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Abstract. For over 20 years, the Massachusetts Institute of
Technology Earth System Model (MESM) has been used ex-
tensively for climate change research. The model is under
continuous development with components being added and
updated. To provide transparency in the model development,
we perform a baseline evaluation by comparing model be-
havior and properties in the newest version to the previous
model version. In particular, changes resulting from updates
to the land surface model component and the input forcings
used in historical simulations of climate change are inves-
tigated. We run an 1800-member ensemble of MESM his-
torical climate simulations where the model parameters that
set climate sensitivity, the rate of ocean heat uptake, and the
net anthropogenic aerosol forcing are systematically varied.
By comparing model output to observed patterns of surface
temperature changes and the linear trend in the increase in
ocean heat content, we derive probability distributions for the
three model parameters. Furthermore, we run a 372-member
ensemble of transient climate simulations where all model
forcings are fixed and carbon dioxide concentrations are in-
creased at the rate of 1 % year−1. From these runs, we de-
rive response surfaces for transient climate response and ther-
mosteric sea level rise as a function of climate sensitivity and
ocean heat uptake. We show that the probability distributions
shift towards higher climate sensitivities and weaker aerosol
forcing when using the new model and that the climate re-
sponse surfaces are relatively unchanged between model ver-
sions. Because the response surfaces are independent of the
changes to the model forcings and similar between model
versions with different land surface models, we suggest that
the change in land surface model has limited impact on the

temperature evolution in the model. Thus, we attribute the
shifts in parameter estimates to the updated model forcings.

1 Introduction

Equilibrium climate sensitivity (ECS), the equilibrium global
mean surface temperature change due to a doubling of at-
mospheric carbon dioxide concentrations, is a climate sys-
tem property that has been widely studied and strongly influ-
ences future climate projections. One of the complexities of
ECS is that it is a function of many feedbacks and processes
that act on different spatial and temporal scales. In particu-
lar, the lapse rate, water vapor, cryosphere, and cloud feed-
backs play especially critical roles in determining the climate
sensitivity (Bony et al., 2006). Given its influence on future
climate change, many studies using a range of methods have
attempted to estimate ECS.

One class of studies estimates ECS directly from obser-
vations using a global energy budget approach (Gregory
et al., 2002; Otto et al., 2013; Lewis and Curry, 2014; Mas-
ters, 2014). These studies calculate probability distributions
of ECS from estimates of global mean surface temperature
change, the heat stored in the ocean, and changes in radia-
tive forcing, along with the associated uncertainties in their
measurements. A second class of studies uses simplified cli-
mate models such as Earth system models of intermediate
complexity (EMICs) or energy balance models (e.g., Forest
et al., 2002, 2008; Knutti et al., 2003; Libardoni and For-
est, 2013; Olson et al., 2013; Johansson et al., 2015). Taking
advantage of the computational efficiency of the simplified
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models, these studies run large ensembles over a range of
climate sensitivity values in addition to adjusting other rele-
vant factors, such as the rate of ocean heat uptake and a mea-
sure of the net aerosol forcing. By comparing model runs to
observations and evaluating how well individual model runs
match the past, estimates of ECS and other parameters are
given as probability distributions.

Transient climate response (TCR) provides a second met-
ric for estimating future climate change and is defined as the
global mean surface temperature change at the time of carbon
dioxide (CO2) doubling in response to CO2 concentrations
increasing at the rate of 1 % year−1. CO2 doubling occurs in
year 70 of this scenario, making TCR a shorter-term assess-
ment of climate change than ECS. Unlike ECS, which re-
quires reaching an equilibrium state, TCR is estimated while
the climate system is still adjusting to a time-dependent forc-
ing. There is a constant evolution in the strength and activ-
ity of processes and feedbacks in both the atmosphere and
the ocean as the climate system adjusts to reach equilibrium.
Due to the long timescales required to reach equilibrium,
Allen and Frame (2007) argue that we should focus on es-
timating TCR, which is more policy-relevant than ECS. Es-
timates of TCR can be made from current historical obser-
vations and are more meaningful on the decadal timescale,
whereas even if the equilibrium response is known, it may
never be reached. However, even if more focus is placed on
TCR than ECS, the two are closely linked. When consider-
ing atmosphere–ocean interactions, TCR has been shown to
depend on both climate sensitivity and the rate at which heat
is mixed into the deep ocean (Sokolov et al., 2003; Andrews
and Allen, 2008).

One EMIC that has been extensively used in studies esti-
mating ECS and TCR is the climate component of the Mas-
sachusetts Institute of Technology (MIT) Integrated Global
Systems Model (IGSM; Sokolov et al., 2005). Forest et al.
(2002, 2006, 2008) and Libardoni and Forest (2011, 2013)
estimated the joint probability distribution for climate sensi-
tivity and other model parameters in IGSM. Each study used
similar, but not identical, versions of IGSM with changes
both to key components of the model and to the input data
used to force the model. Climate change diagnostics were
also modified in the studies. The Earth system component
of IGSM has undergone further development and a new, up-
dated version was incorporated into the integrated frame-
work. This study serves as a baseline evaluation of how prob-
ability distributions for the model parameters change as a re-
sult of updating the Earth system component. More specifi-
cally, we investigate the impact of (1) the structural changes
to the model, (2) the historical datasets used to force the
model, and (3) the sampling strategy used to vary the model
parameters.

