Articles | Volume 11, issue 8
https://doi.org/10.5194/gmd-11-3313-2018
https://doi.org/10.5194/gmd-11-3313-2018
Model evaluation paper
 | 
21 Aug 2018
Model evaluation paper |  | 21 Aug 2018

Baseline evaluation of the impact of updates to the MIT Earth System Model on its model parameter estimates

Alex G. Libardoni, Chris E. Forest, Andrei P. Sokolov, and Erwan Monier

Related authors

Estimates of climate system properties incorporating recent climate change
Alex G. Libardoni, Chris E. Forest, Andrei P. Sokolov, and Erwan Monier
Adv. Stat. Clim. Meteorol. Oceanogr., 4, 19–36, https://doi.org/10.5194/ascmo-4-19-2018,https://doi.org/10.5194/ascmo-4-19-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations
Deepeshkumar Jain, Suryachandra A. Rao, Ramu A. Dandi, Prasanth A. Pillai, Ankur Srivastava, Maheswar Pradhan, and Kiran V. Gangadharan
Geosci. Model Dev., 17, 709–729, https://doi.org/10.5194/gmd-17-709-2024,https://doi.org/10.5194/gmd-17-709-2024, 2024
Short summary
Exploring the ocean mesoscale at reduced computational cost with FESOM 2.5: efficient modeling strategies applied to the Southern Ocean
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
Geosci. Model Dev., 17, 529–543, https://doi.org/10.5194/gmd-17-529-2024,https://doi.org/10.5194/gmd-17-529-2024, 2024
Short summary
Truly conserving with conservative remapping methods
Karl E. Taylor
Geosci. Model Dev., 17, 415–430, https://doi.org/10.5194/gmd-17-415-2024,https://doi.org/10.5194/gmd-17-415-2024, 2024
Short summary
High-resolution downscaling of CMIP6 Earth system and global climate models using deep learning for Iberia
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024,https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Earth system modeling on modular supercomputing architecture: coupled atmosphere–ocean simulations with ICON 2.6.6-rc
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
Geosci. Model Dev., 17, 261–273, https://doi.org/10.5194/gmd-17-261-2024,https://doi.org/10.5194/gmd-17-261-2024, 2024
Short summary

Cited articles

Allen, M. R. and Frame, D. J.: Call off the quest, Science, 318, 582–583, 2007. a
Andrews, D. G. and Allen, M. R.: Diagnosis of climate models in terms of transient climate response and feedback response time, Atmos. Sci. Lett., 9, 7–12, 2008. a
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res., 111, D12106, https://doi.org/10.1029/2005JD006548, 2006. a, b
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson, D. S., Wu, F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing, Atmos. Chem. Phys., 11, 11267–11292, https://doi.org/10.5194/acp-11-11267-2011, 2011. a, b
Download
Short summary
We present a transparent method for evaluating how changes to the MIT Earth System Model impact its response to anthropogenic and natural forcings. We tested the effects that changes to both model components and forcings have on the estimates of model parameters that agree with historical observations. Overall, changes to model forcings are more important than the new components, while the long-term model response is unchanged. The methodology serves as a guide for documenting model development.