Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-771-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-11-771-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)
Yi-Ying Chen
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
now at: Research Center for Environmental Changes (RCEC), Academia Sinica, Taipei, Taiwan
Barry Gardiner
Institute National de la Recherche Agronomique (INRA), Villenave d'Ornon, France
Ferenc Pasztor
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
now at: Maritime Strategies International Ltd (MSI), London, England
Kristina Blennow
Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
James Ryder
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Aude Valade
Institut Pierre Simon Laplace (IPSL), CNRS-UPMC, Paris, France
Kim Naudts
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
now at: Max Planck Institute for Meteorology, Hamburg, Germany
Juliane Otto
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
now at: Climate Service Center Germany (GERICS), Helmholtz-Zentrum Geesthacht, Hamburg, Germany
Matthew J. McGrath
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
Carole Planque
CNRM/GMME/VEGEO Météo France, Toulouse, France
Sebastiaan Luyssaert
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
now at: Department of Ecological Sciences, Vrij Universiteit Amsterdam, Amsterdam, the Netherlands
Related authors
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Matthew J. McGrath, James Ryder, Bernard Pinty, Juliane Otto, Kim Naudts, Aude Valade, Yiying Chen, James Weedon, and Sebastiaan Luyssaert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-280, https://doi.org/10.5194/gmd-2016-280, 2016
Revised manuscript not accepted
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
J. Ryder, J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. van Gorsel, V. Haverd, M. J. McGrath, K. Naudts, J. Otto, A. Valade, and S. Luyssaert
Geosci. Model Dev., 9, 223–245, https://doi.org/10.5194/gmd-9-223-2016, https://doi.org/10.5194/gmd-9-223-2016, 2016
M. J. McGrath, S. Luyssaert, P. Meyfroidt, J. O. Kaplan, M. Bürgi, Y. Chen, K. Erb, U. Gimmi, D. McInerney, K. Naudts, J. Otto, F. Pasztor, J. Ryder, M.-J. Schelhaas, and A. Valade
Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, https://doi.org/10.5194/bg-12-4291-2015, 2015
Short summary
Short summary
Studying century-scale ecological processes and their legacy effects requires taking forest management into account. In this study we produce spatially and temporally explicit maps of European forest management from 1600 to 2010. The most important changes between 1600 and 2010 are an increase of 593 000km2 in conifers at the expense of deciduous forest, a 612 000km2 decrease in unmanaged forest, a 152 000km2 decrease in coppice management and a 818 000km2 increase in high stand management.
K. Naudts, J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert
Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, https://doi.org/10.5194/gmd-8-2035-2015, 2015
Short summary
Short summary
Despite the potential of forest management to mitigate climate change, none of today's predictions of future climate accounts for the impact of forest management. To address this gap in modelling capability, we developed and parametrised a land-surface model to simulate biogeochemical and biophysical effects of forest management. Comparison of model output against data showed an increased model performance in reproducing large-scale spatial patterns and inter-annual variability over Europe.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-397, https://doi.org/10.5194/egusphere-2025-397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to refine global carbon cycle models.
Nikolina Mileva, Julia Pongratz, Vivek K. Arora, Akihiko Ito, Sebastiaan Luyssaert, Sonali S. McDermid, Paul A. Miller, Daniele Peano, Roland Séférian, Yanwu Zhang, and Wolfgang Buermann
EGUsphere, https://doi.org/10.5194/egusphere-2025-979, https://doi.org/10.5194/egusphere-2025-979, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
Despite forests being so important for mitigating climate change, there are still uncertainties about how much the changes in forest cover contribute to the cooling/warming of the climate. Climate models and real-world observations often disagree about the magnitude and even the direction of these changes. We constrain climate models scenarios of widespread deforestation with satellite and in-situ data and show that models still have difficulties representing the movement of heat and water.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data, 15, 3819–3852, https://doi.org/10.5194/essd-15-3819-2023, https://doi.org/10.5194/essd-15-3819-2023, 2023
Short summary
Short summary
This paper introduces the new high-resolution land use and land cover change dataset LUCAS LUC for Europe (version 1.1), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Yi-Ying Chen and Sebastiaan Luyssaert
Biogeosciences, 20, 349–363, https://doi.org/10.5194/bg-20-349-2023, https://doi.org/10.5194/bg-20-349-2023, 2023
Short summary
Short summary
Tropical cyclones are typically assumed to be associated with ecosystem damage. This study challenges this assumption and suggests that instead of reducing leaf area, cyclones in East Asia may increase leaf area by alleviating water stress.
Huanhuan Wang, Chao Yue, and Sebastiaan Luyssaert
Biogeosciences, 20, 75–92, https://doi.org/10.5194/bg-20-75-2023, https://doi.org/10.5194/bg-20-75-2023, 2023
Short summary
Short summary
This study provided a synthesis of three influential methods to quantify afforestation impact on surface temperature. Results showed that actual effect following afforestation was highly dependent on afforestation fraction. When full afforestation is assumed, the actual effect approaches the potential effect. We provided evidence the afforestation faction is a key factor in reconciling different methods and emphasized that it should be considered for surface cooling impacts in policy evaluation.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Swantje Preuschmann, Tanja Blome, Knut Görl, Fiona Köhnke, Bettina Steuri, Juliane El Zohbi, Diana Rechid, Martin Schultz, Jianing Sun, and Daniela Jacob
Adv. Sci. Res., 19, 51–71, https://doi.org/10.5194/asr-19-51-2022, https://doi.org/10.5194/asr-19-51-2022, 2022
Short summary
Short summary
The main aspect of the paper is to obtain transferable principles for the development of digital knowledge transfer products. As such products are still unstandardised, the authors explored challenges and approaches for product developments. The authors report what they see as useful principles for developing digital knowledge transfer products, by describing the experience of developing the Net-Zero-2050 Web-Atlas and the "Bodenkohlenstoff-App".
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Jina Jeong, Jonathan Barichivich, Philippe Peylin, Vanessa Haverd, Matthew Joseph McGrath, Nicolas Vuichard, Michael Neil Evans, Flurin Babst, and Sebastiaan Luyssaert
Geosci. Model Dev., 14, 5891–5913, https://doi.org/10.5194/gmd-14-5891-2021, https://doi.org/10.5194/gmd-14-5891-2021, 2021
Short summary
Short summary
We have proposed and evaluated the use of four benchmarks that leverage tree-ring width observations to provide more nuanced verification targets for land-surface models (LSMs), which currently lack a long-term benchmark for forest ecosystem functioning. Using relatively unbiased European biomass network datasets, we identify the extent to which presumed biases in the much larger International Tree-Ring Data Bank might degrade the validation of LSMs.
