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Abstract. Clustering – the automated grouping of similar
data – can provide powerful and unique insight into large
and complex data sets, in a fast and computationally effi-
cient manner. While clustering has been used in a variety
of fields (from medical image processing to economics), its
application within atmospheric science has been fairly lim-
ited to date, and the potential benefits of the application of
advanced clustering techniques to climate data (both model
output and observations) has yet to be fully realised. In this
paper, we explore the specific application of clustering to a
multi-model climate ensemble. We hypothesise that cluster-
ing techniques can provide (a) a flexible, data-driven method
of testing model–observation agreement and (b) a mecha-
nism with which to identify model development priorities.
We focus our analysis on chemistry–climate model (CCM)
output of tropospheric ozone – an important greenhouse gas
– from the recent Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP). Tropospheric column
ozone from the ACCMIP ensemble was clustered using the
Data Density based Clustering (DDC) algorithm. We find
that a multi-model mean (MMM) calculated using mem-
bers of the most-populous cluster identified at each loca-
tion offers a reduction of up to ∼ 20 % in the global abso-
lute mean bias between the MMM and an observed satellite-
based tropospheric ozone climatology, with respect to a sim-
ple, all-model MMM. On a spatial basis, the bias is reduced
at∼ 62 % of all locations, with the largest bias reductions oc-
curring in the Northern Hemisphere – where ozone concen-
trations are relatively large. However, the bias is unchanged
at 9 % of all locations and increases at 29 %, particularly
in the Southern Hemisphere. The latter demonstrates that
although cluster-based subsampling acts to remove outlier
model data, such data may in fact be closer to observed val-
ues in some locations. We further demonstrate that cluster-

ing can provide a viable and useful framework in which to
assess and visualise model spread, offering insight into geo-
graphical areas of agreement among models and a measure
of diversity across an ensemble. Finally, we discuss caveats
of the clustering techniques and note that while we have fo-
cused on tropospheric ozone, the principles underlying the
cluster-based MMMs are applicable to other prognostic vari-
ables from climate models.

1 Introduction

Clustering is a flexible and unsupervised numerical tech-
nique that involves the segregation of data into statistically
similar groups (or “clusters”). These groups can be either de-
termined entirely by the properties of the data themselves or
guided by user constraints. Numerous clustering algorithms
have been developed, each with varying degrees of com-
plexity. The k-means clustering algorithm, for example, is
a relatively simple and popular technique used in several at-
mospheric science problems (e.g. Mace et al., 2011; Qin et
al., 2012; Austin et al., 2013; Arroyo et al., 2017). Specifi-
cally related to climate science, clustering has also been used
for automated classification of various remote-sensing data
(e.g. Viovy, 2000), for the interpretation of ocean-climate in-
dices and climate patterns (Zscheischler et al., 2012; Yuan
and Wood, 2012; Bador et al., 2015), in describing spa-
tiotemporal patterns of rainfall (Muñoz Díaz and Rodrigo,
2004), and to classify surface ozone measurements from a
large network of sites (Lyapina et al., 2016), among sev-
eral other applications. An area for which the applicability
of clustering has yet to be fully explored is in the analysis of
model ensembles; a collection of comparable outputs from
either multiple models or multiple realisations of the same
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model with perturbed physics or variations in forcing data.
One example of a model ensemble is that generated dur-
ing multi-model inter-comparison projects, involving chemi-
cal transport models (CTMs), climate models, or chemistry–
climate models (CCMs). Such initiatives are now common
and form an integral part of scientific assessment of at-
mospheric composition, particularly in international-policy-
facing research concerning climate change. For example, re-
cent model inter-comparison studies have considered strato-
spheric ozone layer recovery (Eyring et al., 2010), the cli-
mate impacts of long-term tropospheric ozone trends (Young
et al., 2013; Stevenson et al., 2013), and palaeoclimatology
(Braconnot et al., 2012), among others.

