Articles | Volume 11, issue 2
https://doi.org/10.5194/gmd-11-771-2018
https://doi.org/10.5194/gmd-11-771-2018
Model description paper
 | 
02 Mar 2018
Model description paper |  | 02 Mar 2018

Simulating damage for wind storms in the land surface model ORCHIDEE-CAN (revision 4262)

Yi-Ying Chen, Barry Gardiner, Ferenc Pasztor, Kristina Blennow, James Ryder, Aude Valade, Kim Naudts, Juliane Otto, Matthew J. McGrath, Carole Planque, and Sebastiaan Luyssaert

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yi-Ying Chen on behalf of the Authors (11 Dec 2017)  Author's response   Manuscript 
ED: Reconsider after major revisions (25 Dec 2017) by Hisashi Sato
AR by Yi-Ying Chen on behalf of the Authors (28 Dec 2017)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (04 Jan 2018) by Hisashi Sato
ED: Publish as is (22 Jan 2018) by Hisashi Sato
AR by Yi-Ying Chen on behalf of the Authors (22 Jan 2018)  Manuscript 
Download
Short summary
The inclusion of process-based wind-throw damage simulation in Earth system models has been hampered by the big-leaf approach, which cannot provide the canopy structure information that is required. We adapted the physics from ForestGALES to calculate CWS on large scales. The new model included several numerically efficient solutions, such as handling the landscape heterogeneity, downscaling spatially and temporally aggregated wind fields, and downscaling storm damage within the 2500 km2 pixels.