Articles | Volume 11, issue 7
https://doi.org/10.5194/gmd-11-3027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-11-3027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Parameter calibration in global soil carbon models using surrogate-based optimization
Haoyu Xu
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China
Tao Zhang
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China
Department of Earth System Science, Ministry of Education Key
Laboratory for Earth System Modelling, Tsinghua University, Beijing 100084,
China
Yiqi Luo
Department of Earth System Science, Ministry of Education Key
Laboratory for Earth System Modelling, Tsinghua University, Beijing 100084,
China
Center for Ecosystem Science and Society, Northern Arizona
University, Flagstaff, AZ, USA
Xin Huang
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China
Department of Earth System Science, Ministry of Education Key
Laboratory for Earth System Modelling, Tsinghua University, Beijing 100084,
China
Wei Xue
CORRESPONDING AUTHOR
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China
Department of Earth System Science, Ministry of Education Key
Laboratory for Earth System Modelling, Tsinghua University, Beijing 100084,
China
Related authors
T. Zhang, L. Li, Y. Lin, W. Xue, F. Xie, H. Xu, and X. Huang
Geosci. Model Dev., 8, 3579–3591, https://doi.org/10.5194/gmd-8-3579-2015, https://doi.org/10.5194/gmd-8-3579-2015, 2015
Short summary
Short summary
A “three-step” methodology is proposed to effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. The optimal results improve the metrics performance by 9%. A software framework can automatically execute any part of the “three-step” calibration strategy. The proposed methodology and framework can easily be applied to other GCMs to speed up the model development process.
Jiaxu Guo, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Xianwei Wu, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-264, https://doi.org/10.5194/gmd-2022-264, 2022
Preprint under review for GMD
Short summary
Short summary
To further improve the efficiency of experiments using SCAM, we train a neural network-based surrogate model to support large-scale sensitivity analysis and tuning of combinations of multiple parameters. Using a hybrid method, we explore the joint sensitivity of multi-parameter combinations to typical cases and identify the most sensitive three-parameter combination out of eleven, and perform a tuning process that reduces the error of precipitation in these cases.
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Short summary
This study uses a set of deep neural networks to learn a parameterization scheme from a superparameterized general circulation model (GCM). After being embedded in a realistically configurated GCM, the parameterization scheme performs stably in long-term climate simulations and reproduces reasonable climatology and climate variability. This success is the first for long-term stable climate simulations using machine learning parameterization under real geographical boundary conditions.
Tongwen Wu, Rucong Yu, Yixiong Lu, Weihua Jie, Yongjie Fang, Jie Zhang, Li Zhang, Xiaoge Xin, Laurent Li, Zaizhi Wang, Yiming Liu, Fang Zhang, Fanghua Wu, Min Chu, Jianglong Li, Weiping Li, Yanwu Zhang, Xueli Shi, Wenyan Zhou, Junchen Yao, Xiangwen Liu, He Zhao, Jinghui Yan, Min Wei, Wei Xue, Anning Huang, Yaocun Zhang, Yu Zhang, Qi Shu, and Aixue Hu
Geosci. Model Dev., 14, 2977–3006, https://doi.org/10.5194/gmd-14-2977-2021, https://doi.org/10.5194/gmd-14-2977-2021, 2021
Short summary
Short summary
This paper presents the high-resolution version of the Beijing Climate Center (BCC) Climate System Model, BCC-CSM2-HR, and describes its climate simulation performance including the atmospheric temperature and wind; precipitation; and the tropical climate phenomena such as TC, MJO, QBO, and ENSO. BCC-CSM2-HR is our model version contributing to the HighResMIP. We focused on its updates and differential characteristics from its predecessor, the medium-resolution version BCC-CSM2-MR.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Li Wu, Tao Zhang, Yi Qin, and Wei Xue
Geosci. Model Dev., 13, 41–53, https://doi.org/10.5194/gmd-13-41-2020, https://doi.org/10.5194/gmd-13-41-2020, 2020
Short summary
Short summary
Uncertain parameters in physical parameterizations of general circulation models (GCMs) greatly impact model performance. In this study, an automated and efficient parameter optimization with the radiation balance constraint is presented and applied in the Community Atmospheric Model. Results show that the synthesized performance under the optimal parameters is 6.3 % better than the control run and the radiation imbalance is as low as 0.1 W m2.
Tao Zhang, Minghua Zhang, Wuyin Lin, Yanluan Lin, Wei Xue, Haiyang Yu, Juanxiong He, Xiaoge Xin, Hsi-Yen Ma, Shaocheng Xie, and Weimin Zheng
Geosci. Model Dev., 11, 5189–5201, https://doi.org/10.5194/gmd-11-5189-2018, https://doi.org/10.5194/gmd-11-5189-2018, 2018
Short summary
Short summary
Tuning of uncertain parameters in global atmospheric general circulation models has extreme computational cost. In this study, we provide an automatic tuning method by combining an auto-optimization algorithm with hindcasts to improve climate simulations in CAM5. The tuning improved the overall performance of a well-calibrated model by about 10 %. The computational cost of the entire auto-tuning procedure is just equivalent to a single 20-year simulation of CAM5.
Qianyu Li, Xingjie Lu, Yingping Wang, Xin Huang, Peter M. Cox, and Yiqi Luo
Biogeosciences, 15, 6909–6925, https://doi.org/10.5194/bg-15-6909-2018, https://doi.org/10.5194/bg-15-6909-2018, 2018
Short summary
Short summary
Land-surface models have been widely used to predict the responses of terrestrial ecosystems to climate change. A better understanding of model mechanisms that govern terrestrial ecosystem responses to rising atmosphere [CO2] is needed. Our study for the first time shows that the expansion of leaf area under rising [CO2] is the most important response for the stimulation of land carbon accumulation by a land-surface model: CABLE. Processes related to leaf area should be better calibrated.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Guanghui Ming, Hongchang Hu, Fuqiang Tian, Zhenyang Peng, Pengju Yang, and Yiqi Luo
Hydrol. Earth Syst. Sci., 22, 3075–3086, https://doi.org/10.5194/hess-22-3075-2018, https://doi.org/10.5194/hess-22-3075-2018, 2018
Short summary
Short summary
The purpose of this research was to detect the effect of plastic film mulching (PFM), a widely applied cultivation method, on soil respiration. We found that soil respiration was not only affected by PFM, but it was also affected by irrigation and precipitation, and whether the PFM increases soil respiration compared to a non-mulched field largely depends on precipitation in the field. The result has an important meaning for agricultural carbon sequestration in the context of global warming.
Yaner Yan, Xuhui Zhou, Lifeng Jiang, and Yiqi Luo
Biogeosciences, 14, 5441–5454, https://doi.org/10.5194/bg-14-5441-2017, https://doi.org/10.5194/bg-14-5441-2017, 2017
Short summary
Short summary
The effects of C turnover time on ecosystem C storage have not been well explored, so we quantified the spatial variation in ecosystem C storage over time from changes in C turnover time and/or NPP. Our results showed that the terrestrial C release caused by the decrease in MTT only accounted for about 13.5 % of that due to the change in NPP uptake. However, the larger uncertainties in the spatial variation of MTT than temporal changes would lead to a greater impact on ecosystem C storage.