In the past, “IGSM” has been used to reference both the
fully integrated model as well as the standalone Earth sys-
tem component. We follow this convention and refer to the
older version of the Earth system model as IGSM, and we

refer to the updated version of the model as the MIT Earth
System Model (MESM). In this study, we provide a transpar-
ent method of testing and accounting for how the simulated
behavior and probability distribution functions change in re-
sponse to the recent model development. We derive a new
joint probability distribution by closely following the meth-
ods of Libardoni and Forest (2011) to show the impact that
the new version of the model has on the parameter estimates
and find that the new version of the model leads to higher
climate sensitivity estimates in addition to shifts in the distri-
butions of the other model parameters. The effects on the pa-
rameter distributions due to changing observations and tem-
perature metrics will be addressed in future studies in order
to separate their impacts from changes due to the model up-
date alone. We also show here how the emergent behavior of
MESM compares to the older IGSM by running a new set of
transient simulations and calculating how the response sur-
faces for TCR and thermosteric sea level rise depend on ECS
and the rate of ocean heat uptake.

In Sect. 2, we give a brief description of the MIT modeling
framework and the differences between IGSM and MESM.
We describe the process for deriving the joint probability dis-
tribution function used in Libardoni and Forest (2011) and
the modifications implemented in this study in Sect. 3. Pa-
rameter distributions and response surfaces are presented in
Sect. 4. In particular, we test whether changes in the distribu-
tions and responses are due to reducing the number of model
diagnostics, the sampling of the parameter space, or changes
in the model structure and input forcings. We present our
conclusions in Sect. 5.

2 Model

The climate component of the updated MIT Earth System
Model (Sokolov et al., 2018) replaces the version described
in Sokolov et al. (2005) and is an Earth system model of
intermediate complexity. It consists of a zonally averaged
atmosphere, zonally averaged land model, and a mixed-
layer anomaly diffusing ocean model. The mixed-layer ocean
model includes specified vertically integrated horizontal heat
transport by the deep ocean, a so-called “Q flux”. This flux
has been calculated from a simulation in which sea surface
temperatures and the sea-ice distribution were relaxed to-
ward their present-day climatology. Heat mixing into the
deep ocean is parameterized by the diffusion of the differ-
ence of the temperature at the bottom of the seasonal ther-
mocline from its value in a pre-industrial climate simulation
(Hansen et al., 1984; Sokolov and Stone, 1998). Since this
diffusion represents the cumulative effect of heat mixing by
all physical processes, the values of the diffusion coefficients
are significantly larger than those used in the subgrid-scale
diffusion parameterizations in ocean global circulation mod-
els. The spatial distribution of the diffusion coefficients used
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in the diffusive model is based on observations of tritium
mixing into the deep ocean (Hansen et al., 1988).

The radiation code takes into account major greenhouse
gases (H2O, CO2, CH4, N2O, chlorofluorocarbons (CFCs),
and O3) and multiple types of aerosols (e.g., SO2, black
and organic carbon). In historical climate simulations, non-
sulfate aerosol loadings are kept at their default values while
the sulfate aerosol forcing is parameterized through changes
in surface albedo using historical data on SO2 emissions.
Historical climate simulations are initialized from conditions
obtained from a long equilibrium simulation for 1860 condi-
tions.

Three model parameters that impact the climate system
response are easily modified in MESM. These parameters
are the equilibrium climate sensitivity (ECS), the effective
ocean diffusivity (Kv), and the net aerosol scaling factor
(Faer). ECS is changed by adjusting the strength of the cloud
feedback at different levels in the model (Sokolov, 2006;
Sokolov and Monier, 2012). The adjustment required for a
specific ECS is obtained from a lookup table derived from
model simulations with different feedback strengths where
CO2 concentrations have been doubled and the climate sys-
tem allowed to reach equilibrium. Kv represents the global
mean ocean diffusion coefficient in the mixed-layer ocean
model. The global mean diffusivity is adjusted by scaling the
spatial diffusivity pattern by the same factor at all locations.
A lower global mean diffusivity implies slower mixing of
heat into the deep ocean and a higher global mean diffusiv-
ity implies faster mixing. The albedo adjustment used for the
sulfate aerosol forcing is prescribed by a latitude-dependent
pattern that differs over land and ocean (Forest et al., 2001).
This pattern is held fixed spatially but scaled temporally by
estimated emissions of sulfur dioxide. Faer sets the amplitude
of the pattern in the 1980s. By choosing a set of the three pa-
rameters, θ = (ECS,Kv,Faer), we simulate different climate
states.