Peter Hoffmann, Vanessa Reinhart, Diana Rechid, Nathalie de Noblet-Ducoudré, Edouard L. Davin, Christina Asmus, Benjamin Bechtel, Jürgen Böhner, Eleni Katragkou, and Sebastiaan Luyssaert
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-252, https://doi.org/10.5194/essd-2021-252, 2021
Manuscript not accepted for further review
Short summary
Short summary
This paper introduces the new high-resolution land-use land-cover change dataset LUCAS LUC historical and future land use and land cover change dataset (Version 1.0), tailored for use in regional climate models. Historical and projected future land use change information from the Land-Use Harmonization 2 (LUH2) dataset is translated into annual plant functional type changes from 1950 to 2015 and 2016 to 2100, respectively, by employing a newly developed land use translator.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Jonathan Barichivich, Philippe Peylin, Thomas Launois, Valerie Daux, Camille Risi, Jina Jeong, and Sebastiaan Luyssaert
Biogeosciences, 18, 3781–3803, https://doi.org/10.5194/bg-18-3781-2021, https://doi.org/10.5194/bg-18-3781-2021, 2021
Short summary
Short summary
The width and the chemical signals of tree rings have the potential to test and improve the physiological responses simulated by global land surface models, which are at the core of future climate projections. Here, we demonstrate the novel use of tree-ring width and carbon and oxygen stable isotopes to evaluate the representation of tree growth and physiology in a global land surface model at temporal scales beyond experimentation and direct observation.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Thomas Janssen, Katrin Fleischer, Sebastiaan Luyssaert, Kim Naudts, and Han Dolman
Biogeosciences, 17, 2621–2645, https://doi.org/10.5194/bg-17-2621-2020, https://doi.org/10.5194/bg-17-2621-2020, 2020
Short summary
Short summary
The frequency and severity of droughts are expected to increase in the tropics, impacting the functioning of tropical forests. Here, we synthesized observed responses to drought in Neotropical forests. We find that, during drought, trees generally close their leaf stomata, resulting in reductions in photosynthesis, growth and transpiration. However, on the ecosystem scale, these responses are not visible. This indicates that resistance to drought increases from the leaf to ecosystem scale.
Bettina Steuri, Tanja Blome, Katharina Bülow, Juliane El Zohbi, Peter Hoffmann, Juliane Petersen, Susanne Pfeifer, Diana Rechid, and Daniela Jacob
Adv. Sci. Res., 17, 9–17, https://doi.org/10.5194/asr-17-9-2020, https://doi.org/10.5194/asr-17-9-2020, 2020
Short summary
Short summary
The goal of an interdisciplinary team of scientists at the Climate Service Center Germany (GERICS) was to make the findings of the special report IPCC SR1.5 more accessible to the citizens of Hamburg. Therefore, a flyer was created that is understandable to non-climate scientists, visually attractive and generates interest.
In this article, the authors provide insights into their teamwork, the underlying guiding principles as well as lessons learned that are of great value for future projects.
Giovanni Forzieri, Matteo Pecchi, Marco Girardello, Achille Mauri, Marcus Klaus, Christo Nikolov, Marius Rüetschi, Barry Gardiner, Julián Tomaštík, David Small, Constantin Nistor, Donatas Jonikavicius, Jonathan Spinoni, Luc Feyen, Francesca Giannetti, Rinaldo Comino, Alessandro Wolynski, Francesco Pirotti, Fabio Maistrelli, Ionut Savulescu, Stéphanie Wurpillot-Lucas, Stefan Karlsson, Karolina Zieba-Kulawik, Paulina Strejczek-Jazwinska, Martin Mokroš, Stefan Franz, Lukas Krejci, Ionel Haidu, Mats Nilsson, Piotr Wezyk, Filippo Catani, Yi-Ying Chen, Sebastiaan Luyssaert, Gherardo Chirici, Alessandro Cescatti, and Pieter S. A. Beck
Earth Syst. Sci. Data, 12, 257–276, https://doi.org/10.5194/essd-12-257-2020, https://doi.org/10.5194/essd-12-257-2020, 2020
Short summary
Short summary
Strong winds may uproot and break trees and represent a risk for forests. Despite the importance of this natural disturbance and possible intensification in view of climate change, spatial information about wind-related impacts is currently missing on a pan-European scale. We present a new database of wind disturbances in European forests comprised of more than 80 000 records over the period 2000–2018. Our database is a unique spatial source for the study of forest disturbances at large scales.
Julia E. M. S. Nabel, Kim Naudts, and Julia Pongratz
Geosci. Model Dev., 13, 185–200, https://doi.org/10.5194/gmd-13-185-2020, https://doi.org/10.5194/gmd-13-185-2020, 2020
Short summary
Short summary
Models need to account for forest age structures when investigating land use influences on land–atmosphere feedbacks. We present a consolidated scheme to introduce forest age classes, combining age-dependent simulations of important processes with the possibility to trace forest age, and describe its implementation in JSBACH4, the land surface model of the ICON Earth system model. We evaluate simulations with and without age classes demonstrating the benefit of forest age classes in JSBACH4.
Nicolas Vuichard, Palmira Messina, Sebastiaan Luyssaert, Bertrand Guenet, Sönke Zaehle, Josefine Ghattas, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 12, 4751–4779, https://doi.org/10.5194/gmd-12-4751-2019, https://doi.org/10.5194/gmd-12-4751-2019, 2019
Short summary
Short summary
In this research, we present a new version of the global terrestrial ecosystem model ORCHIDEE in which carbon and nitrogen cycles are coupled. We evaluate its skills at simulating primary production at 78 sites and at a global scale. Based on a set of additional simulations in which carbon and nitrogen cycles are coupled and uncoupled, we show that the functional responses of the model with carbon–nitrogen interactions better agree with our current understanding of photosynthesis.
Johannes Winckler, Christian H. Reick, Sebastiaan Luyssaert, Alessandro Cescatti, Paul C. Stoy, Quentin Lejeune, Thomas Raddatz, Andreas Chlond, Marvin Heidkamp, and Julia Pongratz
Earth Syst. Dynam., 10, 473–484, https://doi.org/10.5194/esd-10-473-2019, https://doi.org/10.5194/esd-10-473-2019, 2019
Short summary
Short summary
For local living conditions, it matters whether deforestation influences the surface temperature, temperature at 2 m, or the temperature higher up in the atmosphere. Here, simulations with a climate model show that at a location of deforestation, surface temperature generally changes more strongly than atmospheric temperature. Comparison across climate models shows that both for summer and winter the surface temperature response exceeds the air temperature response locally by a factor of 2.
Emilie Joetzjer, Fabienne Maignan, Jérôme Chave, Daniel Goll, Ben Poulter, Jonathan Barichivich, Isabelle Maréchaux, Sebastiaan Luyssaert, Matthieu Guimberteau, Kim Naudts, Damien Bonal, and Philippe Ciais
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-308, https://doi.org/10.5194/bg-2018-308, 2018
Revised manuscript not accepted
Short summary
Short summary
This study explores the relative contributions of tree demographic, canopy structure and hydraulic processes on the Amazonian carbon and water cycles using large-scale process-based model. Our results imply that explicit coupling of the water and carbon cycles improves the representation of biogeochemical cycles and their spatial variability. Representing the variation in the ecological functioning of Amazonia should be the next step to improve the performance and predictive ability of models.
Marta Camino-Serrano, Bertrand Guenet, Sebastiaan Luyssaert, Philippe Ciais, Vladislav Bastrikov, Bruno De Vos, Bert Gielen, Gerd Gleixner, Albert Jornet-Puig, Klaus Kaiser, Dolly Kothawala, Ronny Lauerwald, Josep Peñuelas, Marion Schrumpf, Sara Vicca, Nicolas Vuichard, David Walmsley, and Ivan A. Janssens
Geosci. Model Dev., 11, 937–957, https://doi.org/10.5194/gmd-11-937-2018, https://doi.org/10.5194/gmd-11-937-2018, 2018
Short summary
Short summary
Global models generally oversimplify the representation of soil organic carbon (SOC), and thus its response to global warming remains uncertain. We present the new soil module ORCHIDEE-SOM, within the global model ORCHIDEE, that refines the representation of SOC dynamics and includes the dissolved organic carbon (DOC) processes. The model is able to reproduce SOC stocks and DOC concentrations in four different ecosystems, opening an opportunity for improved predictions of SOC in global models.