Yiqi Luo, Zheng Shi, Xingjie Lu, Jianyang Xia, Junyi Liang, Jiang Jiang, Ying Wang, Matthew J. Smith, Lifen Jiang, Anders Ahlström, Benito Chen, Oleksandra Hararuk, Alan Hastings, Forrest Hoffman, Belinda Medlyn, Shuli Niu, Martin Rasmussen, Katherine Todd-Brown, and Ying-Ping Wang
Biogeosciences, 14, 145–161, https://doi.org/10.5194/bg-14-145-2017, https://doi.org/10.5194/bg-14-145-2017, 2017
Short summary
Short summary
Climate change is strongly regulated by land carbon cycle. However, we lack the ability to predict future land carbon sequestration. Here, we develop a novel framework for understanding what determines the direction and rate of future change in land carbon storage. The framework offers a suite of new approaches to revolutionize land carbon model evaluation and improvement.
Rashid Rafique, Jianyang Xia, Oleksandra Hararuk, Ghassem R. Asrar, Guoyong Leng, Yingping Wang, and Yiqi Luo
Earth Syst. Dynam., 7, 649–658, https://doi.org/10.5194/esd-7-649-2016, https://doi.org/10.5194/esd-7-649-2016, 2016
Short summary
Short summary
Traceability analysis was used to diagnose the causes of differences in simulating ecosystem carbon storage capacity between two land models: CLMA-CASA and CABLE. Results showed that the simulated ecosystem carbon storage capacity is largely influenced by the photosynthesis parameterization, residence time and organic matter decomposition.
Junyi Liang, Xuan Qi, Lara Souza, and Yiqi Luo
Biogeosciences, 13, 2689–2699, https://doi.org/10.5194/bg-13-2689-2016, https://doi.org/10.5194/bg-13-2689-2016, 2016
Short summary
Short summary
It is unclear how the nitrogen (N) cycle regulates climate change through influencing carbon sequestration. By using meta-analysis, we tested a popular hypothesis, progressive N limitation (PNL), which postulates that greater N sequestration in organisms leads to declining N availability for further plant growth under elevated CO2. Our analyses suggest that extra nitrogen supply by increased biological N fixation and decreased leaching may potentially alleviate PNL.
Y. P. Wang, J. Jiang, B. Chen-Charpentier, F. B. Agusto, A. Hastings, F. Hoffman, M. Rasmussen, M. J. Smith, K. Todd-Brown, Y. Wang, X. Xu, and Y. Q. Luo
Biogeosciences, 13, 887–902, https://doi.org/10.5194/bg-13-887-2016, https://doi.org/10.5194/bg-13-887-2016, 2016
Short summary
Short summary
Comparing two nonlinear microbial models, we found that,
in response to warming, soil C decreases in one model but can increase or decrease in the other model, and sensitivity of priming response to carbon input increases with soil T in one model but decreases in the other model
Significance: these differences in the responses can be used to discern which model is more realistic, which will improve our understanding of the significance of soil microbial processes in the terrestrial C cycle.
T. Zhang, L. Li, Y. Lin, W. Xue, F. Xie, H. Xu, and X. Huang
Geosci. Model Dev., 8, 3579–3591, https://doi.org/10.5194/gmd-8-3579-2015, https://doi.org/10.5194/gmd-8-3579-2015, 2015
Short summary
Short summary
A “three-step” methodology is proposed to effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. The optimal results improve the metrics performance by 9%. A software framework can automatically execute any part of the “three-step” calibration strategy. The proposed methodology and framework can easily be applied to other GCMs to speed up the model development process.
M. S. Torn, A. Chabbi, P. Crill, P. J. Hanson, I. A. Janssens, Y. Luo, C. H. Pries, C. Rumpel, M. W. I. Schmidt, J. Six, M. Schrumpf, and B. Zhu
SOIL, 1, 575–582, https://doi.org/10.5194/soil-1-575-2015, https://doi.org/10.5194/soil-1-575-2015, 2015
W. Zhang, X. Zhu, Y. Luo, R. Rafique, H. Chen, J. Huang, and J. Mo
Biogeosciences, 11, 4941–4951, https://doi.org/10.5194/bg-11-4941-2014, https://doi.org/10.5194/bg-11-4941-2014, 2014
R. Rafique, J. Xia, O. Hararuk, and Y. Luo
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-9979-2014, https://doi.org/10.5194/bgd-11-9979-2014, 2014
Revised manuscript not accepted
Y. P. Wang, B. C. Chen, W. R. Wieder, M. Leite, B. E. Medlyn, M. Rasmussen, M. J. Smith, F. B. Agusto, F. Hoffman, and Y. Q. Luo
Biogeosciences, 11, 1817–1831, https://doi.org/10.5194/bg-11-1817-2014, https://doi.org/10.5194/bg-11-1817-2014, 2014
Z. Shi, M. L. Thomey, W. Mowll, M. Litvak, N. A. Brunsell, S. L. Collins, W. T. Pockman, M. D. Smith, A. K. Knapp, and Y. Luo
Biogeosciences, 11, 621–633, https://doi.org/10.5194/bg-11-621-2014, https://doi.org/10.5194/bg-11-621-2014, 2014
P. C. Stoy, M. C. Dietze, A. D. Richardson, R. Vargas, A. G. Barr, R. S. Anderson, M. A. Arain, I. T. Baker, T. A. Black, J. M. Chen, R. B. Cook, C. M. Gough, R. F. Grant, D. Y. Hollinger, R. C. Izaurralde, C. J. Kucharik, P. Lafleur, B. E. Law, S. Liu, E. Lokupitiya, Y. Luo, J. W. Munger, C. Peng, B. Poulter, D. T. Price, D. M. Ricciuto, W. J. Riley, A. K. Sahoo, K. Schaefer, C. R. Schwalm, H. Tian, H. Verbeeck, and E. Weng
Biogeosciences, 10, 6893–6909, https://doi.org/10.5194/bg-10-6893-2013, https://doi.org/10.5194/bg-10-6893-2013, 2013
O. Hararuk, D. Obrist, and Y. Luo
Biogeosciences, 10, 2393–2407, https://doi.org/10.5194/bg-10-2393-2013, https://doi.org/10.5194/bg-10-2393-2013, 2013
Related subject area
Biogeosciences
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Forcing the Global Fire Emissions Database burned-area dataset into the Community Land Model version 5.0: impacts on carbon and water fluxes at high latitudes
Modeling of non-structural carbohydrate dynamics by the spatially explicit individual-based dynamic global vegetation model SEIB-DGVM (SEIB-DGVM-NSC version 1.0)
MEDFATE 2.9.3: a trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water and nitrogen perturbations
Modelling the role of livestock grazing in C and N cycling in grasslands with LPJmL5.0-grazing
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
Implementation of trait-based ozone plant sensitivity in the Yale Interactive terrestrial Biosphere model v1.0 to assess global vegetation damage
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0
An along-track biogeochemical Argo modelling framework, a case study of model improvements for the Nordic Seas
Peatland-VU-NUCOM (PVN 1.0): Using dynamic PFTs to model peatland vegetation, CH4 and CO2 emissions
CompLaB v1.0: a scalable pore-scale model for flow, biogeochemistry, microbial metabolism, and biofilm dynamics
Validation of a new spatially explicit process-based model (HETEROFOR) to simulate structurally and compositionally complex forest stands in eastern North America
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES-HYDRO V1.0)
A Novel Eulerian Reaction-Transport Model to Simulate Age and Reactivity Continua Interacting with Mixing Processes
Global agricultural ammonia emissions simulated with the ORCHIDEE land surface model
ForamEcoGEnIE 2.0: incorporating symbiosis and spine traits into a trait-based global planktic foraminiferal model
FABM-NflexPD 2.0: testing an instantaneous acclimation approach for modeling the implications of phytoplankton eco-physiology for the carbon and nutrient cycles
Evaluating the vegetation–atmosphere coupling strength of ORCHIDEE land surface model (v7266)
Non-Redfieldian carbon model for the Baltic Sea (ERGOM version 1.2) – implementation and budget estimates
Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1
Simulating long-term responses of soil organic matter turnover to substrate stoichiometry by abstracting fast and small-scale microbial processes: the Soil Enzyme Steady Allocation Model (SESAM; v3.0)
Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS's Earth system model (ModelE-BiomeE v.1.0)
Forest fluxes and mortality response to drought: model description (ORCHIDEE-CAN-NHA r7236) and evaluation at the Caxiuanã drought experiment
Matrix representation of lateral soil movements: scaling and calibrating CE-DYNAM (v2) at a continental level
CANOPS-GRB v1.0: a new Earth system model for simulating the evolution of ocean–atmosphere chemistry over geologic timescales
Low sensitivity of three terrestrial biosphere models to soil texture over the South American tropics
FESDIA (v1.0): exploring temporal variations of sediment biogeochemistry under the influence of flood events using numerical modelling
Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
FORCCHN V2.0: an individual-based model for predicting multiscale forest carbon dynamics
Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0)
Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon
SurEau-Ecos v2.0: a trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level
Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation
Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP)
CLM5-FruitTree: a new sub-model for deciduous fruit trees in the Community Land Model (CLM5)
The impact of hurricane disturbances on a tropical forest: implementing a palm plant functional type and hurricane disturbance module in ED2-HuDi V1.0
A validation standard for area of habitat maps for terrestrial birds and mammals
Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases: SCEPTER v0.9
Using terrestrial laser scanning to constrain forest ecosystem structure and functions in the Ecosystem Demography model (ED2.2)
A map of global peatland extent created using machine learning (Peat-ML)
Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Predicting global terrestrial biomes with the LeNet convolutional neural network
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Hocheol Seo and Yeonjoo Kim
Geosci. Model Dev., 16, 4699–4713, https://doi.org/10.5194/gmd-16-4699-2023, https://doi.org/10.5194/gmd-16-4699-2023, 2023
Short summary
Short summary
Wildfire is a crucial factor in carbon and water fluxes on the Earth system. About 2.1 Pg of carbon is released into the atmosphere by wildfires annually. Because the fire processes are still limitedly represented in land surface models, we forced the daily GFED4 burned area into the land surface model over Alaska and Siberia. The results with the GFED4 burned area significantly improved the simulated carbon emissions and net ecosystem exchange compared to the default simulation.
Hideki Ninomiya, Tomomichi Kato, Lea Végh, and Lan Wu
Geosci. Model Dev., 16, 4155–4170, https://doi.org/10.5194/gmd-16-4155-2023, https://doi.org/10.5194/gmd-16-4155-2023, 2023
Short summary
Short summary
Non-structural carbohydrates (NSCs) play a crucial role in plants to counteract the effects of climate change. We added a new NSC module into the SEIB-DGVM, an individual-based ecosystem model. The simulated NSC levels and their seasonal patterns show a strong agreement with observed NSC data at both point and global scales. The model can be used to simulate the biotic effects resulting from insufficient NSCs, which are otherwise difficult to measure in terrestrial ecosystems globally.
Miquel De Cáceres, Roberto Molowny-Horas, Antoine Cabon, Jordi Martínez-Vilalta, Maurizio Mencuccini, Raúl García-Valdés, Daniel Nadal-Sala, Santiago Sabaté, Nicolas Martin-StPaul, Xavier Morin, Francesco D'Adamo, Enric Batllori, and Aitor Améztegui
Geosci. Model Dev., 16, 3165–3201, https://doi.org/10.5194/gmd-16-3165-2023, https://doi.org/10.5194/gmd-16-3165-2023, 2023
Short summary
Short summary
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity. This can be done by estimating parameters from available plant trait databases while adopting alternative solutions for missing data. Here we present the design, parameterization and evaluation of MEDFATE (version 2.9.3), a novel model of forest dynamics for its application over a region in the western Mediterranean Basin.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-74, https://doi.org/10.5194/gmd-2023-74, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We develop a machine learning based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a lightweight way.
Jens Heinke, Susanne Rolinski, and Christoph Müller
Geosci. Model Dev., 16, 2455–2475, https://doi.org/10.5194/gmd-16-2455-2023, https://doi.org/10.5194/gmd-16-2455-2023, 2023
Short summary
Short summary
We develop a livestock module for the global vegetation model LPJmL5.0 to simulate the impact of grazing dairy cattle on carbon and nitrogen cycles in grasslands. A novelty of the approach is that it accounts for the effect of feed quality on feed uptake and feed utilization by animals. The portioning of dietary nitrogen into milk, feces, and urine shows very good agreement with estimates obtained from animal trials.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-66, https://doi.org/10.5194/gmd-2023-66, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Yimian Ma, Xu Yue, Stephen Sitch, Nadine Unger, Johan Uddling, Lina M. Mercado, Cheng Gong, Zhaozhong Feng, Huiyi Yang, Hao Zhou, Chenguang Tian, Yang Cao, Yadong Lei, Alexander W. Cheesman, Yansen Xu, and Maria Carolina Duran Rojas
Geosci. Model Dev., 16, 2261–2276, https://doi.org/10.5194/gmd-16-2261-2023, https://doi.org/10.5194/gmd-16-2261-2023, 2023
Short summary
Short summary
Plants have been found to respond differently to O3, but the variations in the sensitivities have rarely been explained nor fully implemented in large-scale assessment. This study proposes a new O3 damage scheme with leaf mass per area to unify varied sensitivities for all plant species. Our assessment reveals an O3-induced reduction of 4.8 % in global GPP, with the highest reduction of >10 % for cropland, suggesting an emerging risk of crop yield loss under the threat of O3 pollution.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-72, https://doi.org/10.5194/gmd-2023-72, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on Earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential Earth-surface, ecological and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how the evolution of land and landforms co-evolve to produce distinct biodiversity patterns on geological time scales.
Winslow D. Hansen, Adrianna Foster, Benjamin Gaglioti, Rupert Seidl, and Werner Rammer
Geosci. Model Dev., 16, 2011–2036, https://doi.org/10.5194/gmd-16-2011-2023, https://doi.org/10.5194/gmd-16-2011-2023, 2023
Short summary
Short summary
Permafrost and the thick soil-surface organic layers that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and soil organic layer module that operates at fine spatial (1 ha) and temporal (daily) resolutions.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-25, https://doi.org/10.5194/gmd-2023-25, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We present a framework that links biogeochemical-Argo data to models. We utilize Argo dataset to identify sources of model errors, improve and validate model configurations. We imitate the observed physical conditions along the biogeochemical-Argo tracks and focus on the biogeochemical model formulations and parameterizations. We showcase the framework for the Nordic Seas and focus on improvements towards model chlorophyll-a and production dynamics.
