 10677–10688, https://doi.org/10.5194/acp-13-10677-2013, 2013. a
Burkholder, J. B., Sander, S. P., Abbatt, J. P. D., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 18, Tech. rep., Jet Propulsion Laboratory, Pasadena, California, available at: http://jpldataeval.jpl.nasa.gov/ (last access: 19 April 2018), 2015. a, b, c
Download
Short summary
Two developments are made to the United Kingdom Chemistry and Aerosols (UKCA) model to improve simulation of stratospheric ozone. The first is the addition of a solar cycle. The influence on ozone from the solar cycle is found to be 1–2 %, which is consistent with other studies. The second is to the heterogeneous chemistry, the most significant change being the addition of reactions involving bromine species. This was shown to reduce ozone biases relative to observations in most regions.
Share