Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2093-2018
https://doi.org/10.5194/gmd-11-2093-2018
Model description paper
 | 
08 Jun 2018
Model description paper |  | 08 Jun 2018

Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

Tristan Salles, Jodie Pall, Jody M. Webster, and Belinda Dechnik

Related authors

The roles of surface processes on porphyry copper deposits preservation
Beatriz Hadler Boggiani, Tristan Salles, Claire Mallard, and Nicholas Atwood
EGUsphere, https://doi.org/10.5194/egusphere-2024-1868,https://doi.org/10.5194/egusphere-2024-1868, 2024
Short summary
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024,https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023,https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Landscape responses to dynamic topography and climate change on the South African source-to-sink system since the Oligocene
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89,https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary
Tectonically and climatically driven mountain-hopping erosion in central Guatemala from detrital 10Be and river profile analysis
Gilles Brocard, Jane Kathrin Willenbring, Tristan Salles, Michael Cosca, Axel Guttiérez-Orrego, Noé Cacao Chiquín, Sergio Morán-Ical, and Christian Teyssier
Earth Surf. Dynam., 9, 795–822, https://doi.org/10.5194/esurf-9-795-2021,https://doi.org/10.5194/esurf-9-795-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024,https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024,https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024,https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024,https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024,https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary

Cited articles

Abbey, E., Webster, J. M., and Beaman, R. J.: Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: The influence of oscillating Pleistocene sea-levels, Mar. Geol., 288, 61—78, 2011. a
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.: An introduction to MCMC for machine learning, Mach. Learn., 50, 5–43, 2003. a
Baldock, T. E., Golshani, A., Callaghan, D. P., Saunders, M. I., and Mumby, P. J.: Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs, Mar. Pollut. Bull., 83, 155–164, 2014. a, b
Barrett, S. J. and Webster, J. M.: Reef Sedimentary Accretion Model (ReefSAM): Understanding coral reef evolution on Holocene time scales using 3D stratigraphic forward modelling, Mar. Geol., 391, 108–126, 2017. a, b, c, d
Bosence, D. and Waltham, D.: Computer modeling the internal architecture of carbonate platforms, Geology, 18, 26–30, 1990. a
Download
Short summary
We present a 1-D model of coral reefs' evolution over centennial to millennial timescales. The model enables us to estimate the effects of environmental conditions (such as oceanic variability, sedimentation rate, sea-level fluctuations or tectonics) and ecological coral competition on reef vertical accretion and stratigraphic succession. The tool can quantitatively test carbonate platform development and efficiently interpret vertical growth under various forcing scenarios.