Tanya J. R. Lippmann, Monique M. P. D. Heijmans, Ype van der Velde, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-48, https://doi.org/10.5194/gmd-2023-48, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Peatlands store approximately one third of the planet’s terrestrial carbon and have the ability to bother further sequester or release the stored carbon. Process based model are useful tools to understand how peatlands change with changing environmental conditions. Vegetation is a critical component to the exchange of carbon in peatlands but an often overlooked concept in many peatland models. We developed a new model, capable of simulating the response of vegetation to changing environments.
Heewon Jung, Hyun-Seob Song, and Christof Meile
Geosci. Model Dev., 16, 1683–1696, https://doi.org/10.5194/gmd-16-1683-2023, https://doi.org/10.5194/gmd-16-1683-2023, 2023
Short summary
Short summary
Microbial activity responsible for many chemical transformations depends on environmental conditions. These can vary locally, e.g., between poorly connected pores in porous media. We present a modeling framework that resolves such small spatial scales explicitly, accounts for feedback between transport and biogeochemical conditions, and can integrate state-of-the-art representations of microbes in a computationally efficient way, making it broadly applicable in science and engineering use cases.
Arthur Guignabert, Quentin Ponette, Frédéric André, Christian Messier, Philippe Nolet, and Mathieu Jonard
Geosci. Model Dev., 16, 1661–1682, https://doi.org/10.5194/gmd-16-1661-2023, https://doi.org/10.5194/gmd-16-1661-2023, 2023
Short summary
Short summary
Spatially explicit and process-based models are useful to test innovative forestry practices under changing and uncertain conditions. However, their larger use is often limited by the restricted range of species and stand structures they can reliably account for. We therefore calibrated and evaluated such a model, HETEROFOR, for 23 species across southern Québec. Our results showed that the model is robust and can predict accurately both individual tree growth and stand dynamics in this region.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
EGUsphere, https://doi.org/10.5194/egusphere-2023-278, https://doi.org/10.5194/egusphere-2023-278, 2023
Short summary
Short summary
This paper introduces a plant hydrodynamic model for the DOE-sponsored dynamic vegetation model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest systems in particular, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We have identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
EGUsphere, https://doi.org/10.5194/egusphere-2023-46, https://doi.org/10.5194/egusphere-2023-46, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, bottom trawling, etc. We derive equations for simulating the effect of mixing on central moments that describe the distributions. Then, we demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Maureen Beaudor, Nicolas Vuichard, Juliette Lathière, Nikolaos Evangeliou, Martin Van Damme, Lieven Clarisse, and Didier Hauglustaine
Geosci. Model Dev., 16, 1053–1081, https://doi.org/10.5194/gmd-16-1053-2023, https://doi.org/10.5194/gmd-16-1053-2023, 2023
Short summary
Short summary
Ammonia mainly comes from the agricultural sector, and its volatilization relies on environmental variables. Our approach aims at benefiting from an Earth system model framework to estimate it. By doing so, we represent a consistent spatial distribution of the emissions' response to environmental changes.
We greatly improved the seasonal cycle of emissions compared with previous work. In addition, our model includes natural soil emissions (that are rarely represented in modeling approaches).
Rui Ying, Fanny M. Monteiro, Jamie D. Wilson, and Daniela N. Schmidt
Geosci. Model Dev., 16, 813–832, https://doi.org/10.5194/gmd-16-813-2023, https://doi.org/10.5194/gmd-16-813-2023, 2023
Short summary
Short summary
Planktic foraminifera are marine-calcifying zooplankton; their shells are widely used to measure past temperature and productivity. We developed ForamEcoGEnIE 2.0 to simulate the four subgroups of this organism. We found that the relative abundance distribution agrees with marine sediment core-top data and that carbon export and biomass are close to sediment trap and plankton net observations respectively. This model provides the opportunity to study foraminiferal ecology in any geological era.
Onur Kerimoglu, Markus Pahlow, Prima Anugerahanti, and Sherwood Lan Smith
Geosci. Model Dev., 16, 95–108, https://doi.org/10.5194/gmd-16-95-2023, https://doi.org/10.5194/gmd-16-95-2023, 2023
Short summary
Short summary
In classical models that track the changes in the elemental composition of phytoplankton, additional state variables are required for each element resolved. In this study, we show how the behavior of such an explicit model can be approximated using an
instantaneous acclimationapproach, in which the elemental composition of the phytoplankton is assumed to adjust to an optimal value instantaneously. Through rigorous tests, we evaluate the consistency of this scheme.
Yuan Zhang, Devaraju Narayanappa, Philippe Ciais, Wei Li, Daniel Goll, Nicolas Vuichard, Martin G. De Kauwe, Laurent Li, and Fabienne Maignan
Geosci. Model Dev., 15, 9111–9125, https://doi.org/10.5194/gmd-15-9111-2022, https://doi.org/10.5194/gmd-15-9111-2022, 2022
Short summary
Short summary
There are a few studies to examine if current models correctly represented the complex processes of transpiration. Here, we use a coefficient Ω, which indicates if transpiration is mainly controlled by vegetation processes or by turbulence, to evaluate the ORCHIDEE model. We found a good performance of ORCHIDEE, but due to compensation of biases in different processes, we also identified how different factors control Ω and where the model is wrong. Our method is generic to evaluate other models.
Thomas Neumann, Hagen Radtke, Bronwyn Cahill, Martin Schmidt, and Gregor Rehder
Geosci. Model Dev., 15, 8473–8540, https://doi.org/10.5194/gmd-15-8473-2022, https://doi.org/10.5194/gmd-15-8473-2022, 2022
Short summary
Short summary
Marine ecosystem models are usually constrained by the elements nitrogen and phosphorus and consider carbon in organic matter in a fixed ratio. Recent observations show a substantial deviation from the simulated carbon cycle variables. In this study, we present a marine ecosystem model for the Baltic Sea which allows for a flexible uptake ratio for carbon, nitrogen, and phosphorus. With this extension, the model reflects much more reasonable variables of the marine carbon cycle.
Arsène Druel, Simon Munier, Anthony Mucia, Clément Albergel, and Jean-Christophe Calvet
Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, https://doi.org/10.5194/gmd-15-8453-2022, 2022
Short summary
Short summary
Crop phenology and irrigation is implemented into a land surface model able to work at a global scale. A case study is presented over Nebraska (USA). Simulations with and without the new scheme are compared to different satellite-based observations. The model is able to produce a realistic yearly irrigation water amount. The irrigation scheme improves the simulated leaf area index, gross primary productivity, evapotransipiration, and land surface temperature.