Multi-model ensembles are used to identify the most likely
value for a given variable at a particular place and time, and
a range of possible values for that variable, under the as-
sumption that all model predictions are equally valid. In most
instances, a multi-model mean (MMM) is computed from
a simple arithmetic mean of all models (i.e. a one model,
one vote approach), such as during the recent Atmospheric
Chemistry and Climate Model Intercomparison Project (AC-
CMIP) studies of tropospheric ozone and the hydroxyl radi-
cal, OH (Young et al., 2013; Voulgarakis et al., 2013). For
chemical species such as these, that exhibit large space–
time inhomogeneity in their tropospheric abundance, a sin-
gle model will rarely be universally best performing (i.e. at
all locations and times). In this regard, a MMM is a use-
ful quantity and is often considered a best estimate that in-
cludes robust features (that are still apparent after averaging)
from the ensemble of models. In these circumstances how-
ever, it is also of interest to consider how estimates differ
among models (model spread), which is often characterised
by the standard deviation of values from all models, for ex-
ample in the studies referenced above. Model spread may be
used to identify areas where the best-estimate values may be
more, or less, uncertain. For example, if all models agree at
a given place and time then we can have confidence in the
all-model MMM at that location. If all models do not agree,
then more involved MMM approaches may be taken. For ex-
ample, this might somehow weight individual model con-
tributions (e.g. DelSole et al., 2013; Haughton et al., 2015;
Wanders and Wood, 2016), such as based on their perfor-
mance against a set of observations, thus potentially diluting
spurious features from individual models. However, such ap-
proaches have been somewhat rarely implemented in recent
CCM inter-comparisons and can only really be used for as-
sessing past states, for which observations are available. Fur-
thermore, it is not uncommon for individual models to be ex-
cluded entirely from a MMM if deemed particularly poor on
the basis of an evaluation against a set of observations (e.g.
Hossaini et al., 2016), or if deemed a clear or substantial out-
lier with respect to the majority of other models (e.g. Eyring
et al., 2010).

In this study, we hypothesise that clustering techniques can
provide (a) a flexible, data-driven method of testing model–

observation agreement and (b) a mechanism with which to
identify model development priorities. In terms of the for-
mer, clustering provides a data-driven method of grouping
the model output at each place and time by how well each
modelled value agrees with the ensemble as a whole. This
potentially enables refinement of the ensemble by objectively
identifying outlier data at a given place and time on a case-
by-case basis, thus potentially removing the need to per-
form blanket model exclusions. In terms of the latter, cluster-
ing provides potential insight into model development needs
through exploring the membership of the clusters, for exam-
ple why a specific model may always be excluded from the
most populous cluster at a particular location. We focus our
analysis on tropospheric column ozone data from 14 atmo-
spheric models (mostly CCMs) that took part in the ACCMIP
inter-comparison (Young et al., 2013). Our specific objec-
tives are to (i) use clustering to subsample tropospheric col-
umn ozone estimates produced by the ensemble, (ii) generate
a cluster-based MMM using this subsample and evaluate this
against more rudimentary approaches by comparison to ob-
servations, and (iii) explore the use of clustering as a tool to
identify and visualise diversity across a model ensemble and
assess the potential of this method to inform model devel-
opment. We demonstrate that, as a consequence of ensemble
refinement through clustering, the overall bias between mod-
elled (i.e. MMM) and observed tropospheric column ozone
is reduced, while retention of data from individual models is
maximised. We also show that by using clustering to char-
acterise model spread, we can highlight regions of time or
space where our process-level understanding is presumably
robust (i.e. the models are in close agreement) and where
more work is needed to (a) understand why models disagree
and (b) improve our understanding of underlying physical
processes driving these differences. Advantages of the clus-
tering approach over more traditional weighting methods are
discussed, as are limitations of the techniques and areas of
future development.

The paper is structured as follows. Section 2 provides a
brief overview of cluster-based classification. Section 3 de-
scribes the principles of the proposed clustering technique,
exemplified using an idealised synthetic data set. Section 4
describes the specific application of the clustering techniques
to multi-model output from the ACCMIP inter-comparison.
Results from the ACCMIP clustering and discussion are pre-
sented in Sect. 5. Recommendations for future research are
given in Sect. 6 and we make concluding remarks in Sect. 7.

2 A brief overview of cluster-based classification

Clustering is a well-established technique for the unsuper-
vised grouping (classification) of similar data. The unsuper-
vised nature of clustering overcomes many of the traditional
short-comings of classification techniques, e.g. no a priori
information is required and classes (clusters) are data driven
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and may adapt to underlying changes in the data relation-
ships. Many offline clustering algorithms are available, and
no single algorithm can be considered the best for all situa-
tions. Several in-depth reviews of clustering techniques have
recently been published (Aggarwal and Reddy, 2014; Nisha
and Kaur, 2015; Xu and Tian, 2015); therefore here we out-
line only briefly the features of some common techniques, in
the context of this work.

