Articles | Volume 11, issue 6
https://doi.org/10.5194/gmd-11-2033-2018
https://doi.org/10.5194/gmd-11-2033-2018
Methods for assessment of models
 | 
04 Jun 2018
Methods for assessment of models |  | 04 Jun 2018

Cluster-based analysis of multi-model climate ensembles

Richard Hyde, Ryan Hossaini, and Amber A. Leeson

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Ryan Hossaini on behalf of the Authors (04 May 2018)  Manuscript 
ED: Publish subject to technical corrections (10 May 2018) by Jeremy Fyke
AR by Ryan Hossaini on behalf of the Authors (13 May 2018)  Manuscript 
Download
Short summary
Clustering, the automated grouping of similar data, can provide powerful insight into large/complex data. We demonstrate the benefits of clustering applied to output from climate model inter-comparison initiatives. We focus on modelled tropospheric ozone from the ACCMIP project. Cluster-based subsampling of the model ensemble can (i) remove outlier data on a grid-cell basis, reducing model–observation bias and (ii) provide a useful framework in which to investigate and visualise model diversity.