Thomas Wutzler, Lin Yu, Marion Schrumpf, and Sönke Zaehle
Geosci. Model Dev., 15, 8377–8393, https://doi.org/10.5194/gmd-15-8377-2022, https://doi.org/10.5194/gmd-15-8377-2022, 2022
Short summary
Short summary
Soil microbes process soil organic matter and affect carbon storage and plant nutrition at the ecosystem scale. We hypothesized that decadal dynamics is constrained by the ratios of elements in litter inputs, microbes, and matter and that microbial community optimizes growth. This allowed the SESAM model to descibe decadal-term carbon sequestration in soils and other biogeochemical processes explicitly accounting for microbial processes but without its problematic fine-scale parameterization.
Ensheng Weng, Igor Aleinov, Ram Singh, Michael J. Puma, Sonali S. McDermid, Nancy Y. Kiang, Maxwell Kelley, Kevin Wilcox, Ray Dybzinski, Caroline E. Farrior, Stephen W. Pacala, and Benjamin I. Cook
Geosci. Model Dev., 15, 8153–8180, https://doi.org/10.5194/gmd-15-8153-2022, https://doi.org/10.5194/gmd-15-8153-2022, 2022
Short summary
Short summary
We develop a demographic vegetation model to improve the representation of terrestrial vegetation dynamics and ecosystem biogeochemical cycles in the Goddard Institute for Space Studies ModelE. The individual-based competition for light and soil resources makes the modeling of eco-evolutionary optimality possible. This model will enable ModelE to simulate long-term biogeophysical and biogeochemical feedbacks between the climate system and land ecosystems at decadal to centurial temporal scales.
Yitong Yao, Emilie Joetzjer, Philippe Ciais, Nicolas Viovy, Fabio Cresto Aleina, Jerome Chave, Lawren Sack, Megan Bartlett, Patrick Meir, Rosie Fisher, and Sebastiaan Luyssaert
Geosci. Model Dev., 15, 7809–7833, https://doi.org/10.5194/gmd-15-7809-2022, https://doi.org/10.5194/gmd-15-7809-2022, 2022
Short summary
Short summary
To facilitate more mechanistic modeling of drought effects on forest dynamics, our study implements a hydraulic module to simulate the vertical water flow, change in water storage and percentage loss of stem conductance (PLC). With the relationship between PLC and tree mortality, our model can successfully reproduce the large biomass drop observed under throughfall exclusion. Our hydraulic module provides promising avenues benefiting the prediction for mortality under future drought events.
Arthur Nicolaus Fendrich, Philippe Ciais, Emanuele Lugato, Marco Carozzi, Bertrand Guenet, Pasquale Borrelli, Victoria Naipal, Matthew McGrath, Philippe Martin, and Panos Panagos
Geosci. Model Dev., 15, 7835–7857, https://doi.org/10.5194/gmd-15-7835-2022, https://doi.org/10.5194/gmd-15-7835-2022, 2022
Short summary
Short summary
Currently, spatially explicit models for soil carbon stock can simulate the impacts of several changes. However, they do not incorporate the erosion, lateral transport, and deposition (ETD) of soil material. The present work developed ETD formulation, illustrated model calibration and validation for Europe, and presented the results for a depositional site. We expect that our work advances ETD models' description and facilitates their reproduction and incorporation in land surface models.
Kazumi Ozaki, Devon B. Cole, Christopher T. Reinhard, and Eiichi Tajika
Geosci. Model Dev., 15, 7593–7639, https://doi.org/10.5194/gmd-15-7593-2022, https://doi.org/10.5194/gmd-15-7593-2022, 2022
Short summary
Short summary
A new biogeochemical model (CANOPS-GRB v1.0) for assessing the redox stability and dynamics of the ocean–atmosphere system on geologic timescales has been developed. In this paper, we present a full description of the model and its performance. CANOPS-GRB is a useful tool for understanding the factors regulating atmospheric O2 level and has the potential to greatly refine our current understanding of Earth's oxygenation history.
Félicien Meunier, Wim Verbruggen, Hans Verbeeck, and Marc Peaucelle
Geosci. Model Dev., 15, 7573–7591, https://doi.org/10.5194/gmd-15-7573-2022, https://doi.org/10.5194/gmd-15-7573-2022, 2022
Short summary
Short summary
Drought stress occurs in plants when water supply (i.e. root water uptake) is lower than the water demand (i.e. atmospheric demand). It is strongly related to soil properties and expected to increase in intensity and frequency in the tropics due to climate change. In this study, we show that contrary to the expectations, state-of-the-art terrestrial biosphere models are mostly insensitive to soil texture and hence probably inadequate to reproduce in silico the plant water status in drying soils.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022, https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Short summary
Plant carbon storage potential is central to moderate atmospheric CO2 concentration buildup and mitigation of climate change. There is an ongoing debate about the main driver of carbon storage. To reconcile this discrepancy, we use SEIB-DGVM to investigate the trend and response mechanism of carbon stock fractions among water limitation regions. Results show that the impact of CO2 and temperature on carbon stock depends on water limitation, offering a new perspective on carbon–water coupling.
Jing Fang, Herman H. Shugart, Feng Liu, Xiaodong Yan, Yunkun Song, and Fucheng Lv
Geosci. Model Dev., 15, 6863–6872, https://doi.org/10.5194/gmd-15-6863-2022, https://doi.org/10.5194/gmd-15-6863-2022, 2022
Short summary
Short summary
Our study provided a detailed description and a package of an individual tree-based carbon model, FORCCHN2. This model used non-structural carbohydrate (NSC) pools to couple tree growth and phenology. The model could reproduce daily carbon fluxes across Northern Hemisphere forests. Given the potential importance of the application of this model, there is substantial scope for using FORCCHN2 in fields as diverse as forest ecology, climate change, and carbon estimation.
Johannes Oberpriller, Christine Herschlein, Peter Anthoni, Almut Arneth, Andreas Krause, Anja Rammig, Mats Lindeskog, Stefan Olin, and Florian Hartig
Geosci. Model Dev., 15, 6495–6519, https://doi.org/10.5194/gmd-15-6495-2022, https://doi.org/10.5194/gmd-15-6495-2022, 2022
Short summary
Short summary
Understanding uncertainties of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyzed these across European forests. We find that uncertainties are dominantly induced by parameters related to water, mortality, and climate, with an increasing importance of climate from north to south. These results highlight that climate not only contributes uncertainty but also modifies uncertainties in other ecosystem processes.
Marcus Falls, Raffaele Bernardello, Miguel Castrillo, Mario Acosta, Joan Llort, and Martí Galí
Geosci. Model Dev., 15, 5713–5737, https://doi.org/10.5194/gmd-15-5713-2022, https://doi.org/10.5194/gmd-15-5713-2022, 2022
Short summary
Short summary
This paper describes and tests a method which uses a genetic algorithm (GA), a type of optimisation algorithm, on an ocean biogeochemical model. The aim is to produce a set of numerical parameters that best reflect the observed data of particulate organic carbon in a specific region of the ocean. We show that the GA can provide optimised model parameters in a robust and efficient manner and can also help detect model limitations, ultimately leading to a reduction in the model uncertainties.
Julien Ruffault, François Pimont, Hervé Cochard, Jean-Luc Dupuy, and Nicolas Martin-StPaul
Geosci. Model Dev., 15, 5593–5626, https://doi.org/10.5194/gmd-15-5593-2022, https://doi.org/10.5194/gmd-15-5593-2022, 2022
Short summary
Short summary
A widespread increase in tree mortality has been observed around the globe, and this trend is likely to continue because of ongoing climate change. Here we present SurEau-Ecos, a trait-based plant hydraulic model to predict tree desiccation and mortality. SurEau-Ecos can help determine the areas and ecosystems that are most vulnerable to drying conditions.