Chao Yue, Philippe Ciais, Sebastiaan Luyssaert, Wei Li, Matthew J. McGrath, Jinfeng Chang, and Shushi Peng
Geosci. Model Dev., 11, 409–428, https://doi.org/10.5194/gmd-11-409-2018, https://doi.org/10.5194/gmd-11-409-2018, 2018
Short summary
Short summary
Human alteration of land cover has caused CO2 that is stored in forest biomass and soil to be released into the atmosphere and thus contribute to global warming. Global vegetation models that are used to quantify such carbon emissions from land use change traditionally rarely include shifting cultivation and secondary forest age dynamics. In this study, we expanded one vegetation model to include these features. We found that carbon emissions from land use change are estimated to be smaller.
Hélène Dewaele, Simon Munier, Clément Albergel, Carole Planque, Nabil Laanaia, Dominique Carrer, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4861–4878, https://doi.org/10.5194/hess-21-4861-2017, https://doi.org/10.5194/hess-21-4861-2017, 2017
Short summary
Short summary
Soil maximum available water content (MaxAWC) is a key parameter in land surface models. Being difficult to measure, this parameter is usually unavailable. A 15-year time series of satellite-derived observations of leaf area index (LAI) is used to retrieve MaxAWC for rainfed straw cereals over France. Disaggregated LAI is sequentially assimilated into the ISBA LSM. MaxAWC is estimated minimising LAI analyses increments. Annual maximum LAI observations correlate with the MaxAWC estimates.
Matthew J. McGrath, James Ryder, Bernard Pinty, Juliane Otto, Kim Naudts, Aude Valade, Yiying Chen, James Weedon, and Sebastiaan Luyssaert
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-280, https://doi.org/10.5194/gmd-2016-280, 2016
Revised manuscript not accepted
Marta Camino-Serrano, Elisabeth Graf Pannatier, Sara Vicca, Sebastiaan Luyssaert, Mathieu Jonard, Philippe Ciais, Bertrand Guenet, Bert Gielen, Josep Peñuelas, Jordi Sardans, Peter Waldner, Sophia Etzold, Guia Cecchini, Nicholas Clarke, Zoran Galić, Laure Gandois, Karin Hansen, Jim Johnson, Uwe Klinck, Zora Lachmanová, Antti-Jussi Lindroos, Henning Meesenburg, Tiina M. Nieminen, Tanja G. M. Sanders, Kasia Sawicka, Walter Seidling, Anne Thimonier, Elena Vanguelova, Arne Verstraeten, Lars Vesterdal, and Ivan A. Janssens
Biogeosciences, 13, 5567–5585, https://doi.org/10.5194/bg-13-5567-2016, https://doi.org/10.5194/bg-13-5567-2016, 2016
Short summary
Short summary
We investigated the long-term trends of dissolved organic carbon (DOC) in soil solution and the drivers of changes in over 100 forest monitoring plots across Europe. An overall increasing trend was detected in the organic layers, but no overall trend was found in the mineral horizons. There are strong interactions between controls acting at local and regional scales. Our findings are relevant for researchers focusing on the link between terrestrial and aquatic ecosystems and for C-cycle models.
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
J. Ryder, J. Polcher, P. Peylin, C. Ottlé, Y. Chen, E. van Gorsel, V. Haverd, M. J. McGrath, K. Naudts, J. Otto, A. Valade, and S. Luyssaert
Geosci. Model Dev., 9, 223–245, https://doi.org/10.5194/gmd-9-223-2016, https://doi.org/10.5194/gmd-9-223-2016, 2016
M. J. McGrath, S. Luyssaert, P. Meyfroidt, J. O. Kaplan, M. Bürgi, Y. Chen, K. Erb, U. Gimmi, D. McInerney, K. Naudts, J. Otto, F. Pasztor, J. Ryder, M.-J. Schelhaas, and A. Valade
Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, https://doi.org/10.5194/bg-12-4291-2015, 2015
Short summary
Short summary
Studying century-scale ecological processes and their legacy effects requires taking forest management into account. In this study we produce spatially and temporally explicit maps of European forest management from 1600 to 2010. The most important changes between 1600 and 2010 are an increase of 593 000km2 in conifers at the expense of deciduous forest, a 612 000km2 decrease in unmanaged forest, a 152 000km2 decrease in coppice management and a 818 000km2 increase in high stand management.
K. Naudts, J. Ryder, M. J. McGrath, J. Otto, Y. Chen, A. Valade, V. Bellasen, G. Berhongaray, G. Bönisch, M. Campioli, J. Ghattas, T. De Groote, V. Haverd, J. Kattge, N. MacBean, F. Maignan, P. Merilä, J. Penuelas, P. Peylin, B. Pinty, H. Pretzsch, E. D. Schulze, D. Solyga, N. Vuichard, Y. Yan, and S. Luyssaert
Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, https://doi.org/10.5194/gmd-8-2035-2015, 2015
Short summary
Short summary
Despite the potential of forest management to mitigate climate change, none of today's predictions of future climate accounts for the impact of forest management. To address this gap in modelling capability, we developed and parametrised a land-surface model to simulate biogeochemical and biophysical effects of forest management. Comparison of model output against data showed an increased model performance in reproducing large-scale spatial patterns and inter-annual variability over Europe.
T. De Groote, D. Zona, L. S. Broeckx, M. S. Verlinden, S. Luyssaert, V. Bellassen, N. Vuichard, R. Ceulemans, A. Gobin, and I. A. Janssens
Geosci. Model Dev., 8, 1461–1471, https://doi.org/10.5194/gmd-8-1461-2015, https://doi.org/10.5194/gmd-8-1461-2015, 2015
Short summary
Short summary
This paper describes the modification of the widely used land surface model ORCHIDEE for stand-scale simulations of short rotation coppice (SRC) plantations. The modifications presented in this paper were evaluated using data from two Belgian poplar-based SRC sites, for which multiple measurements and meteorological data were available. The simulations show that the model predicts aboveground biomass production, ecosystem photosynthesis and ecosystem respiration well.