Perhaps the most popular method employed within atmo-
spheric science is the k-means clustering algorithm (Mac-
Queen, 1967). K means generate hyper-elliptical (i.e. ellip-
tical over more than two dimensions), unconstrained clus-
ters offering the benefit of fast processing and a constrained
number of clusters. However, the method requires the num-
ber of clusters to be specified beforehand, limiting its use-
fulness in data mining and often meaning that the technique
results in clusters that fit the “required answer”. Other algo-
rithms that do not require prior knowledge of the data clusters
and are therefore considered to be more data driven include
subtractive clustering. This generates the required number of
clusters, though it is limited by a maximum cluster radius,
thereby potentially dividing natural groups of data. This tech-
nique can also be prohibitively slow where large data sets are
involved, as calculations are repeated for all remaining data
samples after each cluster is formed. Recently, purely data-
driven techniques have been developed, including grid-based
algorithms and density-based algorithms. Many of these re-
cent developments can match, or exceed, the older tech-
niques for speed and consistency and have the added ability
to be data driven with minimal user intervention. As such,
these techniques have the potential to provide powerful semi-
automated insight into large data sets, such as output gener-
ated from individual atmospheric models, or a large ensem-
ble of multiple models. In this study, we use the Data Den-
sity based Clustering (DDC) algorithm (Hyde and Angelov,
2014). The underlying principle is that data classified into a
DDC-generated cluster are more similar to other data within
said cluster than they are to data within other clusters. The
DDC algorithm has the advantage in that the scope of each
cluster is well defined. For example, maximum distances can
be set, in the physical world as well as in the data space,
which define the spatial regions covered by clusters and the
range of data values to be considered similar. DDC matches
simple techniques such as k means for speed but requires no
prior information on the number of clusters. It is also robust
to using larger cluster radii, as the algorithm adjusts the radii
to match the data contained within the cluster. A simple ap-
plication of the algorithm is described in Sect. 3 below.

3 The principles of cluster-based ensemble
subsampling

In this section we explain the principles behind the pro-
posed technique for subsampling a model ensemble through

clustering, using a simple synthetic data set as an exam-
ple. Chemistry–climate models attempt to simulate the at-
mospheric distribution of numerous chemical compounds in-
cluding, for example, tropospheric ozone. Model skill and
performance are typically assessed by comparison to atmo-
spheric observations made at discrete times and locations.
For a given comparison, a model may exhibit a phase off-
set in time or space, resulting in a large model–measurement
bias, suggesting an inaccurate model – perhaps due to a
process-level deficiency. However, in some cases phase off-
sets in space, for example, could be related to a sampling
or mismatch error, particularly when comparing output from
coarse-resolution models to point source observational data.
Such errors are commonly encountered in inverse modelling
studies, for example, that aim to derive top-down emissions
of a given compound based on atmospheric observations (e.g.
Chen and Prinn, 2006). To account for such, a flexible tech-
nique that looks beyond a specific space and time and that
can identify similar data in the surrounding data space is re-
quired. To illustrate this, we use a simple 2-D synthetic data
set as shown in Fig. 1.

The data shown in Fig. 1 include synthetic observations
(panel a) generated using a sin function. The values on the x
and y axes are arbitrary and the data are intended to mimic
a generic observation that is spatially non-uniform. We also
consider four different sets of synthetic model data (panel b),
which, with respect to the observations, exhibit (1) a small
consistent positive bias (red), (2) a small consistent nega-
tive bias (dark blue), (3) a large bias (green), and (4) a slight
phase offset (cyan); clearly model 3 would be considered a
poor or outlier model. Taking the four models to be an en-
semble, a simple MMM is generated by taking the arithmetic
mean of the four model data sets at each location (i.e. no
clustering involved). We also apply the DDC algorithm to
the data, as shown in panel (c), to generate a cluster-based
MMM. The ellipses represent the different clusters that are
formed, which, as noted, can extend to nearby surrounding
data space.

The DDC-based MMM is calculated by taking the mean of
the data in the most populous cluster at each location (here-
after the “primary” cluster), i.e. the cluster that contains the
most data samples. For example, with reference to panel (c),
a cluster is formed at ∼ x = 0.4, ∼ y =−0.8. Data within
this cluster are not included in the MMM at this location, as
a more populous cluster at the same location (∼ 0.4, ∼ 0.6)
is present. Panel (d) of Fig. 1 compares each MMM to the
observed data; the model–observation bias is greatest in the
case of the simple arithmetic MMM (one model, one vote ap-
proach), largely due to model 3 being included in the mean
calculation. Note that each MMM is independent of the ob-
servations and in this regard the process is analogous to a
multi-model prediction of a future variable (i.e. with no ob-
servational constraint).
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Figure 1. Principles of the ensemble clustering method illustrated using a synthetic data set. (a) A synthetic spatially varying observation (X).
(b) Predictions of X from four idealised models (see main text). (c) Cluster analysis of the model data sets using the DDC clustering algorithm.
Ellipses represent the different clusters that are formed, and the black crosses are outliers not included in the clusters. (d) Comparison of
a multi-model mean (MMM) of X derived from either a simple arithmetic mean of all model data (red) or one based on clusters (green).
Observation data from panel (a) are again shown in black.