Rebecca J. Oliver, Lina M. Mercado, Doug B. Clark, Chris Huntingford, Christopher M. Taylor, Pier Luigi Vidale, Patrick C. McGuire, Markus Todt, Sonja Folwell, Valiyaveetil Shamsudheen Semeena, and Belinda E. Medlyn
Geosci. Model Dev., 15, 5567–5592, https://doi.org/10.5194/gmd-15-5567-2022, https://doi.org/10.5194/gmd-15-5567-2022, 2022
Short summary
Short summary
We introduce new representations of plant physiological processes into a land surface model. Including new biological understanding improves modelled carbon and water fluxes for the present in tropical and northern-latitude forests. Future climate simulations demonstrate the sensitivity of photosynthesis to temperature is important for modelling carbon cycle dynamics in a warming world. Accurate representation of these processes in models is necessary for robust predictions of climate change.
Mahdi André Nakhavali, Lina M. Mercado, Iain P. Hartley, Stephen Sitch, Fernanda V. Cunha, Raffaello di Ponzio, Laynara F. Lugli, Carlos A. Quesada, Kelly M. Andersen, Sarah E. Chadburn, Andy J. Wiltshire, Douglas B. Clark, Gyovanni Ribeiro, Lara Siebert, Anna C. M. Moraes, Jéssica Schmeisk Rosa, Rafael Assis, and José L. Camargo
Geosci. Model Dev., 15, 5241–5269, https://doi.org/10.5194/gmd-15-5241-2022, https://doi.org/10.5194/gmd-15-5241-2022, 2022
Short summary
Short summary
In tropical ecosystems, the availability of rock-derived elements such as P can be very low. Thus, without a representation of P cycling, tropical forest responses to rising atmospheric CO2 conditions in areas such as Amazonia remain highly uncertain. We introduced P dynamics and its interactions with the N and P cycles into the JULES model. Our results highlight the potential for high P limitation and therefore lower CO2 fertilization capacity in the Amazon forest with low-fertility soils.
Olga Dombrowski, Cosimo Brogi, Harrie-Jan Hendricks Franssen, Damiano Zanotelli, and Heye Bogena
Geosci. Model Dev., 15, 5167–5193, https://doi.org/10.5194/gmd-15-5167-2022, https://doi.org/10.5194/gmd-15-5167-2022, 2022
Short summary
Short summary
Soil carbon storage and food production of fruit orchards will be influenced by climate change. However, they lack representation in models that study such processes. We developed and tested a new sub-model, CLM5-FruitTree, that describes growth, biomass distribution, and management practices in orchards. The model satisfactorily predicted yield and exchange of carbon, energy, and water in an apple orchard and can be used to study land surface processes in fruit orchards at different scales.
Jiaying Zhang, Rafael L. Bras, Marcos Longo, and Tamara Heartsill Scalley
Geosci. Model Dev., 15, 5107–5126, https://doi.org/10.5194/gmd-15-5107-2022, https://doi.org/10.5194/gmd-15-5107-2022, 2022
Short summary
Short summary
We implemented hurricane disturbance in a vegetation dynamics model and calibrated the model with observations of a tropical forest. We used the model to study forest recovery from hurricane disturbance and found that a single hurricane disturbance enhances AGB and BA in the long term compared with a no-hurricane situation. The model developed and results presented in this study can be utilized to understand the impact of hurricane disturbances on forest recovery under the changing climate.
Prabhat Raj Dahal, Maria Lumbierres, Stuart H. M. Butchart, Paul F. Donald, and Carlo Rondinini
Geosci. Model Dev., 15, 5093–5105, https://doi.org/10.5194/gmd-15-5093-2022, https://doi.org/10.5194/gmd-15-5093-2022, 2022
Short summary
Short summary
This paper describes the validation of area of habitat (AOH) maps produced for terrestrial birds and mammals. The main objective was to assess the accuracy of the maps based on independent data. We used open access data from repositories, such as ebird and gbif to check if our maps were a better reflection of species' distribution than random. When points were not available we used logistic models to validate the AOH maps. The majority of AOH maps were found to have a high accuracy.
Yoshiki Kanzaki, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 15, 4959–4990, https://doi.org/10.5194/gmd-15-4959-2022, https://doi.org/10.5194/gmd-15-4959-2022, 2022
Short summary
Short summary
Increasing carbon dioxide in the atmosphere is an urgent issue in the coming century. Enhanced rock weathering in soils can be one of the most efficient C capture strategies. On the basis as a weathering simulator, the newly developed SCEPTER model implements bio-mixing by fauna/humans and enables organic matter and crushed rocks/minerals at the soil surface with an option to track their particle size distributions. Those features can be useful for evaluating the carbon capture efficiency.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Qianyu Li, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers
Geosci. Model Dev., 15, 4313–4329, https://doi.org/10.5194/gmd-15-4313-2022, https://doi.org/10.5194/gmd-15-4313-2022, 2022
Short summary
Short summary
Stomatal conductance is the rate of water release from leaves’ pores. We implemented an optimal stomatal conductance model in a vegetation model. We then tested and compared it with the existing empirical model in terms of model responses to key environmental variables. We also evaluated the model with measurements at a tropical forest site. Our study suggests that the parameterization of conductance models and current model response to drought are the critical areas for improving models.
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022, https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Short summary
We describe the coupled bio-physical model ECOSMO II(CHL), which is used for regional configurations for the North Atlantic and the Arctic hind-casting and operational purposes. The model is consistent with the large-scale climatological nutrient settings and is capable of representing regional and seasonal changes, and model primary production agrees with previous measurements. For the users of this model, this paper provides the underlying science, model evaluation and its development.
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022, https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Short summary
We present the Water Ecosystems Tool (WET) – a new modular aquatic ecosystem model configurable to a wide array of physical setups, ecosystems and research questions based on the popular FABM–PCLake model. We aim for the model to become a community staple, thus helping to consolidate the state of the art under a few flexible models, with the aim of improving comparability across studies and preventing the
re-inventions of the wheelthat are common to our scientific modeling community.
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022, https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Short summary
We present a new terrestrial carbon cycle data assimilation system, built on the PEcAn model–data eco-informatics system, and its application for the development of a proof-of-concept carbon
reanalysisproduct that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. Here, we build on a decade of work on uncertainty propagation to generate the most complete and robust uncertainty accounting available to date.
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022, https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
Short summary
Accurately predicting global coverage of terrestrial biome is one of the earliest ecological concerns, and many empirical schemes have been proposed to characterize their relationship. Here, we demonstrate an accurate and practical method to construct empirical models for operational biome mapping via a convolutional neural network (CNN) approach.
Cited articles
Aleman, D. M., Romeijn, H. E., and Dempsey, J. F.: A response surface approach to beam
orientation optimization in intensity-modulated radiation therapy treatment
planning, INFORMS J. Comput., 21, 62–76, 2009.
Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon response to warming
dependent on microbial physiology, Nat. Geosci., 3,
336–340, 2010.
Behzad, M., Asghari, K., Eazi, M., and Palhang, M.: Generalization
performance of support vector machines and neural networks in runoff
modeling, Expert Syst. Appl., 36, 7624–7629, 2009.
Booker, A. J., Dennis Jr., J. E., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W.: A rigorous framework for
optimization of expensive functions by surrogates, Struct.
optimization, 17, 1–13, 1999.
Breiman, L.: Statistical modeling: The two cultures (with comments and a
rejoinder by the author), Stat. Sci., 16, 199–231, 2001.
Davis, E. and Ierapetritou, M.: A kriging based method for the solution of
mixed-integer nonlinear programs containing black-box functions, J. Global
Optim., 43, 191–205, 2009.
Fontaine, S., Bardoux, G., Abbadie, L., and Mariotti, A.: Carbon input to soil may decrease
soil carbon content, Ecol. Lett., 7, 314–320, 2004.
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., and Rumpel, C.: Stability of organic carbon in deep
soil layers controlled by fresh carbon supply, Nature,
450, 277–280, 2007.
Forrester A. I. J., Sóbester, A., and Keane, A. J.: Engineering Design via
Surrogate Modelling: A Practical Guide, John Wiley & Sons, Chichester, 2008.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., and Bala, G.: Climate-carbon cycle feedback analysis: Results
from the C4MIP model intercomparison, Climate, 19, 3337–3353, 2006.
Friedman, J. H.: Multivariate adaptive regression splines, Ann.
Stat., 19, 1–67, 1991.
German, D. P., Marcelo, K. R. B., Stone, M. M., and Allison, S. D.: The Michaelis–Menten kinetics
of soil extracellular enzymes in response to temperature: a
cross-latitudinal study, Glob. Change Biol., 18, 1468–1479, 2012.
Giunta, A. A.: Aircraft multidisciplinary design optimization using design of
experiments theory and response surface modeling methods, Virginia
polytechnic institute and state university, 1997.
Global Soil Data Task Group: Global Gridded Surfaces of Selected Soil
Characteris- tics (IGBP-DIS), [Global Gridded Surfaces of Selected Soil
Characteristics (International Geosphere-Biosphere Programme – Data and
Information System)], Data set, Oak Ridge National Laboratory
Distributed Active Archive Center, Oak Ridge, TN, 2000.
Gutmann, H. M.: A radial basis function method for global optimization,
J. Global Optim., 19, 201–227, 2001.
Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm,
Bernoulli, 7, 223–242, 2001.
Hansen, N.: Benchmarking the Nelder-Mead downhill simplex algorithm with many
local restarts, Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers, ACM,
2403–2408, 2009.
Hansen, N. and Kern, S.: Evaluating the CMA evolution strategy on multimodal test
functions, Proceedings of International Conference on Parallel Problem
Solving from Nature, Springer Berlin Heidelberg, 282–291, 2004.
Hansen, N. and Ostermeier, A.: Completely de-randomized self-adaptation in
evolution strategies, Evol. Comput., 9, 159–195, 2001.
Hapuarachchi, H. A. P., Li, Z., and Wang, S.: Application of SCE-UA method for
calibrating the Xinanjiang watershed model, Journal of Lake Sciences,
13, 304–314, 2001.
Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of a global land model
against soil carbon data using a Bayesian Markov chain Monte Carlo
method, J. Geophys. Res.-Biogeo., 119, 403–417, 2014.
Hararuk, O., Smith, M. J., and Luo, Y.: Microbial models with data-driven parameters
predict stronger soil carbon responses to climate change, Glob. Change
Biol., 21, 2439–2453, 2015.
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J.,
Dai, X., Maskell, K., and Johnson, C.: Climate Change 2001: the scientific
basis, Cambridge University Press, Cambridge, 2001.
Huang, Y. Y., Lu, X. J., Shi, Z., Lawrence, D., Koven, C., Xia, J. Y., Du, Z. G., Kluzek, E., and Luo, Y.
Q.: Matrix approach to land carbon cycle modeling: A case study with
Community Land Model, Glob. Change Biol., 24, 1394–1404, 2018.
Iman, R. L., Campbell, J., and Helton, J.: An approach to sensitivity analysis of
computer models, J. Qual. Technol., 13, 174–183, 1981.
Jones, D. R.: A taxonomy of global optimization methods based on response
surfaces, J. Global Optim., 21, 345–383, 2001.
Jones, D. R., Schonlau, M., and Welch, W. J.: Efficient global optimization of expensive
black-box functions, J. Global Optim., 13
455–492, 1998.
Kennedy, J.: Particle swarm optimization, Encyclopedia of Machine
Learning, Springer US, 760–766, 2011.
Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and quantification of
priming effects, Soil Biol. Biochem.,
32, 1485–1498, 2000.
Li, G., Cheng, C. T., Lin, J. Y., and Zeng, Y.: Short-term load forecasting using support
vector machine with SCE-UA algorithm, Third International Conference on
Natural Computation (ICNC 2007), IEEE, 1, 290–294, 2007.
Luo, Y.: Terrestrial carbon-cycle feedback to climate warming,
Annu.
Rev. Ecol. Evol. S., 38, 683–712, 2007.
Luo, Y. and Weng, E.: Dynamic disequilibrium of the terrestrial carbon cycle
under global change, Trends Ecol. Evol., 26, 96–104, 2011.
Luo, Y., Wu, L., Andrews, J. A., White, L., Matamala, R.,
Schäfer, K. V. R., and Schlesinger, W. H.: Elevated CO2 differentiates ecosystem carbon
processes: Deconvolution analysis of Duke Forest FACE data, Ecol.
Monogr., 71, 357–376, 2001.
Luo, Y., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S.,
Finzi, A., Lichter, J., and Schlesinger, W. H.: Sustainability of terrestrial
carbon sequestration: A case study in Duke Forest with inversion approach,
Global Biogeochem. Cy., 17, 1021, https://doi.org/10.1029/2002gb001923 , 2003.
Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N.,
Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O.,
Harden, J. W., He, Y. J., Hopkins, F., Jiang, L. F., Koven, C., Jackson, R. B., Jones, C. D.,
Lara, M. J., Liang, J. Y., McGuire, A. D., Parton, W., Peng, C. H., Randerson, J. T., Salazar, A.,
Sierra, C. A., Smith, M. J., Tian, H. Q., Todd-Brown, K. E. O., Torn, M., van Groenigen, K. J., Wang, Y. P.,
West, T. O., Wei, Y. X., Wieder, W. R., Xia, J. Y., Xu, X., Xu, X. F., and Zhou, T.: Towards More
Realistic Projections of Soil Carbon Dynamics by Earth System Models,
Global Biogeochem. Cy., 30, 40–56, 2016.
Luo, Y. Q., Keenan, T. F., and Smith, M.: Predictability of the terrestrial carbon
cycle, Glob. Change Biol., 21, 1737–1751, 2015.
Ma, H., Dong, Z., Zhang, W. M., and Liang, Z. M.: Application of SCE-UA algorithm to
optimization of TOPMODEL parameters, Journal of Hohai University
4, 2006.