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
J. Otto, D. Berveiller, F.-M. Bréon, N. Delpierre, G. Geppert, A. Granier, W. Jans, A. Knohl, A. Kuusk, B. Longdoz, E. Moors, M. Mund, B. Pinty, M.-J. Schelhaas, and S. Luyssaert
Biogeosciences, 11, 2411–2427, https://doi.org/10.5194/bg-11-2411-2014, https://doi.org/10.5194/bg-11-2411-2014, 2014
A. Loew, P. M. van Bodegom, J.-L. Widlowski, J. Otto, T. Quaife, B. Pinty, and T. Raddatz
Biogeosciences, 11, 1873–1897, https://doi.org/10.5194/bg-11-1873-2014, https://doi.org/10.5194/bg-11-1873-2014, 2014
C. Yue, P. Ciais, S. Luyssaert, P. Cadule, J. Harden, J. Randerson, V. Bellassen, T. Wang, S. L. Piao, B. Poulter, and N. Viovy
Biogeosciences, 10, 8233–8252, https://doi.org/10.5194/bg-10-8233-2013, https://doi.org/10.5194/bg-10-8233-2013, 2013
Related subject area
Climate and Earth system modeling
A Fortran–Python interface for integrating machine learning parameterization into earth system models
A rapid-application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)
The DOE E3SM version 2.1: overview and assessment of the impacts of parameterized ocean submesoscales
WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature
High-Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
T&C-CROP: representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5) – model formulation and validation
An updated non-intrusive, multi-scale, and flexible coupling interface in WRF 4.6.0
Monitoring and benchmarking Earth system model simulations with ESMValTool v2.12.0
The Earth Science Box Modeling Toolkit (ESBMTK 0.14.0.11): a Python library for research and teaching
CropSuite v1.0 – a comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – the ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Using feature importance as an exploratory data analysis tool on Earth system models
A new metrics framework for quantifying and intercomparing atmospheric rivers in observations, reanalyses, and climate models
The real challenges for climate and weather modelling on its way to sustained exascale performance: a case study using ICON (v2.6.6)
Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data
Evaluation of CORDEX ERA5-forced NARCliM2.0 regional climate models over Australia using the Weather Research and Forecasting (WRF) model version 4.1.2
Design, evaluation, and future projections of the NARCliM2.0 CORDEX-CMIP6 Australasia regional climate ensemble
Amending the algorithm of aerosol–radiation interactions in WRF-Chem (v4.4)
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Investigating Carbon and Nitrogen Conservation in Reported CMIP6 Earth System Model Data
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
The Tropical Basin Interaction Model Intercomparison Project (TBIMIP)
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
PaleoSTeHM v1.0-rc: a modern, scalable spatio-temporal hierarchical modeling framework for paleo-environmental data
Tao Zhang, Cyril Morcrette, Meng Zhang, Wuyin Lin, Shaocheng Xie, Ye Liu, Kwinten Van Weverberg, and Joana Rodrigues
Geosci. Model Dev., 18, 1917–1928, https://doi.org/10.5194/gmd-18-1917-2025, https://doi.org/10.5194/gmd-18-1917-2025, 2025
Short summary
Short summary
Earth system models (ESMs) struggle with the uncertainties associated with parameterizing subgrid physics. Machine learning (ML) algorithms offer a solution by learning the important relationships and features from high-resolution models. To incorporate ML parameterizations into ESMs, we develop a Fortran–Python interface that allows for calling Python functions within Fortran-based ESMs. Through two case studies, this interface demonstrates its feasibility, modularity, and effectiveness.
Camilla Mathison, Eleanor J. Burke, Gregory Munday, Chris D. Jones, Chris J. Smith, Norman J. Steinert, Andy J. Wiltshire, Chris Huntingford, Eszter Kovacs, Laila K. Gohar, Rebecca M. Varney, and Douglas McNeall
Geosci. Model Dev., 18, 1785–1808, https://doi.org/10.5194/gmd-18-1785-2025, https://doi.org/10.5194/gmd-18-1785-2025, 2025
Short summary
Short summary
We present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), which is designed to take new emissions scenarios and rapidly provide regional impact information. PRIME allows large ensembles to be run on multi-centennial timescales, including the analysis of many important variables for impact assessments. Our evaluation shows that PRIME reproduces the climate response for known scenarios, providing confidence in using PRIME for novel scenarios.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Reyk Börner, Jan O. Haerter, and Romain Fiévet
Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, https://doi.org/10.5194/gmd-18-1333-2025, 2025
Short summary
Short summary
The daily cycle of sea surface temperature (SST) impacts clouds above the ocean and could influence the clustering of thunderstorms linked to extreme rainfall and hurricanes. However, daily SST variability is often poorly represented in modeling studies of how clouds cluster. We present a simple, wind-responsive model of upper-ocean temperature for use in atmospheric simulations. Evaluating the model against observations, we show that it performs significantly better than common slab models.
Malcolm J. Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
Geosci. Model Dev., 18, 1307–1332, https://doi.org/10.5194/gmd-18-1307-2025, https://doi.org/10.5194/gmd-18-1307-2025, 2025
Short summary
Short summary
HighResMIP2 is a model intercomparison project focusing on high-resolution global climate models, that is, those with grid spacings of 25 km or less in the atmosphere and ocean, using simulations of decades to a century in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present-day and future projections and to build links with other communities to provide more robust climate information.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
Geosci. Model Dev., 18, 1287–1305, https://doi.org/10.5194/gmd-18-1287-2025, https://doi.org/10.5194/gmd-18-1287-2025, 2025
Short summary
Short summary
We present and validate enhancements to the process-based T&C model aimed at improving its representation of crop growth and management practices. The updated model, T&C-CROP, enables applications such as analysing the hydrological and carbon storage impacts of land use transitions (e.g. conversions between crops, forests, and pastures) and optimizing irrigation and fertilization strategies in response to climate change.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev., 18, 1241–1263, https://doi.org/10.5194/gmd-18-1241-2025, https://doi.org/10.5194/gmd-18-1241-2025, 2025
Short summary
Short summary
This article details a new feature we implemented in the popular regional atmospheric model WRF. This feature allows for data exchange between WRF and any other model (e.g. an ocean model) using the coupling library Ocean–Atmosphere–Sea–Ice–Soil Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Axel Lauer, Lisa Bock, Birgit Hassler, Patrick Jöckel, Lukas Ruhe, and Manuel Schlund
Geosci. Model Dev., 18, 1169–1188, https://doi.org/10.5194/gmd-18-1169-2025, https://doi.org/10.5194/gmd-18-1169-2025, 2025
Short summary
Short summary
Earth system models are important tools to improve our understanding of current climate and to project climate change. Thus, it is crucial to understand possible shortcomings in the models. New features of the ESMValTool software package allow one to compare and visualize a model's performance with respect to reproducing observations in the context of other climate models in an easy and user-friendly way. We aim to help model developers assess and monitor climate simulations more efficiently.
Ulrich G. Wortmann, Tina Tsan, Mahrukh Niazi, Irene A. Ma, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
Geosci. Model Dev., 18, 1155–1167, https://doi.org/10.5194/gmd-18-1155-2025, https://doi.org/10.5194/gmd-18-1155-2025, 2025
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a user-friendly Python library that simplifies the creation of models to study earth system processes, such as the carbon cycle and ocean chemistry. It enhances learning by emphasizing concepts over programming and is accessible to students and researchers alike. By automating complex calculations and promoting code clarity, ESBMTK accelerates model development while improving reproducibility and the usability of scientific research.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
Geosci. Model Dev., 18, 1067–1087, https://doi.org/10.5194/gmd-18-1067-2025, https://doi.org/10.5194/gmd-18-1067-2025, 2025
Short summary
Short summary
CropSuite is a new open-source crop suitability model. It provides a GUI and a wide range of options, including a spatial downscaling of climate data. We apply CropSuite to 48 staple and opportunity crops at a 1 km spatial resolution in Africa. We find that climate variability significantly impacts suitable areas but also affects optimal sowing dates and multiple cropping potential. The results provide valuable information for climate impact assessments, adaptation, and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev., 18, 1001–1015, https://doi.org/10.5194/gmd-18-1001-2025, https://doi.org/10.5194/gmd-18-1001-2025, 2025
Short summary
Short summary
The ICOsahedral Non-hydrostatic (ICON) model system Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++, and Python), and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev., 18, 1041–1065, https://doi.org/10.5194/gmd-18-1041-2025, https://doi.org/10.5194/gmd-18-1041-2025, 2025
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis A. O'Brien
Geosci. Model Dev., 18, 961–976, https://doi.org/10.5194/gmd-18-961-2025, https://doi.org/10.5194/gmd-18-961-2025, 2025
Short summary
Short summary
A metrics package designed for easy analysis of atmospheric river (AR) characteristics and statistics is presented. The tool is efficient for diagnosing systematic AR bias in climate models and useful for evaluating new AR characteristics in model simulations. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the North and South Atlantic (South Pacific and Indian Ocean).