4 Specific application of clustering to ACCMIP model
data

4.1 Overview of ACCMIP datasets

The Atmospheric Chemistry and Climate Model Intercom-
parison Project (ACCMIP) was a multi-model initiative con-
ducted to investigate the atmospheric abundance of key cli-
mate forcing agents, including tropospheric ozone, and their
change over time (e.g. Young et al., 2013; Stevenson et al.,
2013; Lamarque et al., 2013). For our purposes, we use the
ACCMIP climate model data as an example of a typical
multi-model ensemble on which to perform the clustering.
A benefit of using ACCMIP output is that the data have been
extensively handled and analysed by various groups, allow-
ing direct comparison of our findings with published work,
and the data are publicly available. We focus our analysis
on modelled tropospheric column ozone data (Dobson units,
DU) generated by 14 of the ACCMIP models (see Table A1).
A detailed description of the models and their underlying
processes can be found in the above ACCMIP publications.
For each model, we analyse output from the historical sim-
ulation corresponding to the year 2000 (Young et al., 2013).

Within ACCMIP, evaluation of models and the MMM was
performed by comparison to a tropospheric ozone column
climatology based on Ozone Monitoring Instrument (OMI)
and Microwave Limb Sounder (MLS) satellite measurements
(Ziemke et al., 2011). The monthly climatology extends from
60◦ N to 60◦ S; thus our cluster analysis of the ACCMIP
models is applied within this latitude range (following Young
et al., 2013).

Initialisation of the clustering algorithm involves selecting
suitable initial cluster radii for each of the data dimensions,
in this case longitude, latitude, and column ozone. In this
work, we operate the clustering on a spatial basis only, to
account for spatial mismatches as discussed in Sect. 3. When
selecting these radii, it should be noted that the clustering
algorithms perform best with data on a similar scale in each
axis. To this end we scale the data to approximately 0–1 in
each dimension.

4.1.1 Ozone radius selection

Modelled ozone values are scaled to approximately 0–1 us-
ing the average minimum value and average range of the data
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in each month as given by Eq. (1):

O3S(m,i,t) =

12O3(m,i,t)−
12∑
t=1

min(O3(∗,∗,t))

12∑
t=1

max(O3(∗,∗,t))−
12∑
t=1

min(O3(∗,∗,t))

, (1)

where O3 and O3S are the modelled and scaled ozone values,
respectively, at location i as estimated by model m at time t .
The initial ozone cluster radius is taken to be the average of
twice the standard deviation on the model spread, Eq. (2):

rO3 =

2
n∑
i=1

12∑
t=1

SD(O3(∗,i,t))

12n
, (2)

where SD(O3(∗,i,t)) is the standard deviation of the ozone
values of the ensemble at time t at location i, and n is the
number of grid spaces. This corresponds to an initial radius
of 8.3 DU (0.1523 when scaled as in Eq. 1). Note, the cluster
radii evolve in a data-driven manner, excluding outliers and
extreme values from the clusters. In consequence, final clus-
ter radii using DDC range from 0.1 to 8.3 DU, with 70 % of
the primary clusters with a radius < 7 DU (Fig. A1). This ra-
dius is indicative of the range of O3 data at each grid location,
after outliers have been identified by the clustering process.

4.1.2 Spatial radii selection

In later sections we show that a cluster-based MMM col-
umn ozone field exhibits a lower global mean absolute bias
with respect to observations, compared to a simple arith-
metic MMM. This reduction in bias, due to the cluster-based
subsampling, exhibits some sensitivity to the choice of ini-
tial radii in the spatial dimensions. In the latitude dimen-
sion, reduction in bias exhibits a negative correlation with
radius (r =−0.88); i.e. bias is reduced to a lesser degree
with larger radii. Results are presented from here on for ini-
tial cluster radii of 1.5 grid cells (0.0683 when normalised
to 0–1) and 2.5 grid cells (0.0352) in the latitude and longi-
tude directions, respectively, as this combination was found
to give the greatest reduction in model–observation bias over-
all. As in Sect. 4.1.1., the cluster radii evolve in a data-driven
manner and final cluster radii range from 1 to 1.6 grid cells
(0.0455–0.0728) in the latitude direction, and 1–2.6 grid cells
(0.0141–0.0367) in the longitude direction. Note, 92 and
99 % of primary clusters identified in this study have a radius
of less than or equal to 1.1 grid cells in the latitude and longi-
tude directions, respectively. A radius of 1.1 grid cells means
that at each location, the primary cluster potentially contains
data from that cell and from cells with which it shares a bor-
der. While data from nearby grid cells may affect the loca-
tion of a cluster, these data are not included in cluster-based
MMM calculations; the cluster-based MMM at each location
is the mean of the data in the primary cluster at that location
only.