We now highlight two major updates made between the
current version of MESM and its predecessor. The first up-
date was the incorporation of a new land surface model.
The Community Land Model (CLM) version 3.5 (Oleson
et al., 2008) replaced CLM version 2.1 to improve estimates
of the surface heat balance in the model. A second update
to the model was an adjustment to the radiative forcing of
non-CO2 greenhouse gases in the radiation code. The adjust-
ment was made to match the calculations used in the Inter-
governmental Panel on Climate Change (IPCC) experiments
and produces weaker forcing for those constituents. Addi-
tionally, the forcings used to drive the model (Forest et al.,
2006) were extended and, in some cases, new data sources
were used. Greenhouse gas concentrations and stratospheric
aerosols from volcanic eruptions were obtained from the Na-
tional Aeronautics and Space Administration Goddard In-
stitute for Space Studies modeling group forcing suite. The
procedure for updating the greenhouse gas emissions from
Hansen et al. (2007) and the volcanic aerosol forcing from

Sato et al. (1993) was described in Miller et al. (2014). Up-
dates included incorporating data from more observational
sources and extending the length of the datasets. Sulfate
aerosol loading from Smith et al. (2011) was extended to
2011 by Klimont et al. (2013). The Kopp and Lean (2011)
solar irradiance dataset replaced the Lean (2000) dataset.
Lastly, the ozone concentration database developed by the
Atmospheric Chemistry and Climate initiative (AC&C) and
Stratospheric Processes and their Role in Climate project
(SPARC) ozone concentration database (Cionni et al., 2011)
that was developed in support of the Coupled Model Inter-
comparison Project phase 5 (CMIP5) replaced the concentra-
tion data used in Forest et al. (2006). The concentrations in
the dataset, hereafter referred to as AC&C/SPARC, drive the
tropospheric and stratospheric ozone forcing in the radiation
code. In Sect. 4, we show the differences between the old and
new datasets for those forcings where the data sources have
changed, namely solar and ozone.

3 Methods

In this section, we present an outline of the methodology
used to derive the joint probability distribution function
(PDF) for the model parameters and highlight the changes
implemented between this study and previous studies using
IGSM. We follow closely the methods of Libardoni and For-
est (2011), which we briefly summarize here. To derive the
PDFs, we compare output from each model simulation to
time series of observed climate change. A given model run
is evaluated through the use of a goodness-of-fit statistic:

r2
= (x(θ)− y)TC−1

N (x(θ)− y), (1)

where x(θ) and y are vectors of model output for a given
set of model parameters and observed data, respectively, and
C−1

N is the inverse of the noise–covariance matrix. In its sim-
plest form, the r2 statistic is the weighted sum of squares
residual between the model simulation and the observed pat-
tern. The weights applied to the residuals are estimated from
the unforced climate variability in a fully coupled, three-
dimensional model and represent the observed patterns we
would expect in the absence of external forcings. In Libar-
doni and Forest (2011), surface temperature, upper-air tem-
perature, and global mean ocean heat content patterns were
used to evaluate model performance. We note that the def-
inition of r2 presented here is different than the coefficient
of determination for the goodness of fit of a linear model.
In a linear model, high values of r2 indicate a good fit to the
model. In our weighted sum, low values of r2 indicate a good
fit between the model output and the observations.

The goodness-of-fit statistics for each pattern used to eval-
uate the model are converted to a PDF using the likelihood
function described in Libardoni and Forest (2011) and modi-
fied by Lewis (2013). Through an application of Bayes’ theo-
rem, the individual likelihoods are combined to derive a joint
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Figure 1. Parameter pairings where the models have been run. Points in black are common to both the IGSM and MESM ensembles. Blue
points are unique to the IGSM ensemble and red points are unique to the MESM ensemble.

PDF for the three model parameters. As in Libardoni and
Forest (2011), we apply an expert prior to ECS and uniform
priors to Kv and Faer. Marginal probability distributions for
individual parameters are calculated by integrating the joint
PDF over the other two parameters.

We make two changes to the methodology of Libardoni
and Forest (2011) to derive PDFs using MESM simulations.
First, we run the model for θ values that sample individual
parameters over a wider range and on a more regular grid.
Climate sensitivity is sampled from 0.5 to 10.0 ◦C in incre-
ments of 0.5 ◦C by adjusting the strength of the cloud feed-
back, the square root of ocean diffusivity is sampled from 0 to
8 cms−1/2 in increments of 1 cms−1/2, and the aerosol forc-
ing amplitude is sampled from −1.75 to 0.5 Wm−2 in incre-
ments 0.25 Wm−2. By choosing this sampling strategy, we
have increased the number of runs from 640 with IGSM to
1800 runs with MESM, widened the range of parameter val-
ues sampled, and increased the density of model runs within
the parameter space (Fig. 1).