Panagiotis Adamidis, Erik Pfister, Hendryk Bockelmann, Dominik Zobel, Jens-Olaf Beismann, and Marek Jacob
Geosci. Model Dev., 18, 905–919, https://doi.org/10.5194/gmd-18-905-2025, https://doi.org/10.5194/gmd-18-905-2025, 2025
Short summary
Short summary
In this paper, we investigated performance indicators of the climate model ICON (ICOsahedral Nonhydrostatic) on different compute architectures to answer the question of how to generate high-resolution climate simulations. Evidently, it is not enough to use more computing units of the conventionally used architectures; higher memory throughput is the most promising approach. More potential can be gained from single-node optimization rather than simply increasing the number of compute nodes.
Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik
Geosci. Model Dev., 18, 763–785, https://doi.org/10.5194/gmd-18-763-2025, https://doi.org/10.5194/gmd-18-763-2025, 2025
Short summary
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Giovanni Di Virgilio, Fei Ji, Eugene Tam, Jason P. Evans, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Yue Li, and Matthew L. Riley
Geosci. Model Dev., 18, 703–724, https://doi.org/10.5194/gmd-18-703-2025, https://doi.org/10.5194/gmd-18-703-2025, 2025
Short summary
Short summary
We evaluate the skill in simulating the Australian climate of some of the latest generation of regional climate models. We show when and where the models simulate this climate with high skill versus model limitations. We show how new models perform relative to the previous-generation models, assessing how model design features may underlie key performance improvements. This work is of national and international relevance as it can help guide the use and interpretation of climate projections.
Giovanni Di Virgilio, Jason P. Evans, Fei Ji, Eugene Tam, Jatin Kala, Julia Andrys, Christopher Thomas, Dipayan Choudhury, Carlos Rocha, Stephen White, Yue Li, Moutassem El Rafei, Rishav Goyal, Matthew L. Riley, and Jyothi Lingala
Geosci. Model Dev., 18, 671–702, https://doi.org/10.5194/gmd-18-671-2025, https://doi.org/10.5194/gmd-18-671-2025, 2025
Short summary
Short summary
We introduce new climate models that simulate Australia’s future climate at regional scales, including at an unprecedented resolution of 4 km for 1950–2100. We describe the model design process used to create these new climate models. We show how the new models perform relative to previous-generation models and compare their climate projections. This work is of national and international relevance as it can help guide climate model design and the use and interpretation of climate projections.
Jiawang Feng, Chun Zhao, Qiuyan Du, Zining Yang, and Chen Jin
Geosci. Model Dev., 18, 585–603, https://doi.org/10.5194/gmd-18-585-2025, https://doi.org/10.5194/gmd-18-585-2025, 2025
Short summary
Short summary
In this study, we improved the calculation of how aerosols in the air interact with radiation in WRF-Chem. The original model used a simplified method, but we developed a more accurate approach. We found that this method significantly changes the properties of the estimated aerosols and their effects on radiation, especially for dust aerosols. It also impacts the simulated weather conditions. Our work highlights the importance of correctly representing aerosol–radiation interactions in models.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3522, https://doi.org/10.5194/egusphere-2024-3522, 2024
Short summary
Short summary
We analyzed carbon and nitrogen mass conservation in data from CMIP6 Earth System Models. Our findings reveal significant discrepancies between flux and pool size data, particularly in nitrogen, where cumulative imbalances can reach hundreds of gigatons. These imbalances appear primarily due to missing or inconsistently reported fluxes – especially for land use and fire emissions. To enhance data quality, we recommend that future climate data protocols address this issue at the reporting stage.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Ingo Richter, Ping Chang, Gokhan Danabasoglu, Dietmar Dommenget, Guillaume Gastineau, Aixue Hu, Takahito Kataoka, Noel Keenlyside, Fred Kucharski, Yuko Okumura, Wonsun Park, Malte Stuecker, Andrea Taschetto, Chunzai Wang, Stephen Yeager, and Sang-Wook Yeh
EGUsphere, https://doi.org/10.5194/egusphere-2024-3110, https://doi.org/10.5194/egusphere-2024-3110, 2024
Short summary
Short summary
The tropical ocean basins influence each other through multiple pathways and mechanisms, here referred to as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models, but have obtained conflicting results. This may be partly due to differences in experiment protocols, and partly due to systematic model errors. TBIMIP aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-183, https://doi.org/10.5194/gmd-2024-183, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Improving climate predictions has significant socio-economic impacts. In this study, we developed and applied a weakly coupled ocean data assimilation (WCODA) system to a coupled climate model. The WCODA system improves simulations of ocean temperature and salinity across many global regions. It also enhances the simulation of interannual precipitation and temperature variability over the southern US. This system is to support future predictability studies.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2183, https://doi.org/10.5194/egusphere-2024-2183, 2024
Short summary
Short summary
PaleoSTeHM v1.0-rc is a state-of-the-art framework designed to reconstruct past environmental conditions using geological data. Built on modern machine learning techniques, it efficiently handles the sparse and noisy nature of paleo records, allowing scientists to make accurate and scalable inferences about past environmental change. By using flexible statistical models, PaleoSTeHM separates different sources of uncertainty, improving the precision of historical climate reconstructions.
Cited articles
Anyomi, K. A., Mitchell, S. J., Perera, A. H., and Ruel, J. C.: Windthrow dynamics in Boreal Ontario: A simulation of the vulnerability of several stand types across a range of wind speeds, Forests, 8, 1–15, https://doi.org/10.3390/f8070233, 2017.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter, A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2, 598–600, https://doi.org/10.1038/ngeo618, 2009.
Bellassen, V., Maire, G. L., Dhôte, J. F., Ciais, P., and Viovy, N.: Modelling forest management within a global vegetation model – Part 1: Model structure and general behaviour, Ecol. Modell., 221, 2458–2474, https://doi.org/10.1016/j.ecolmodel.2010.07.008, 2010.
Bengtsson, A. and Nilsson, C.: Extreme value modelling of storm damage in Swedish forests, Nat. Hazards Earth Syst. Sci., 7, 515–521, https://doi.org/10.5194/nhess-7-515-2007, 2007.
Bonan, G. B.: Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444–1449, https://doi.org/10.1126/science.1155121, 2008.
Chen, Y. Y., Ryder, J., Bastrikov, V., McGrath, M. J., Naudts, K., Otto, J., Ottlé, C., Peylin, P., Polcher, J., Valade, A., Black, A., Elbers, J. A., Moors, E., Foken, T., van Gorsel, E., Haverd, V., Heinesch, B., Tiedemann, F., Knohl, A., Launiainen, S., Loustau, D., Ogée, J., Vessala, T., and Luyssaert, S.: Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme, Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, 2016.
Chen, Y.-Y.: ORCHIDEE-CAN (revision 4262), Version 4262, Zenodo, available at: http://doi.org/10.5281/zenodo.1109750, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Deleuze, C., Pain, O., Dhôte, J.-F., and Hervé, J.-C.: A flexible radial increment model for individual trees in pure even-aged stands, Ann. For. Sci., 61, 327–335, https://doi.org/10.1051/forest:2004026, 2004.
de Rosnay, P.: Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula, Geophys. Res. Lett., 30, 1986, https://doi.org/10.1029/2003GL018024, 2003.
Devaraju, N., Bala, G., and Modak, A.: Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects, P. Natl. Acad. Sci., 112, 3257–3262, https://doi.org/10.1073/pnas.1423439112, 2015.
Drössler, L.: Tree species mixtures – A common feature of southern Swedish forests, Forestry, 83, 433–441, https://doi.org/10.1093/forestry/cpq025, 2010.
Dupont, S. and Brunet, Y.: Edge flow and canopy structure: A large-eddy simulation study, Boundary-Layer Meteorol., 126, 51–71, https://doi.org/10.1007/s10546-007-9216-3, 2008.