4.2 Scenarios and metrics

Using the principles described above, the DDC algorithm
was applied to the ACCMIP model ensemble of tropospheric
column ozone on a monthly basis, and a MMM value was
calculated as an average of model values in the primary clus-
ter at each location. We also calculated MMMs of the same
data using a simple arithmetic mean (all models included,
equally weighted) and a sigma mean, without clustering in-
volved in either. The sigma mean is essentially the average
of all model data within 1σ of the simple arithmetic mean –
i.e. a very simple outlier-removal technique. In Sect. 5.1 and
5.2, we compare each of these MMMs and evaluate their per-
formance by comparison to the satellite-based tropospheric
ozone climatology described in Sect. 4.1. In particular, we
note whether or not the cluster-based MMM reduces model–
observation bias with respect to the most rudimentary ap-
proach, the simple arithmetic mean, which omits no model
data. In summary, three MMMs are considered: (1) simple
MMM, (2) sigma MMM, and (3) cluster-based MMM. Sev-
eral metrics are used in the ensuing discussion, including the
model–observation mean bias (Eq. 3), and the absolute mean
bias (Eq. 4), where M and O are the MMM and observed
ozone field, respectively, at location i.

Mean bias=
1
n

n∑
i=1
(Mi −Oi) (3)

Mean absolute bias=
1
n

n∑
i=1

|Mi −Oi | (4)

5 Results and discussion

5.1 Assessment of cluster-based MMM on a global
basis

We first evaluate the potential impact of clustering on MMM
values by assessing the relative performance of a MMM
generated using members of the primary cluster only (see
Sect. 3) with respect to a simple MMM, on a global monthly
mean basis. The observed column ozone data (DU) are pre-
sented in Table 1, along with equivalent MMM estimates,
rows 2 and 3, obtained using a simple arithmetic mean ap-
proach – as in Table 3 of Young et al. (2013) – and a sigma
mean approach. These are followed by the cluster-based
MMM obtained using the DDC clustering method outlined in
Sect. 3. For each MMM, the mean bias (Eq. 3) is given in Ta-
ble 2. Note, the focus of this work is not to evaluate the skill
of individual ACCMIP models, or the ensemble as a whole,
with regard to underlying chemical processes. For that, an in-
depth discussion can be obtained from Young et al. (2013).
Based on Tables 1 and 2 it is clear that the ACCMIP ensem-
ble provides a reasonably good simulation of tropospheric
column ozone with respect to the observations, in a global
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Table 1. Observed and multi-model mean (MMM) global tropospheric ozone column (DU) between 60◦ N and 60◦ S latitude. Observations
are a satellite-based climatology (Ziemke et al., 2011). Model data are from the historical (year 2000) ACCMIP simulation. The simple
MMM is the arithmetic mean of all models, the sigma MMM excludes data outside of 1 standard deviation from the simple MMM, and the
DDC MMM was generated through cluster-based subsampling.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual mean

Observation 28.7 28.8 29.7 30.7 31.5 32.6 33.1 32.8 32.8 32.1 31.1 29.8 31.1

Simple MMM 29.4 29.5 31.0 30.4 30.7 31.4 31.9 32.2 32.3 31.4 30.1 29.5 30.7
Sigma MMM 29.0 29.2 29.9 30.2 30.4 31.1 31.7 32.0 32.0 31.3 30.1 29.4 30.5

DDC MMM 29.0 29.2 29.8 30.2 30.5 31.1 31.5 31.9 32.0 31.2 29.8 29.2 30.5

Table 2. Global monthly mean bias (DU) in tropospheric ozone column (see Eq. (1)) among the various MMMs and observations presented
in Table 1.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual mean

Simple MMM 0.6 0.7 0.4 −0.3 −0.8 −1.3 −1.2 −0.6 −0.6 −0.7 −1 −0.4 −0.4
Sigma MMM 0.3 0.5 0.2 −0.5 −1.1 −1.5 −1.4 −0.8 −0.8 −0.8 −1 −0.5 −0.6

DDC MMM 0.2 0.5 0.1 −0.4 −1.0 −1.56 −1.6 −0.9 −0.9 −1.0 −1.3 −0.6 −0.7

Figure 2. Temporal variability in global mean (tropospheric col-
umn ozone) absolute bias reduction (%, MMM ozone− observed
ozone) with respect to simple arithmetic MMM. Blue points denote
bias reduction using DDC clustering to determine model inclusion
into the MMM. Orange points denote bias reduction using just the
model spread (1σ ) to determine model inclusion into the MMM (i.e.
without clustering).

mean sense. For example, the annual mean bias for each of
the various MMMs is < 1 DU. The cluster-based MMM ex-
hibits a bias (−0.7 DU) that is marginally greater than that
obtained from the simple arithmetic MMM (−0.4 DU). How-
ever, note that the global mean biases reflect an amalgama-
tion of positive and negative biases, masking important re-
gional and hemispheric differences as outlined below.