As a second change, we reduce the number of diagnostics
used to evaluate model performance. In general, independent
temperature patterns should be used to evaluate model per-
formance because they rule out different regions of the pa-
rameter space for being inconsistent with the observed cli-
mate record. In particular, Urban and Keller (2009) show that
surface temperature and ocean heat content time series pro-
vide good constraints on model estimation. Further, Lewis
(2013) shows upper-air temperatures to be highly correlated

with surface temperature via the lapse rate and water vapor
feedbacks. For these reasons, we now omit the upper-air tem-
perature diagnostic. The removal of the upper-air diagnostic
leaves two temperature diagnostics for evaluating model per-
formance: (1) decadal mean surface air temperature anoma-
lies from 1946 to 1995 with respect to a 1906–1995 climatol-
ogy in four equal-area zonal bands, and (2) the linear trend
in global mean ocean heat content from 1955 to 1995 in the
0–3 km layer. As in Libardoni and Forest (2011), we use five
surface temperature datasets (Jones and Moberg, 2003; Bro-
han et al., 2006; Smith et al., 2008; Hansen et al., 2010) and
one ocean heat content dataset (Levitus et al., 2005) as ob-
servations. Five different joint PDFs are derived by combin-
ing the likelihood from the ocean diagnostic with the likeli-
hood derived from each of the individual surface temperature
datasets.

4 Results

Our results are presented as follows. We first identify the
changes in the input forcings used in our historical simula-
tions by comparing the solar and ozone components used in
the IGSM runs with those used in the MESM runs. Second,
we show how the probability distribution functions change
when reducing the number of model diagnostics from three
to two through the omission of the upper-air diagnostic.
Third, we derive probability distributions using the MESM
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Figure 2. Annual mean total solar irradiance. The bias between the
Lean (2000) and Kopp and Lean (2011) datasets leads to a reduction
in radiative forcing in the new forcing suite.

ensemble and directly compare them to those derived using
the IGSM ensemble using the full ensembles and the case
where only runs with θ values common to both ensembles are
used. Fourth, we evaluate how well the model captures the
observations by comparing model output from the MESM
ensemble to the observed climate record. Finally, we derive
the response surfaces for transient climate response and ther-
mosteric sea level rise for MESM and compare them to the
corresponding surfaces from IGSM.

To identify changes in the forcing time series used to drive
the model, we compare the input forcings for the two compo-
nents for which we have changed datasets. When comparing
the forcing time series, only differences in the changes rela-
tive to 1860 impact the historical simulations. Time-invariant
differences are accounted for in the offline Q flux and initial
condition calculations, but differences in the changes are not.
In Fig. 2, we show the old and new solar forcing time series.
We see that the biggest difference observed in the solar irradi-
ance time series is a bias towards lower values when using the
Kopp and Lean (2011) data. The bias is relatively constant at
approximately 4.5 Wm−2 until 1920, but then increases to-
wards 5.0 Wm−2 moving forward in time. The growth of this
low bias introduces a weakening of the solar forcing begin-
ning in 1920 in the new suite of forcings.

We observe that ozone concentrations estimated from the
AC&C/SPARC dataset differ in both space and time when
compared to the previous concentrations used with IGSM
(Fig. 3). One clear difference is that the AC&C/SPARC
dataset introduces more temporal variability in strato-
spheric ozone concentrations (which we approximate as
pressure levels above 200 mb) prior to 1950. After 1950,
AC&C/SPARC tends to have lower ozone concentrations in
the stratosphere and slightly greater concentrations in the tro-
posphere (levels below 200 mb). However, similar to with the
solar forcing, we are concerned with the temporal change in

Table 1. The 90 % confidence intervals for climate sensitivity (ECS)
and net aerosol forcing (Faer). Distributions that include the upper-
air diagnostic are from Libardoni and Forest (2011) and distribu-
tions with two diagnostics exclude the upper-air diagnostic.

No. of ECS Faer
diags. (◦C) (Wm−2)

5 % 95 % 5 % 95 %

HadCRUT21 3 2.0 5.3 −0.19 −0.70

Su
rf

ac
e

te
m

pe
ra

tu
re

da
ta

se
t 2 1.9 5.2 −0.19 −0.71

HadCRUT32 3 1.9 5.1 −0.22 −0.74
2 1.7 5.0 −0.38 −0.79

NCDC3 3 1.8 4.7 −0.37 −0.78
2 1.6 4.8 −0.38 −0.79

GISTEMP 2504 3 1.3 3.6 −0.32 −0.83
2 1.1 4.0 −0.35 −0.83

GISTEMP 12005 3 1.2 3.4 −0.33 −0.80
2 1.0 3.7 −0.35 −0.83

1 Hadley Centre Climatic Research Unit Temperature version 2 (Jones and Moberg, 2003).
2 Hadley Centre Climatic Research Unit Temperature version 3 (Brohan et al., 2006).
3 National Climatic Data Center merged land–ocean dataset (Smith et al., 2008).
4 GISS Surface Temperature Analysis with 250 km smoothing (Hansen et al., 2010).
5 GISS Surface Temperature Analysis with 1200 km smoothing (Hansen et al., 2010).

