Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2033-2018
https://doi.org/10.5194/gmd-11-2033-2018
Methods for assessment of models
 | 
04 Jun 2018
Methods for assessment of models |  | 04 Jun 2018

Cluster-based analysis of multi-model climate ensembles

Richard Hyde, Ryan Hossaini, and Amber A. Leeson

Related authors

Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over South and East Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Marytn P. Chipperfield
EGUsphere, https://doi.org/10.5194/egusphere-2024-2686,https://doi.org/10.5194/egusphere-2024-2686, 2024
Short summary
Bayesian hierarchical model for bias-correcting climate models
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024,https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
A machine learning approach to downscale EMEP4UK: analysis of UK ozone variability and trends
Lily Gouldsbrough, Ryan Hossaini, Emma Eastoe, Paul J. Young, and Massimo Vieno
Atmos. Chem. Phys., 24, 3163–3196, https://doi.org/10.5194/acp-24-3163-2024,https://doi.org/10.5194/acp-24-3163-2024, 2024
Short summary
On the atmospheric budget of ethylene dichloride and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn Chipperfield, Wuhu Feng, David Oram, Karina Adcock, Stephen Montzka, Isobel Simpson, Andrea Mazzeo, Amber Leeson, Elliot Atlas, and Charles C.-K. Chou
EGUsphere, https://doi.org/10.5194/egusphere-2024-560,https://doi.org/10.5194/egusphere-2024-560, 2024
Short summary
A comparison of supraglacial meltwater features throughout contrasting melt seasons: Southwest Greenland
Emily Glen, Amber A. Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Brice Noël, and Malcolm McMillan
EGUsphere, https://doi.org/10.5194/egusphere-2024-23,https://doi.org/10.5194/egusphere-2024-23, 2024
Short summary

Related subject area

Atmospheric sciences
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024,https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024,https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024,https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024,https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024,https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary

Cited articles

Aggarwal, C. C. and Reddy, C. K. (Eds.): DATA Clustering Algorithms and Applications, CRC Press, Boca Raton, available at: https://www.crcpress.com/Data-Clustering-Algorithms-and-Applications/Aggarwal-Reddy/p/book/9781466558212 (last access: 28 May 2018), 2014. 
Arroyo, A., Tricio, V., Herrero, A., and Corchado, E.: Time Analysis of Air Pollution in a Spanish Region Through k-means, in: International Joint Conference SOCO'16- CISIS'16-ICEUTE'16, edited by: Grana, M., Lopez Guede, J. M., Etxaniz, O., Herrero, A., Quintian, H., and Corchado, E., Advances in Intelligent Systems and Computing, 527 63–72, https://doi.org/10.1007/978-3-319-47364-2, 2017. 
Austin, E., Coull, B. A., Zanobetti, A., and Koutrakis, P.: A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition, Environ. Int., 59, 244–254, https://doi.org/10.1016/j.envint.2013.06.003, 2013. 
Bador, M., Naveau, P., Gilleland, E., Castellà, M., and Arivelo, T.: Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles and E-OBS over Europe, Weather Clim. Extrem., 9, 17–24, 2015. 
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J., Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.: Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2, 417–424, https://doi.org/10.1038/NCLIMATE1456, 2012. 
Download
Short summary
Clustering, the automated grouping of similar data, can provide powerful insight into large/complex data. We demonstrate the benefits of clustering applied to output from climate model inter-comparison initiatives. We focus on modelled tropospheric ozone from the ACCMIP project. Cluster-based subsampling of the model ensemble can (i) remove outlier data on a grid-cell basis, reducing model–observation bias and (ii) provide a useful framework in which to investigate and visualise model diversity.