Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2093-2018
https://doi.org/10.5194/gmd-11-2093-2018
Model description paper
 | 
08 Jun 2018
Model description paper |  | 08 Jun 2018

Exploring coral reef responses to millennial-scale climatic forcings: insights from the 1-D numerical tool pyReef-Core v1.0

Tristan Salles, Jodie Pall, Jody M. Webster, and Belinda Dechnik

Related authors

The roles of surface processes in porphyry copper deposit preservation
Beatriz Hadler Boggiani, Tristan Salles, Claire Mallard, and Nicholas Atwood
Earth Surf. Dynam., 13, 683–704, https://doi.org/10.5194/esurf-13-683-2025,https://doi.org/10.5194/esurf-13-683-2025, 2025
Short summary
Climatic and Tectonic Forcing Lead to Contrasting Headwater Slope Evolutions
Yinbing Zhu, Patrice Rey, and Tristan Salles
EGUsphere, https://doi.org/10.5194/egusphere-2025-1585,https://doi.org/10.5194/egusphere-2025-1585, 2025
Short summary
Flexural isostatic response of continental-scale deltas to climatically driven sea level changes
Sara Polanco, Mike Blum, Tristan Salles, Bruce C. Frederick, Rebecca Farrington, Xuesong Ding, Ben Mather, Claire Mallard, and Louis Moresi
Earth Surf. Dynam., 12, 301–320, https://doi.org/10.5194/esurf-12-301-2024,https://doi.org/10.5194/esurf-12-301-2024, 2024
Short summary
River incision, 10Be production and transport in a source-to-sink sediment system (Var catchment, SW Alps)
Carole Petit, Tristan Salles, Vincent Godard, Yann Rolland, and Laurence Audin
Earth Surf. Dynam., 11, 183–201, https://doi.org/10.5194/esurf-11-183-2023,https://doi.org/10.5194/esurf-11-183-2023, 2023
Short summary
Landscape responses to dynamic topography and climate change on the South African source-to-sink system since the Oligocene
Claire A. Mallard and Tristan Salles
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-89,https://doi.org/10.5194/esurf-2021-89, 2021
Preprint withdrawn
Short summary

Related subject area

Climate and Earth system modeling
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary

Cited articles

Abbey, E., Webster, J. M., and Beaman, R. J.: Geomorphology of submerged reefs on the shelf edge of the Great Barrier Reef: The influence of oscillating Pleistocene sea-levels, Mar. Geol., 288, 61—78, 2011. a
Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.: An introduction to MCMC for machine learning, Mach. Learn., 50, 5–43, 2003. a
Baldock, T. E., Golshani, A., Callaghan, D. P., Saunders, M. I., and Mumby, P. J.: Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs, Mar. Pollut. Bull., 83, 155–164, 2014. a, b
Barrett, S. J. and Webster, J. M.: Reef Sedimentary Accretion Model (ReefSAM): Understanding coral reef evolution on Holocene time scales using 3D stratigraphic forward modelling, Mar. Geol., 391, 108–126, 2017. a, b, c, d
Bosence, D. and Waltham, D.: Computer modeling the internal architecture of carbonate platforms, Geology, 18, 26–30, 1990. a
Download
Short summary
We present a 1-D model of coral reefs' evolution over centennial to millennial timescales. The model enables us to estimate the effects of environmental conditions (such as oceanic variability, sedimentation rate, sea-level fluctuations or tectonics) and ecological coral competition on reef vertical accretion and stratigraphic succession. The tool can quantitatively test carbonate platform development and efficiently interpret vertical growth under various forcing scenarios.
Share