the forcing imposed by the ozone concentrations, rather than
the relative magnitude of the concentrations across datasets.
Beginning in 1900, tropospheric ozone concentrations in-
crease less rapidly in the AC&C/SPARC dataset when com-
pared to the IGSM dataset. Differences in stratospheric ozone
concentrations remain relatively constant until 1950, but then
decrease at a slower rate in the AC&C/SPARC time series.
These patterns are generally consistent in the global and
hemispheric means. When considered separately, increased
tropospheric ozone concentrations tend to increase radiative
forcing (Stevenson et al., 2013) and decreased stratospheric
concentrations tend to increase radiative forcing (Conley
et al., 2013). Thus, the less rapid increase in tropospheric
ozone concentration and less rapid decrease in stratospheric
ozone concentration in the AC&C/SPARC dataset both con-
tribute to a weaker radiative forcing over the historical period
in the new suite of forcings.

With the input forcings documented, we focus on deriving
probability distributions for the model parameters. We first
test the impact of omitting the upper-air diagnostic. As noted
in Sect. 3, the surface and upper-air temperature diagnostics
are highly correlated. As a result, they reject similar regions
of the parameter space for being inconsistent with the ob-
served climate record. Thus, those regions are rejected twice,
while regions inconsistent with the ocean heat content diag-
nostic are rejected only once. Multiplying the Bayesian like-
lihood estimate by the same pattern twice leads to a potential
bias in the distributions towards regions that are consistent
with the surface temperature diagnostic.

Starting from the distributions calculated in Libardoni and
Forest (2011), we derive new distributions based only on the
surface temperature and ocean heat content diagnostics pre-
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Figure 3. Ozone concentration in the old IGSM time series (red) and the Cionni et al. (2011) AC&C/SPARC concentrations (black). (a–
c) Annual mean ozone mixing ratio in the total column in the global average (a), Northern Hemisphere (b), and Southern Hemisphere (c).
Panels (d–f) are as in (a–c) but for the average above 200 mb. Panels (g–i) are as in (a–c) but for the average below 200 mb.

sented in Sect. 3. We show that reducing the number of di-
agnostics from three to two leads to slight changes in the pa-
rameter estimates (Table 1). We only present comparisons for
ECS and Faer because distributions of Kv were poorly con-
strained in Libardoni and Forest (2011) and no uncertainty
bounds were given. In general, ECS estimates tend to be
slightly lower when using only two diagnostics and aerosol
estimates are nearly unchanged. Further, the relationships be-
tween the distributions with respect to the surface dataset are
unchanged. Because the changes using only two diagnostics
do not change any conclusions from the original study and
conservatively remove the risk of double counting the surface
signal, we justify the removal of the upper-air diagnostic.

We next evaluate the impacts that changing the model
from IGSM to MESM and updating the forcing suite have
on the parameter distributions. We present the new marginal
distributions for each parameter in Fig. 4 and observe sig-
nificant differences between those derived using IGSM and
those derived using MESM with the updated forcings (Ta-
ble 2). Across all datasets, climate sensitivity distributions
shift towards higher values and the uncertainty bounds en-
compass a wider range. When considering the 90 % con-
fidence intervals across the distributions derived from each
surface dataset, we find climate sensitivity now lies between
1.3 and 5.7 ◦C, as opposed to the estimated interval of 1.2 to

5.3 ◦C from Libardoni and Forest (2011). While the uncer-
tainty bounds are still wide compared to other parameters,
we observe that Kv is now better constrained with MESM.
The distributions ofKv derived using the GISTEMP datasets
are still unconstrained with upper tails extending to the edge
of the parameter domain, but all other datasets now show an
upper bound well within the ensemble range. We also ob-
serve a marked shift in the aerosol estimates. When MESM
is used with the updated forcing suite, there is a sizable shift
towards weaker aerosol forcing across all datasets. Whereas
past estimates put the net aerosol forcing between −0.83
and−0.19 Wm−2, our new estimate of aerosol forcing is be-
tween −0.53 and −0.03 Wm−2.

To test whether the differences observed in the parame-
ter estimates were due to the model update, rather than the
increased density of model runs, we subsampled each en-
semble at the 480 θ values where they overlap (see Fig. 1).
We summarize these distributions in Table 2 and see that
there is very little sensitivity when the ensembles are subsam-
pled. Across all datasets, the distributions we derive using the
full 640-member IGSM ensemble and those we derive using
the 480-member IGSM ensemble are nearly identical for all
three parameters. The same is true for the MESM ensemble,
except for the distributions we derive forKv . We consistently
estimate a smaller upper bound for Kv in the subsampled
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Table 2. The 90 % confidence intervals and means for climate sensitivity (ECS), ocean diffusivity (Kv), and net aerosol forcing (Faer).
Surface temperature datasets are the same as in Table 1.