Table 3 is similar to Table 2 but presents the absolute bi-
ases, again on a global mean basis. The cluster-based MMM

exhibits lower global mean absolute biases in all months rel-
ative to those obtained from the simple arithmetic mean ap-
proach (Fig. 2), reducing the MMM global bias by 5–19 %,
depending on the month. While we do not over-interpret
our findings from a model process standpoint, a distinct
monthly variability is apparent in the bias reduction, with
the lowest overall bias reduction in the months June–August.
This is also the case for the sigma MMM, also shown in
Fig. 2, which exhibits a bias increase with respect to the
simple MMM during these months, despite offering a slight
bias reduction overall. From Tables 1 and 2, both the ob-
served annual mean ozone column and the absolute (model–
observation) biases are highest in these months. It is perhaps
unsurprising that the impact of subsampling through cluster-
ing in some months is relatively modest; if all models agree
well, few (or no) model data may be excluded. In this case,
the cluster-based MMM will not vary substantially from the
simple arithmetic MMM and relatively little (or no) bias re-
duction will be observed through cluster-based subsampling.
A similar situation also arises if the models have a wide
spread of values at a given location; data excluded from the
dominant cluster and thus not included in the cluster-based
MMM may be equally divided above and below the simple
MMM. In such a case, removing these data will have little
effect and the cluster-based MMM will vary little from the
simple MMM.

5.2 Assessment of cluster-based MMM: spatial
variability

We extend the above discussion to evaluate spatial vari-
ability in the biases among the various MMMs and the
observations. Spatial variability in the monthly mean bias
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Table 3. As Table 2 but the absolute bias (DU) according to Eq. (2).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual mean

Simple MMM 3.5 3.9 3.8 3.7 3.7 3.4 3.1 3 3.9 4.4 4.2 3.8 3.7
Sigma MMM 3.2 3.6 3.7 3.7 3.7 3.5 3.2 3.1 3.9 4.4 4.1 3.7 3.6

DDC MMM 3.1 3. 2 3.1 3.2 3.2 3.0 2.9 2.7 3.5 4.1 3.8 3.4 3.3

Figure 3. Monthly bias (DU) between the simple arithmetic multi-model mean (MMM) tropospheric ozone column and the observed clima-
tology. Global mean values are annotated.

(model− observations, DU) for the simple MMM case is
shown in Fig. 3. A similar figure but for the cluster-based
MMM is shown in Fig. 4. We note that our analysis agrees
with Young et al. (2013); i.e. the ACCMIP ensemble tends
to exhibit a high bias with respect to the observations in
the Northern Hemisphere (NH) and a low bias in the South-
ern Hemisphere (SH, Fig. 3). The positive and negative bi-
ases largely cancel, yielding an overall small negative bias
when expressed as a global mean (see Table 2). Based on
Figs. 3 and 4, differences between the simple rudimentary
MMM and the cluster-based MMM are difficult to fully dis-
cern by eye. The differences are more apparent when viewed
as absolute biases, as given in Figs. 5 and 6. However, most
striking is Fig. 7, which compares the reduction in model–
observation absolute bias for the cluster-based MMM, rela-
tive to the simple arithmetic MMM. Geographically, cluster-
based ensemble subsampling reduces the model–observation
bias at all latitudes, though particularly in the NH and in-
cluding over central Asia, Europe, and the USA – where
ozone precursor emissions are generally elevated due to an-
thropogenic processes. Note, the ACCMIP ensemble overes-
timates the ozone column climatology in the NH (e.g. see
Figs. 3 and 5 and previously Young et al., 2013). As such,
the NH bias reduction seen in the cluster-based MMM effec-

tively reflects some removal of data at the upper end of the
model range (i.e. those models with relatively high ozone).
Typical bias reduction is of the order of 1–5 DU, though
larger reductions of > 5 DU are found in both hemispheres
in some grid boxes.