Everham, E. M., Brokaw, N. V. L., Iii, E. M. E., and Brokaw, N. V. L.: Forest damage and recovery from catastrophic wind, Bot. Rev., 62, 113–185, 1996.
Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, P. D., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., and Woodward, F. I.: Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO 2, P. Natl. Acad. Sci., 111, 3280–3285, https://doi.org/10.1073/pnas.1222477110, 2014.
Futter, M. N., Löfgren, S., Köhler, S. J., Lundin, L., Moldan, F., and Bringmark, L.: Simulating dissolved organic carbon dynamics at the swedish integrated monitoring sites with the integrated catchments model for carbon, INCA-C, Ambio, 40, 906–919, https://doi.org/10.1007/s13280-011-0203-z, 2011.
Gardiner, B. and Stacey, G.: Designing forest edges to improve wind stability, Tech. rep., Forestry Commission, 1996.
Gardiner, B., Peltola, H., and Kellomäki, S.: Comparison of two models for predicting the critical wind speeds required to damage coniferous trees, Ecol. Modell., 129, 1–23, https://doi.org/10.1016/S0304-3800(00)00220-9, 2000.
Gardiner, B., Blennow, K., Carnus, J.-M., Fleischer, P., Ingemarson, F., Landmann, G., Lindner, M., Marzano, M., Nicoll, B., Orazio, C., Peyron, J.-L., Schelhaas, M.-J., Schuck, A., and Usbeck, T.: Destructive storms in European forests: Past and forthcoming impacts, Final Rep. to Eur. Comm. – DG Environ., p. 138, https://doi.org/10.13140/RG.2.1.1420.4006, 2010.
Hale, S. E., Gardiner, B. A., Wellpott, A., Nicoll, B. C., and Achim, A.: Wind loading of trees: Influence of tree size and competition, Eur. J. For. Res., 131, 203–217, https://doi.org/10.1007/s10342-010-0448-2, 2012.
Hale, S. A., Gardiner, B., Peace, A., Nicoll, B., Taylor, P., and Pizzirani, S.: Comparison and validation of three versions of a forest wind risk model, Environ. Model. Softw., 68, 27–41, https://doi.org/10.1016/j.envsoft.2015.01.016, 2015.
Helmfrid, S.: Forests and forestry in Sweden, GeoJournal, 24, p. 432, https://doi.org/10.1007/BF00578267, 1991.
Henderson-Sellers, A., McGuffie, K., and Pitman, A. J.: The project for intercomparison of land-surface parametrization schemes (PILPS): 1992 to 1995, Clim. Dynam., 12, 849–859, https://doi.org/10.1007/s003820050147, 1996.
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J. L., Fairhead, L., Filiberti, M. A., Friedlingstein, P., Grandpeix, J. Y., Krinner, G., LeVan, P., Li, Z. X., and Lott, F.: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006.
Huang, H.-Y., Capps, S. B., Huang, S.-C., and Hall, A.: Downscaling near-surface wind over complex terrain using a physically-based statistical modeling approach, Clim. Dynam., 44, 529–542, https://doi.org/10.1007/s00382-014-2137-1, 2015.
Hyndman, R. J. and Koehler, A. B.: Another look at measures of forecast accuracy, Int. J. Forecast., 22, 679–688, https://doi.org/10.1016/j.ijforecast.2006.03.001, 2006.
Ishihara, T., Oh, S., and Tokuyama, Y.: Numerical study on flow fields of tornado-like vortices using the LES turbulence model, J. Wind Eng. Ind. Aerodyn., 99, 239–248, https://doi.org/10.1016/j.jweia.2011.01.014, 2011.
Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J., Cook, C. W., Farley, K. A., le Maitre, D. C., McCarl, B. A., and Murray, B. C.: Trading water for carbon with biological carbon sequestration., Science, 310, 1944–1947, https://doi.org/10.1126/science.1119282, 2005.
Juárez, R. I. N., Chambers, J. Q., Zeng, H., and Baker, D. B.: Hurricane driven changes in land cover create biogeophysical climate feedbacks, Geophys. Res. Lett., 35, L23401, https://doi.org/10.1029/2008GL035683, 2008.
Kamimura, K., Gardiner, B., Kato, A., Hiroshima, T., and Shiraishi, N.: Developing a decision support approach to reduce wind damage risk – A case study on sugi (Cryptomeria japonica (L.f.) D.Don) forests in Japan, Forestry, 81, 429–445, https://doi.org/10.1093/forestry/cpn029, 2008.
Kärvemo, S.: Outbreak dynamics of the spruce bark beetle Ips typographus in time and space, Doctoral thesis, Swedish University, 2015.
Keane, R. E., Cary, G. J., Davies, I. D., Flannigan, M. D., Gardner, R. H., Lavorel, S., Lenihan, J. M., Li, C., and Rupp, T. S.: A classification of landscape fire succession models: Spatial simulations of fire and vegetation dynamics, Ecol. Modell., 179, 3–27, https://doi.org/10.1016/j.ecolmodel.2004.03.015, 2004.
Koeble, R. and Seufert, G.: Novel Maps for Forest Tree Species in Europe, P. Conf. 'A Chang. Atmos., Torino (IT), 17–20 September, 2001.
Köhler, S. J., Zetterberg, T., Futter, M. N., Flster, J., and Löfgren, S.: Assessment of uncertainty in long-term mass balances for acidification assessments: A MAGIC model exercise, Ambio, 40, 891–905, https://doi.org/10.1007/s13280-011-0208-7, 2011.
Komonen, A., Schroeder, L. M., and Weslien, J.: Ips typographus population development after a severe storm in a nature reserve in southern Sweden, J. Appl. Entomol., 135, 132–141, https://doi.org/10.1111/j.1439-0418.2010.01520.x, 2011.
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003GB002199, 2005.
Lagergren, F., Jönsson, A. M., Blennow, K., and Smith, B.: Implementing storm damage in a dynamic vegetation model for regional applications in Sweden, Ecol. Modell., 247, 71–82, https://doi.org/10.1016/j.ecolmodel.2012.08.011, 2012.
Lanquaye-Opoku, N. and Mitchell, S. J.: Portability of stand-level empirical windthrow risk models, For. Ecol. Manage., 216, 134–148, https://doi.org/10.1016/j.foreco.2005.05.032, 2005.
Larsén, X. G. and Mann, J.: The effects of disjunct sampling and averaging time on maximum mean wind speeds, J. Wind Eng. Ind. Aerodyn., 94, 581–602, https://doi.org/10.1016/j.jweia.2006.01.020, 2006.
Lasslop, G., Thonicke, K., and Kloster, S.: SPITFIRE within the MPI Earth system model: Model development and evaluation, J. Adv. Model. Earth Syst., 6, 740–755, https://doi.org/10.1002/2013MS000284, 2014.
Lin, K.-C., Hamburg, S. P., Wang, L., Duh, C.-T., Huang, C.-M., Chang, C.-T., and Lin, T.-C.: Impacts of increasing typhoons on the structure and function of a subtropical forest: reflections of a changing climate, Sci. Rep., 7, 4911, https://doi.org/10.1038/s41598-017-05288-y, 2017.
Lindroth, A., Lagergren, F., Grelle, A., Klemedtsson, L., Langvall, O., Weslien, P., and Tuulik, J.: Storms can cause Europe-wide reduction in forest carbon sink, Global Chang. Biol., 15, 346–355, https://doi.org/10.1111/j.1365-2486.2008.01719.x, 2009.