Model and runs
ECS

√
Kv Faer

(◦C) (cms−1/2) (Wm−2)

5 % 95 % Mean 5 % 95 % Mean 5 % 95 % Mean

Su
rf

ac
e

te
m

pe
ra

tu
re

da
ta

se
t

HadCRUT2

Full IGSM 1.9 5.2 3.0 0.1 2.1 0.9 −0.19 −0.71 −0.46
Subsampled IGSM 1.9 5.2 3.0 0.1 2.1 0.9 −0.16 −0.71 −0.45
Full MESM 2.1 5.7 3.5 0.1 2.3 1.0 −0.03 −0.39 −0.22
Subsampled MESM 2.1 5.7 3.4 0.1 2.2 1.0 −0.03 −0.39 −0.22

HadCRUT3

Full IGSM 1.7 4.0 2.8 0.2 2.9 1.2 −0.22 −0.75 −0.50
Subsampled IGSM 1.7 4.0 2.8 0.2 2.9 1.2 −0.20 −0.75 −0.49
Full MESM 1.9 5.4 3.2 0.2 3.6 1.3 −0.05 −0.43 −0.24
Subsampled MESM 1.9 5.4 3.2 0.2 3.0 1.2 −0.05 −0.42 −0.24

NCDC

Full IGSM 1.6 4.8 2.7 0.3 3.7 1.6 −0.38 −0.79 −0.59
Subsampled IGSM 1.6 4.8 2.7 0.3 3.7 1.6 −0.36 −0.79 −0.58
Full MESM 2.0 5.4 3.2 0.3 3.7 1.6 −0.15 −0.45 −0.29
Subsampled MESM 2.0 5.3 3.2 0.3 3.2 1.5 −0.15 −0.45 −0.29

GISTEMP 250

Full IGSM 1.1 4.0 2.1 0.7 4.8 2.7 −0.35 −0.86 −0.61
Subsampled IGSM 1.1 4.0 2.1 0.6 4.8 2.7 −0.35 −0.86 −0.60
Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 −0.13 −0.53 −0.34
Subsampled MESM 1.4 4.7 2.6 0.8 4.7 2.6 −0.13 −0.51 −0.33

GISTEMP 1200

Full IGSM 1.0 3.7 1.9 0.8 4.9 3.1 −0.35 −0.83 −0.56
Subsampled IGSM 1.0 3.7 1.9 0.7 4.9 3.1 −0.35 −0.82 −0.56
Full MESM 1.3 4.8 2.6 0.8 7.3 3.5 −0.14 −0.49 −0.33
Subsampled MESM 1.3 4.7 2.6 0.8 4.7 2.6 −0.14 −0.49 −0.32

MESM ensemble compared to when the full MESM ensem-
ble is used. This arises because we assign a probability of
zero to regions of the parameter space that have not been
sampled. Thus, for the subsampled MESM ensemble, we as-
sign a probability of zero for

√
Kv between 5 and 8 cms−1/2,

but the likelihood function does not evaluate to zero in this
region when using information from the full ensemble. As a
result, the full ensemble does not artificially cut off the distri-
bution at

√
Kv equal to 5 cms−1/2 and leads to higher upper

bounds on the distributions. Knowing this, we can conclude
from the similarity between distributions derived from the
full and subsampled ensembles that the differences we ob-
serve between the IGSM and MESM ensembles are due to
the differences between the model and forcing themselves,
not the increased density of model runs.

To further demonstrate the total effect of changes to
the model, forcings, and ensemble design, we compare
the marginal distributions derived from the full IGSM and
MESM ensembles using each surface temperature dataset
(Fig. 5). For all five datasets, we observe shifts towards
higher climate sensitivity, slightly higher ocean diffusivity,
and weaker aerosol forcing, consistent with our previous dis-
cussion. Further, we demonstrate that the higher ocean diffu-
sivities using the MESM ensembles are the result of not as-
signing zero probability for

√
Kv between 5 and 8 cms−1/2.

This is clearly evident in the distributions derived using the
GISTEMP datasets (Fig. 5b), where the IGSM distributions
drop sharply to 0 at

√
Kv equal to 5 cms−1/2.

Because the parameters are estimated jointly, identifying
the causes for specific changes in the marginal distributions is
not always straightforward. With this caveat, we now present
reasons for the observed changes in the parameter distribu-
tions. We begin with Faer. As discussed earlier in this sec-
tion, changes to both the solar and ozone forcing lead to a
reduction in their contribution to the global radiation bud-
get. Additionally, there has been a weakening of non-CO2
greenhouse gas forcing introduced by the new radiation code
in MESM. These factors result in a decrease in the net ra-
diative forcing on the planet. With the surface temperature
and ocean heat content diagnostics unchanged, the same tem-
perature patterns need to be matched despite the weaker net
forcing. One adjustment to the climate system that can help
accomplish the matching is to increase the forcing from an-
other term in the energy budget. Of the three model param-
eters, Faer is the only one that directly changes the radiative
forcing, and we thus observe the shift towards less negative
aerosol forcing.