Also apparent from Fig. 7 are regions, particularly in the
SH, where the bias reduction from clustering is negative;
that is, the cluster-based MMM agrees less well with the ob-
servations than the simple arithmetic MMM. To understand
this, one must consider that the clustering approach relies on
the density of model data points within the ensemble data
space. If data from a given model are less in agreement with
the other models within the ensemble, but closer to the ob-
served value, data from said model will not be included in
the cluster-based MMM. It is this feature of the clustering
process that allows for the model spread of an ensemble to
be readily investigated and this is discussed in following sec-
tions. In general, however, we note that the majority of the
grid cells see a reduction in bias through cluster-based sub-
sampling. For example, Fig. 8 shows a binary map plot of
areas where the bias reduction is positive (i.e. red), negative
(blue), and where there is no change (white). On an annual
mean basis, ∼ 62 % of grid cells exhibit a positive bias re-
duction and a further 9 % exhibit no change in the bias. Ad-
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Figure 4. As Fig. 3 but for the cluster-based MMM.

Figure 5. Monthly absolute bias (DU) between the simple arithmetic multi-model mean (MMM) tropospheric ozone column and the observed
climatology. Global mean values are annotated.

ditionally, 29 % of grid cells exhibit a negative bias reduction
(i.e. biases between the cluster-based MMM and the obser-
vations are larger than those between the simple MMM and
the observations). Importantly, the magnitude of the positive
bias reductions greatly exceeds that of the negative changes
as can be seen from the histogram given in Fig. A2. This sug-
gests that the outliers removed from the ensemble tend to be
those in relatively strong disagreement with the observations.

5.3 Insights from cluster population into model spread

Figure 9 shows a histogram of the ratio between the number
of members in the second most populous cluster (cluster 2
hereafter) and the number of members in the most populous
cluster (primary cluster, cluster 1 hereafter) at all points in
space and time. A small number indicates that there is a sig-
nificant difference, i.e. that cluster 1 has many more members
than cluster 2. This suggests that the model spread is suf-
ficiently small for most models to be included in cluster 1,
and thus the models that are excluded from this cluster can
be considered outliers. Conversely, if this number is large,
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Figure 6. As Fig. 5 but for the cluster-based MMM.

Figure 7. Monthly bias reduction (DU) defined as the difference in the absolute bias between the cluster-based MMM ozone column and
observations, and the simple arithmetic MMM and observations. Where the bias reduction is positive (i.e. red) the cluster-based MMM values
are closer to the observations than the simple arithmetic MMM. In the title of each panel, the global mean absolute bias reduction, and the
absolute bias reduction summed over all grid cells are shown.

this suggests that model spread is larger at these locations
and times. As such, both cluster 1 and cluster 2 can proba-
bly be considered equivocal in terms of representing the en-
semble. As can be seen from Fig. 9, in the majority of cases
we consider, cluster 1 has significantly more members than
cluster 2. This confirms that, in the majority of cases, sub-
sampling the ensemble based on the membership of cluster 1
can be considered to be robust. It is important to note how-

ever that there is tail of data points with ratio values> 0.5 for
which subsampling based on cluster 1 is less reasonable.

We assess the degree to which the ratio between the num-
ber of members in cluster 2 and cluster 1 varies in space
and time (Fig. 10). Higher ratio values tend to occur in the
mid-latitudes (suggesting greater model spread), with trop-
ical locations exhibiting lower ratios in general. There also
appears to be some seasonality to the signal; higher ratios
(thus greater model spread) are more likely to occur dur-
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Figure 8. As Fig. 7 but showing a binary of grid cells in which the model–observation bias has reduced (red), increased (blue), or not changed
(white) as a result of the cluster-based ensemble subsampling.

Figure 9. Histogram of the ratio of the number of members in the
second most populous cluster (cluster 2) to those in the most popu-
lous cluster (cluster 1).

ing the summer months. It is interesting to note that regions
where the ratio > 0.5 seem, by eye, to coincide with regions
where the model–observation bias is increased when the en-
semble is subsampled to the membership of cluster 1. This
suggests that by excluding data here we are in fact removing
data points which are in closer agreement with the observa-
tions. However, in general we calculate no statistically sig-
nificant correlation between the ratio values and the change
(if any) in bias.

5.4 Insights from cluster membership into model
agreement and spread

We investigate the degree to which individual models are
typically included or excluded from the primary cluster by
counting the number of months when that model is included
at each location, as shown in Fig. 11. This offers a simple
mechanism to visualise model spread more generally; outlier
models are more often excluded, and models which fall in the
pack are more often included. This information can be used
together with Fig. 6 as a means to identify which models
are potentially driving ensemble mean model–observation
biases, and so identify priorities for model development. We
outline some examples here but do not intend this to be ex-
haustive, but rather more indicative of how this reasoning and
approach potentially provides a useful framework to guide
further investigation.