Liu, H. and Weng, Q.: Scaling effect on the relationship between landscape pattern and land surface temperature, Photogramm. Eng. Remote Sens., 75, 291–304, https://doi.org/10.14358/PERS.75.3.291, 2009.
Maignan, F., Bréon, F.-M., Chevallier, F., Viovy, N., Ciais, P., Garrec, C., Trules, J., and Mancip, M.: Evaluation of a global vegetation model using time series of satellite vegetation indices, Geosci. Model Dev., 4, 1103–1114, https://doi.org/10.5194/gmd-4-1103-2011, 2011.
Mayhead, G. J.: Some drag coefficients for british forest trees derived from wind tunnel studies, Agric. Meteorol., 12, 123–130, https://doi.org/10.1016/0002-1571(73)90013-7, 1973.
McGrath, M. J., Luyssaert, S., Meyfroidt, P., Kaplan, J. O., Bürgi, M., Chen, Y., Erb, K., Gimmi, U., McInerney, D., Naudts, K., Otto, J., Pasztor, F., Ryder, J., Schelhaas, M.-J., and Valade, A.: Reconstructing European forest management from 1600 to 2010, Biogeosciences, 12, 4291–4316, https://doi.org/10.5194/bg-12-4291-2015, 2015.
McGrath, M. J., Ryder, J., Pinty, B., Otto, J., Naudts, K., Valade, A., Chen, Y., Weedon, J., and Luyssaert, S.: A multi-level canopy radiative transfer scheme for ORCHIDEE (SVN r2566), based on a domain-averaged structure factor, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-280, 2016.
Merrens, E. J. and Peart, D. R.: Effects of hurricane damage on individual growth and stand structure in a hardwood forest in New Hampshire, USA, J. Ecol., 80, 787–795, https://doi.org/10.2307/2260866, 1992.
Miller, B. P., Walshe, T., Enright, N. J., and Lamont, B. B.: Error in the inference of fire history from grasstrees, Austral Ecol., 32, 908–916, https://doi.org/10.1111/j.1442-9993.2007.01779.x, 2007.
Moeng, C.-H.: A large-eddy-simulation model for the study of planetary boundary-layer turbulence, J. Atmos. Sci., 41, 2052–2062, 10.1175/1520-0469(1984)041$<$2052: ALESMF$>$2.0.CO;2, 1984.
Moore, J. R., Manley, B. R., Park, D., and Scarrott, C. J.: Quantification of wind damage to New Zealand's planted forests, Forestry, 86, 173–183, https://doi.org/10.1093/forestry/cps076, 2013.
National Meteorological Library and Archive: Fact sheet 6 – The Beaufort Scale, Natl. Meteorol. Libr. Arch., 2010.
Naudts, K., Ryder, J., McGrath, M. J., Otto, J., Chen, Y., Valade, A., Bellasen, V., Berhongaray, G., Bönisch, G., Campioli, M., Ghattas, J., De Groote, T., Haverd, V., Kattge, J., MacBean, N., Maignan, F., Merilä, P., Penuelas, J., Peylin, P., Pinty, B., Pretzsch, H., Schulze, E. D., Solyga, D., Vuichard, N., Yan, Y., and Luyssaert, S.: A vertically discretised canopy description for ORCHIDEE (SVN r2290) and the modifications to the energy, water and carbon fluxes, Geosci. Model Dev., 8, 2035–2065, https://doi.org/10.5194/gmd-8-2035-2015, 2015.
Naudts, K., Chen, Y., McGrath, M. J., Ryder, J., Valade, A., Otto, J., and Luyssaert, S.: Europe's forest management did not mitigate climate warming, Science, 351, 597–601, https://doi.org/10.1126/science.aac9976, 2016.
Negrón-Juárez, R., Baker, D. B., Zeng, H., Henkel, T. K., and Chambers, J. Q.: Assessing hurricane-induced tree mortality in U.S. Gulf Coast forest ecosystems, J. Geophys. Res., 115, G04030, https://doi.org/10.1029/2009JG001221, 2010.
Nicoll, B. C., Gardiner, B. A., Rayner, B., and Peace, A. J.: Anchorage of coniferous trees in relation to species, soil type, and rooting depth, Can. J. For. Res., 36, 1871–1883, https://doi.org/10.1139/X06-072, 2006.
Nilsson, C., Stjernquist, I., Bärring, L., Schlyter, P., Jönsson, A. M., and Samuelsson, H.: Recorded storm damage in Swedish forests 1901–2000, For. Ecol. Manage., 199, 165–173, https://doi.org/10.1016/j.foreco.2004.07.031, 2004.
O'Halloran, T. L., Law, B. E., Goulden, M. L., Wang, Z., Barr, J. G., Schaaf, C., Brown, M., Fuentes, J. D., Göckede, M., Black, A., and Engel, V.: Radiative forcing of natural forest disturbances, Global Chang. Biol., 18, 555–565, https://doi.org/10.1111/j.1365-2486.2011.02577.x, 2012.
Pan, Y., Chamecki, M., and Isard, S. A.: Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer, J. Fluid Mech., 753, 499–534, https://doi.org/10.1017/jfm.2014.379, 2014.
Peltola, H. M.: Mechanical stability of trees under static loads, Am. J. Bot., 93, 1501–1511, https://doi.org/10.3732/ajb.93.10.1501, 2006.
Peltola, H., Kellomäki, S., Väisänen, H., and Ikonen, V. P.: A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch, Can. J. For. Res., 29, 647–661, https://doi.org/10.1139/x99-029, 1999.
Planque, C., Carrer, D., and Roujean, J.-L.: Analysis of MODIS albedo changes over steady woody covers in France during the period of 2001–2013, Remote Sens. Environ., 191, 13–29, https://doi.org/10.1016/j.rse.2016.12.019, 2017.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess, P. G., Pfister, G., Mack, M. C., Treseder, K. K., Welp, L. R., Chapin, F. S., Harden, J. W., Goulden, M. L., Lyons, E., Neff, J. C., Schuur, E. a. G., and Zender, C. S.: The impact of boreal forest fire on climate warming., Science, 314, 1130–1132, https://doi.org/10.1126/science.1132075, 2006.
Raupach, M. R.: Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index, Bound.-Lay. Meteorol., 71, 211–216, https://doi.org/10.1007/BF00709229, 1994.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P., and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6, 597–607, https://doi.org/10.1038/ngeo1830, 2013.
Ringeval, B., Decharme, B., Piao, S. L., Ciais, P., Papa, F., De Noblet-Ducoudr, N., Prigent, C., Friedlingstein, P., Gouttevin, I., Koven, C., and Ducharne, A.: Modelling sub-grid wetland in the ORCHIDEE global land surface model: Evaluation against river discharges and remotely sensed data, Geosci. Model Dev., 5, 941–962, https://doi.org/10.5194/gmd-5-941-2012, 2012.
Rudnicki, M., Mitchell, S. J., and Novak, M. D.: Wind tunnel measurements of crown streamlining and drag relationships for three conifer species, Can. J. For. Res., 34, 666–676, https://doi.org/10.1139/X03-233, 2004.
Ruel, J.-C., Pin, D., Spacek, L., Cooper, K., and Benoit, R.: The estimation of wind exposure for windthrow hazard rating: comparison between Strongblow, MC2, Topex and a wind tunnel study, Forestry, 70, 253–266, https://doi.org/10.1093/forestry/70.3.253, 1997.
Rüger, N., Huth, A., Hubbell, S. P., and Condit, R.: Response of recruitment to light availability across a tropical lowland rain forest community, J. Ecol., 97, 1360–1368, https://doi.org/10.1111/j.1365-2745.2009.01552.x, 2009.