An explanation similar to that used for the aerosol distri-
bution can be applied to explaining the observed shifts in
the climate sensitivity distribution. In its most basic sense,
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Figure 4. Marginal probability distribution functions and TCR cumulative distribution functions (CDFs) derived from MESM simulations
using the HadCRUT2, HadCRUT3, NCDC, GISTEMP 250, and GISTEMP 1200 surface temperature datasets as observations: (a) ECS,
(b) Kv , and (c) Faer. Whisker plots indicate boundaries for the 2.5–97.5 (dots), 5–95 (vertical bar ends), 25–75 (box ends), and 50 (vertical
bar in box) percentiles. Distribution means are represented by diamonds and modes are represented by open circles. (d) TCR CDFs derived
from 1000-member Latin hypercube samples drawn from the joint parameter distributions and the TCR functional fit.

climate sensitivity is a temperature change per unit forcing.
When holding the temperature patterns fixed, the change in
temperature is a constant. When explaining the aerosol dis-
tribution above, we implicitly fixed the climate sensitivity,
requiring the aerosol forcing to be less negative to keep the
net forcing constant. However, if we fix Faer, the same tem-
perature change needs to be realized with the weaker forcing
due to the changes in the solar and ozone forcings. This im-
plies a higher climate sensitivity is required and explains the
shifts we observe in the ECS marginal distribution.

In practice, the model parameters are not independent of
each other and can change simultaneously. Many combina-
tions of higher climate sensitivity and weaker aerosol forc-
ing lead to similar agreement with the observed temperature
record. This suggests a correlation between these two param-
eters and highlights a strength of estimating the joint PDF
for the model parameters: the identification of relationships
between the model parameters. However, these relationships
also highlight the challenge in attributing changes in a single
parameter to a specific cause.

Unlike the climate sensitivity and aerosol forcing distribu-
tions, a clear physical explanation for the observed changes
in theKv distribution is more difficult to identify. One reason
for this difficulty is the relative insensitivity of the Kv dis-
tribution to the model updates. This suggests that either the

ocean response is insensitive to changes in the model forc-
ings or that the diagnostics used in this study are unable to
constrain the parameter. The latter is explored in a separate
study by the authors (Libardoni et al., 2018).

To evaluate how well the model captures the observed
record and demonstrate the wide range of climate states sim-
ulated by the MESM ensemble, we compare the model out-
put to the observed climate record (Figs. 6 and 7). In Fig. 6,
we show the global mean surface temperature time series for
all ensemble members, along with each of the time series
from each of the five observational datasets used in the sur-
face diagnostic. In Fig. 7, we compare the linear trend in the
0–3 km global mean ocean heat content estimated from the
MESM simulations against the observed estimate. For both
the surface and ocean comparisons, we highlight the esti-
mates from the MESM ensemble members which have pa-
rameter settings closest to the median values from the full
ensemble MESM distributions.

For both the surface temperature and ocean heat content
trends, we have sampled many climate states on the colder
and warmer sides of the observed values. We note here that
the negative ocean heat content trends are the result of sim-
ulations with strong cooling that lie well outside the accept-
able range of the parameter space. All simulations with this
negative trend have Faer less than or equal to −0.75 Wm−2,
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Figure 8. Model response surfaces for (a) TCR and (b) thermosteric sea level rise. Contours for the MESM response surfaces are shown in
black and contours for the IGSM surfaces are shown in red. Differences between the fits are also shown (c, d).

a zero-probability region in the MESM ensemble. For the
global mean surface temperature time series, the median sim-
ulations compare favorably to the observed time series. For
the ocean heat content trend, the median simulations tend to
overestimate the trend compared to the observed value. Per-
fect matches should not be expected when comparing the me-
dian simulations to the observations, however. Because we
derived the distributions using the surface and ocean records,
only those runs that agree with both diagnostics are not re-
jected for being inconsistent with the data. Thus, a model
simulation that reproduces the global mean surface tempera-
ture perfectly may have too little warming in the deep ocean.
Similarly, a model with the perfect ocean heat content trend
may not match the surface temperature time series. Small de-
ficiencies in the median runs compared to a single observed
record are the result of simultaneously matching the surface
and ocean records.