Marshall, L., Nott, D., and Sharma, A.: A comparative study of Markov
chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water
Resour. Res., 40, W02501, https://doi.org/10.1029/2003WR002378, 2004.
McKay, M. D., Beckman, R. J., and Conover, W. J.: Comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 21, 239–245, 1979.
Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H.,
Bowles, F. P., Catricala, C., Magill, A., Ahrens, T., and Morrisseau, S.:
Soil warming and carbon-cycle feedbacks to the climate system, Science, 298,
2173–2176, 2002.
Müller, J.: MATSuMoTo: The MATLAB Surrogate Model Toolbox For
Computationally Expensive Black-Box Global Optimization Problems,
arXiv:1404.4261, 2014.
Müller, J. and Shoemaker, C. A.: Influence of ensemble surrogate models and
sampling strategy on the solution quality of algorithms for computationally
expensive black-box global optimization problems, J. Global
Optim., 60, 123–144, 2014.
Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M.: Response surface methodology:
process and product optimization using designed experiments, John Wiley &
Sons, 2016.
Oleson, K. W., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R.,
Dirmeyer, P., Hoffman, F., Houser, P., Levis, S., and Niu, G.-Y.: Technical description of the
community land model (CLM), NCAR Tech., 2004.
Oleson, K. W., Niu, G., Yang, Z., Lawrence, D., Thornton, P., Lawrence, P.,
Stockli, R., Dickinson, R., Bonan, G., and Levis, S.: Improvements to the Community
Land Model and their impact on the hydrological cycle, J. Geophys. Res.,
113, https://doi.org/10.1029/2007jg000563, 2008.
Peng, S., Piao, S., Wang, T., Sun, J., and Shen, Z.: Temperature sensitivity of soil respiration
in different ecosystems in China, Soil Biol. Biochem., 41, 1008–1014, 2009.
Picheny, V., Ginsbourger, D., Richet, Y., and Caplin, G.: Quantile-Based Optimization of
Noisy Computer Experiments With Tunable Precision, Technometrics, 55, 2–9,
2012.
Powell, M. J. D.: The theory of radial basis function approximation in 1990,
in: Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms and
Radial Functions, edited by: Light, W. A., Oxford University Press (Oxford),
105–210, 1992.
Price, K., Storn, R. M., and Lampinen, J. A.: Differential evolution: a practical
approach to global optimization, Springer Science & Business Media, 2006.
Regis, R. G.: Stochastic radial basis function algorithms for large-scale
optimization involving expensive black-box objective and constraint
functions, Comput. Oper. Res., 38, 837–853, 2011.
Regis, R. G. and Shoemaker, C. A.: A stochastic radial basis function method for the
global optimization of expensive functions, INFORMS J. Comput.,
19, 497–509, 2007.
Regis, R. G. and Shoemaker, C. A.: Parallel stochastic global optimization using
radial basis functions, INFORMS J. Comput., 21,
411–426, 2009.
Rocha, H.: Model parameter tuning by cross validation and global
optimization: application to the wing weight fitting problem, Structural and
Multidisciplinary Optimization, 37, 197 pp., 2008.
Schimel, J. P. and Weintraub, M. N.: The implications of exoenzyme activity on
microbial carbon and nitrogen limitation in soil: a theoretical model,
Soil Biol. Biochem., 35, 549–563, 2003.
Schonlau, M., Welch, W. J., and Jones, D. R.: Global versus local search in constrained
optimization of computer models, Lecture Notes-Monograph Series, 11–25,
https://doi.org/10.1214/lnms/1215456182, 1998.
Shi, Y. and Eberhart, R. C.: Empirical study of particle swarm optimization,
Front. Comput. Sci. Chi., 3, 31–37, 2009.
Shi, Z., Crowell, S., Luo, Y. Q., and Moore III, B.: Uncertainty in soil carbon
projection constrained by data but amplified by model structures, Nat.
Commun., https://doi.org/10.1038/s41467-018-04526-9, 2018.
Simpson, T. W., Mauery, T. M., Korte, J. J., and Mistree, F.: Kriging models for global
approximation in simulation-based multidisciplinary design optimization, AIAA
J., 39, 2233–2241, 2001.
Smith, M. J., Purves, D. W., Vanderwel, M. C., Lyutsarev, V., and Emmott, S.: The climate dependence of the terrestrial carbon cycle, including parameter and structural uncertainties, Biogeosciences,
10, 583–606, https://doi.org/10.5194/bg-10-583-2013, 2013.
Storn, R. and Price, K.: Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces, J. Global
Optim., 11, 341–359, 1997.
Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M.,
Tarnocai, C., Schuur, E. A. G., and Allison, S. D.: Causes of variation in
soil carbon simulations from CMIP5 Earth system models and comparison with
observations, Biogeosciences, 10, 1717–1736,
https://doi.org/10.5194/bg-10-1717-2013, 2013.
Vu, K. K., D'Ambrosio, C., Hamadi, Y., and Liberti, L.: Surrogate-based methods for
black-box optimization, International Transactions in Operational Research,
24, 393–424, 2016.
Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., and Miao, C.: An evaluation of adaptive surrogate modelling based optimization with two
benchmark problems, Environ. Modell. Softw., 60, 167–179, 2014.
Weng, E. and Luo, Y.: Relative information contributions of model vs. data
to short- and long-term forecasts of forest carbon dynamics, Ecol. Appl., 21,
1490–1505, 2011.
Wild, S. M. and Shoemaker, C.: Global convergence of radial basis function
trust-region algorithms for derivative-free optimization, SIAM Rev., 55,
349–371, 2013.
Xia, J., Luo, Y., Wang, Y. P., and Hararuk, O.: Traceable components of
terrestrial carbon storage capacity in biogeochemical models, Glob. Change
Biol., 19, 2104–2116, 2013.
Xia, J. Y., Luo, Y. Q., Wang, Y.-P., Weng, E. S., and Hararuk, O.: A
semi-analytical solution to accelerate spin-up of a coupled carbon and
nitrogen land model to steady state, Geosci. Model Dev., 5, 1259–1271,
https://doi.org/10.5194/gmd-5-1259-2012, 2012.
Xu, T., White, L., Hui, D., and Luo, Y.: Probabilistic inversion of a
terrestrial ecosystem model: Analysis of uncertainty in parameter estimation
and model prediction, Global Biogeochem. Cy., 20, GB2007,
https://doi.org/10.1029/2005gb002468, 2006.
Zhang, X., Srinivasan, R., and Van Liew, M.: Approximating SWAT model using
artificial neural network and support vector machine, J. Am. Water Resour.
As., 45, 460–474, 2009.
Zhou, T., Shi, P., Hui, D., and Luo, Y.: Global pattern of temperature
sensitivity of soil heterotrophic respiration (Q10) and its implications for
carbon-climate feedback, J. Geophys. Res., 114, https://doi.org/10.1029/2008jg000850,
2009.
Short summary
This study proposes a new parameter calibration method based on surrogate optimization techniques to improve the prediction accuracy of soil organic carbon. Experiments on three popular global soil carbon cycle models show that the surrogate-based optimization method is effective and efficient in terms of both accuracy and cost. This research would help develop and improve the parameterization schemes of Earth climate systems.
This study proposes a new parameter calibration method based on surrogate optimization...