Ryder, J., Polcher, J., Peylin, P., Ottlé, C., Chen, Y., Van Gorsel, E., Haverd, V., McGrath, M. J., Naudts, K., Otto, J., Valade, A., and Luyssaert, S.: A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations, Geosci. Model Dev., 9, 223–245, https://doi.org/10.5194/gmd-9-223-2016, 2016.
Salameh, T., Drobinski, P., Vrac, M., and Naveau, P.: Statistical downscaling of near-surface wind over complex terrain in southern France, Meteorol. Atmos. Phys., 103, 253–265, https://doi.org/10.1007/s00703-008-0330-7, 2009.
Scatena, F., Planos-Gutierrez, E., and Schellekens, J.: Natural disturbances and the hydrology of humid tropical forests, in: Forest, water and people in the humid tropics, edited by: Bonell, M. and Bruijnzeel, L. A., Cambridge: Cambridge University Press, 489–512, 2005.
Schelhaas, M.-J. J., Nabuurs, G.-J. J., and Schuck, A.: Natural disturbances in the European forests in the 19th and 20th centuries, Global Chang. Biol., 9, 1620–1633, https://doi.org/10.1046/j.1365-2486.2003.00684.x, 2003.
Schlyter, P., Stjernquist, I., Barring, L., Jonsson, A. M., and Nilsson, C.: Assessment of the impacts of climate change and weather extremes on boreal forests in northern Europe, focusing on Norway spruce, Clim. Res., 31, 75–84, https://doi.org/10.3354/cr031075, 2006.
Schroeder, M., Mitsell, N., and Thuresson, T.: The spruce bark beetle in wind-felled trees in the first summer following the storm Gudrun, Jonkoping:Skogsstyrelsen, Cop., 2006.
Scott, R. E. and Mitchell, S. J.: Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes, For. Ecol. Manage., 218, 193–209, https://doi.org/10.1016/j.foreco.2005.07.012, 2005.
Seidl, R. and Blennow, K.: Pervasive growth reduction in Norway spruce forests following wind disturbance, PLoS One, 7, e33301, https://doi.org/10.1371/journal.pone.0033301, 2012.
Seidl, R., Schelhaas, M.-J., Rammer, W., and Verkerk, P. J.: Increasing forest disturbances in Europe and their impact on carbon storage, Nat. Clim. Chang., 4, 806–810, https://doi.org/10.1038/nclimate2318, 2014.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., and Reyer, C. P. O.: Forest disturbances under climate change, Nat. Clim. Chang., 7, 395–402, https://doi.org/10.1038/nclimate3303, 2017.
Sellers, P. J.: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science, 275, 502–509, https://doi.org/10.1126/science.275.5299.502, 1997.
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A simple biosphere model (SiB) for use within general circulation models, J. Atmos. Sci., 43, 305–331, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2, 1986.
Shinozaki, K., Yoda, K., Kazuo, H., and Kira, T.: A quantitative analysis of plant form-The pipe model theory, Ecol. Soc. Japan, 14, 97–105, 1964.
Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Chang. Biol., 9, 161–185, https://doi.org/10.1046/j.1365-2486.2003.00569.x, 2003.
Stéfanon, M., Drobinski, P., D'Andrea, F., and De Noblet-Ducoudré, N.: Effects of interactive vegetation phenology on the 2003 summer heat waves, J. Geophys. Res.-Atmos., 117, D24103, https://doi.org/10.1029/2012JD018187, 2012.
Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., Worrall, J. J., and Woods, A. J.: Climate change and forest diseases, Plant Pathol., 60, 133–149, https://doi.org/10.1111/j.1365-3059.2010.02406.x, 2011.
Swann, A. L. S., Fung, I. Y., and Chiang, J. C. H.: Mid-latitude afforestation shifts general circulation and tropical precipitation, P. Natl. Acad. Sci., 109, 712–716, https://doi.org/10.1073/pnas.1116706108, 2012.
Takano, K. T., Nakagawa, K., Aiba, M., Oguro, M., Morimoto, J., Furukawa, Y., Mishima, Y., Ogawa, K., Ito, R., and Takemi, T.: Projection of impacts of climate change on windthrows and evaluation of potential adaptation measures in forest management: A case study from empirical modelling of windthrows in Hokkaido, Japan, by Typhoon Songda (2004), Hydrol. Res. Lett., 10, 132–138, https://doi.org/10.3178/hrl.10.132, 2016.
Teuling, A. J., Taylor, C. M., Meirink, J. F., Melsen, L. A., Miralles, D. G., van Heerwaarden, C. C., Vautard, R., Stegehuis, A. I., Nabuurs, G.-J., and de Arellano, J. V.-G.: Observational evidence for cloud cover enhancement over western European forests, Nat. Commun., 8, 14065, https://doi.org/10.1038/ncomms14065, 2017.
Usbeck, T., Wohlgemuth, T., Pfister, C., Volz, R., and Dobbertin, M.: Wind speed measurements and forest damage in Canton Zurich (Central Europe) from 1891 to winter 2007, Int. J. Climatol., 358, 347–358, https://doi.org/10.1002/joc.1895, 2010.
Vickery, P. J., Wadhera, D., Powell, M. D., and Chen, Y.: A hurricane boundary layer and wind field model for use in engineering applications, J. Appl. Meteorol. Climatol., 48, 381–405, https://doi.org/10.1175/2008JAMC1841.1, 2009.
Viovy, N.: CRU-NCEP dataset, available at: ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm (last access: 22 February 2018), 2011.
Vollsinger, S., Mitchell, S. J., Byrne, K. E., Novak, M. D., and Rudnicki, M.: Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species, Can. J. For. Res., 35, 1238–1249, https://doi.org/10.1139/x05-051, 2005.
Vuichard, N. and Papale, D.: Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis, Earth Syst. Sci. Data, 7, 157–171, https://doi.org/10.5194/essd-7-157-2015, 2015.
Wilkenskjeld, S., Kloster, S., Pongratz, J., Raddatz, T., and Reick, C. H.: Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM, Biogeosciences, 11, 4817–4828, https://doi.org/10.5194/bg-11-4817-2014, 2014.
Winstral, A., Jonas, T., and Helbig, N.: Statistical downscaling of gridded wind speed data using local topography, J. Hydrometeorol., 18, 335–348, https://doi.org/10.1175/JHM-D-16-0054.1, 2017.
Yang, Z.: Large-eddy simulation: Past, present and the future, Chinese J. Aeronaut., 28, 11–24, https://doi.org/10.1016/j.cja.2014.12.007, 2015.
Yue, C., Ciais, P., Luyssaert, S., Li, W., McGrath, M. J., Chang, J., and Peng, S.: Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2, Geosci. Model Dev., 11, 409–428, https://doi.org/10.5194/gmd-11-409-2018, 2018.
Zhu, P.: Impact of land-surface roughness on surface winds during hurricane landfall, Q. J. Roy. Meteorol. Soc., 1057, 1051–1057, https://doi.org/10.1002/qj.265, 2008.
Short summary
The inclusion of process-based wind-throw damage simulation in Earth system models has been hampered by the big-leaf approach, which cannot provide the canopy structure information that is required. We adapted the physics from ForestGALES to calculate CWS on large scales. The new model included several numerically efficient solutions, such as handling the landscape heterogeneity, downscaling spatially and temporally aggregated wind fields, and downscaling storm damage within the 2500 km2 pixels.
The inclusion of process-based wind-throw damage simulation in Earth system models has been...