To estimate TCR in MESM, we run a 372-member en-
semble where all forcings are held fixed and carbon diox-
ide concentrations are increased by 1 % year−1. We calculate
TCR by estimating the global mean temperature change from
the beginning of the simulation to the time of CO2 doubling.
Concentrations double in year 70 and we estimate TCR as

the average global mean temperature change in years 60–80
of the simulation. Temperature changes are calculated with
respect to a control simulation with the same model parame-
ters and all forcings held fixed. In a similar manner, we also
estimate thermosteric sea level rise (SLR) at the time of dou-
bling. Because all forcings except those attributed to CO2 are
fixed, each ECS–

√
Kv pair yields a single TCR value and a

single SLR value, independent of Faer.
We fit a third-order polynomial in ECS and

√
Kv to the

TCR and SLR values calculated from each run to derive a
functional fit for all parameter pairs within the domain. The
third-order polynomial fit is chosen to be of the same form
as the fits derived for the IGSM model. Further, an inves-
tigation of different order fits (not shown) indicated that at
least a third-order fit is required to satisfactorily fit the data.
From the functional fits, we derive response surfaces for each
of the transient properties (Fig. 8). For comparison, we also
show the fit derived using the IGSM and its corresponding
1 % year−1 runs, in addition to the differences between the
two. Outside of the region where ECS is greater than 4 ◦C
and
√
Kv is less than about 0.5 cms−1/2 and away from the

edges of the domain, TCR values from IGSM and MESM
agree quite well. There is a similar pattern of agreement in
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the SLR response surface, with the biggest discrepancies oc-
curring in the high ECS–high

√
Kv region and near the edges

of the parameter domain.
We use the response surface to derive probability distri-

butions for TCR. From each of the joint probability distri-
butions derived using the subsampled MESM ensemble, we
draw a 1000-member Latin hypercube sample (McKay et al.,
1979) of model parameters. The subsampled distributions are
chosen so that we restrict the domain to that of the IGSM
ensemble, allowing for a more direct comparison of the dis-
tributions. Otherwise, high

√
Kv values that are within the

domain of the functional fit to the MESM runs would be se-
lected, for which there is no fit using the IGSM function. We
map each of the ECS–

√
Kv pairs onto the response surface

to provide an estimate of TCR values. Binning the responses
in a histogram with bin size of 0.1 ◦C allows a PDF to be
calculated, and the resulting cumulative density functions de-
rived using MESM are displayed in Fig. 4d. Comparing TCR
distributions for the IGSM and MESM ensembles shows a
shift towards higher TCR with the latest results. When com-
paring the range of 90 % confidence intervals derived using
MESM to those from Libardoni and Forest (2011), we find
that TCR estimates increase from 0.87–2.31 ◦C using IGSM
to 0.90–2.72 ◦C using MESM. We have shown previously
that the marginal distributions of

√
Kv are similar between

the two models, indicating that this shift towards higher TCR
is driven by the higher ECS estimates derived from MESM.

5 Conclusions

In this study, we have provided an open, transparent means of
testing the changes in model response and parameter estima-
tion to changes in the MIT Integrated Global Systems Model
framework. Not only does this systematic accounting of the
impacts give a reference point moving forward for studies
involving MESM, it proposes a template for assessing the
impact that changes in other simplified climate models have
on the calibration of their own model parameters. We hope
that this study motivates other modeling groups to perform
similar investigations that provide documented accounts of
model updates, leading to a more robust understanding of
the impacts that the changes have on parameter estimation
and model behavior.

By updating the model and its input forcings, we identify
the impact that the switch from the MIT Integrated Global
Systems Model to the MIT Earth System Model has on the
probability distributions of model parameters. The decreases
in radiative forcing due to the change in radiative forcing
code, the new solar radiation data, and the new ozone con-
centrations used to estimate the ozone forcing lead to a net
energy deficit when compared to the replaced forcings. This
drives an upward shift in our estimates of the 90 % confi-
dence interval for climate sensitivity from between 1.2 and
5.3 ◦C to between 1.3 and 5.7 ◦C, a better constraint on ocean

diffusivity, and a decrease in the 90 % confidence interval for
the net anthropogenic aerosol forcing from between −0.83
and−0.19 Wm−2 to between−0.53 and−0.03 Wm−2. One
caveat of our analysis is that because we changed the forc-
ings and CLM simultaneously, we cannot fully attribute the
parameter shifts to the model forcings alone. We have thus
shown the total effect of changing both the model and forc-
ings on the parameter distributions, not the effects of the
changes individually.

Because TCR is independent of the input forcings, the
only difference between the IGSM and MESM configura-
tions in the transient simulations is the land surface model.
By showing that the transient climate response surfaces de-
rived from the two models differ only slightly, we provide
evidence that the switch to CLM3.5 does not greatly impact
the temperature evolution in the model. We have drawn Latin
hypercube samples from the parameter distributions to pro-
vide estimates of TCR from the new response surface. Due
to the shift towards higher climate sensitivity and slightly
weaker ocean diffusivity, we observe an increase in our 90 %
confidence interval of transient climate response from 0.87–
2.31 ◦C to 0.85–2.73 ◦C. By investigating the impact that the
new forcings and a newer version of CLM have on the es-
timates of model parameters and TCR, we have shown the
inherent differences that are present when comparing distri-
butions derived using IGSM and those derived from MESM.
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