Model G, for example, differs significantly from the en-
semble pack in the mid-latitude NH, over both land and
ocean, as evidenced by the fact that it is virtually always
excluded in this region. Similarly, model N is consistently
different over South America in particular; this potentially
points towards a spurious model feature concerning ozone
– e.g. regional precursor emissions here. Model K is often
not included in the primary cluster at SH locations, suggest-
ing that it differs substantially from the other models in this
region. However, this does not necessarily suggest that the
model is in disagreement with observations in the SH, merely
that model K differs from the others. In fact, as was noted ear-
lier, the cluster-based MMM agrees less well with observa-
tions in the SH, compared to the simple MMM, meaning that
model K – which will have been excluded during the cluster-
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Figure 10. Spatial and temporal variability in the ratio of the number of members in the second most populous cluster (cluster 2) to those in
the most populous cluster (cluster 1).

Figure 11. Number of months each model (names removed, labelled A–N) is included in the primary cluster. For a given region, models that
are seldom included (i.e. a low numbers of months) differ more from the ensemble pack.

ing process – could be closer to reality (observations) in this
region, relative to the other models. We note that all models
are included at some locations, i.e. there is no blanket exclu-
sion of certain models from the primary cluster. In fact, some
models, e.g. models C, I, and J, are almost always included in

the primary cluster at each location. This suggests that these
models produce ozone fields that are somewhat typical and
in broad agreement with the ensemble mean.
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6 Future work

While the principles presented here are robust and proven to
be beneficial, some areas of methodological development or
refinement have been identified. Firstly, we intend to explore
the application of clustering in time, in addition to the mainly
spatial methods presented here. Further, at present clusters
are allowed to form in three dimensions: latitude, longitude,
and the predicted column ozone. In this way we allow for a
degree of uncertainty in the model output. Future work will
build on this by developing methods to incorporate estimates
of standard deviation and range associated with the modelled
mean values in our techniques, thus enabling a more sophisti-
cated treatment of uncertainty. We have also identified areas
of methodological development in terms of our method for
calculating a cluster-based MMM. For example, we currently
assign all model data from the ensemble to a cluster and then
we use this information to include or exclude model data in
an MMM. We have yet to consider the impact of weight-
ing data within a cluster by (a) distance from cluster centre
and (b) distance from the location of the simple MMM (as
opposed to a simple include or exclude rule). Similarly, in
future work we will look at the possibility of weighting en-
semble members according to their cluster membership, i.e.
members of the most populous cluster contributing more to
the MMM than the less populous clusters and clear outliers.
Finally, forthcoming model inter-comparison initiatives, e.g.
CMIP6, will provide an excellent opportunity to apply our
methods to consider parameters other than ozone that are of
atmospheric interest (e.g. other short-lived climate forcing
agents).

7 Concluding remarks

In this paper, we have investigated the applicability of an ad-
vanced data clustering method as an analytical–diagnostic
tool with which to examine multi-model climate output.
Relative to more rudimentary approaches, clustering offers
a flexible method to evaluate inter-model differences. The
technique operates by grouping data at a given location based
on the density of data points. The flexibility arises as the clus-
tering method examines surrounding data space (e.g. spa-
tially) to account for small spatial and mismatch errors (e.g.
arising due to differing coarse model grids), thus offering an
advantage over more traditional inter-comparison methods.
The clustering technique was applied to simulated fields of
tropospheric column ozone from the 14 CCMs that took part
in the ACCMIP model inter-comparison. We demonstrate
that a cluster-based MMM tropospheric column ozone field,
calculated using those data which are members of the most
populous cluster at each location, exhibits a lower absolute
bias with respect to observations, compared to a simple arith-
metic MMM approach. On a global mean basis this reduction
is observed in all months and, in some months, is as high as
∼ 20 %. However, we also note that at 28 % of places and
times, the cluster-based MMM exhibits a higher absolute bias
with respect to observations than a simple arithmetic MMM.
We attribute this to apparent outlier model data, which are
in closer agreement with observations, being excluded from
the cluster-based MMM through cluster-based subsampling.
Additionally, we show that clustering offers a useful frame-
work in which to readily identify and visualise model spread
and outliers. We suggest that such techniques could prove
valuable in the identification of model development areas and
provide insight surrounding regional strengths and deficien-
cies of specific models (or an ensemble as a whole), and to
help characterise uncertainty. Finally, while we have focused
on tropospheric ozone, we note that there is broad scope to
develop the application of these techniques within the atmo-
spheric sciences to examine other compounds relevant to cli-
mate.

Code and data availability. The clustering code, including demo
software (Hyde, 2017) and related data sets, used to generate the
results in this paper is available via GitHub: https://rhyde67.github.
io/CATaCoMB-Climate-Model-Ensemble/. The latest release is
available via Zenodo, https://doi.org/10.5281/zenodo.1119038. The
model data files are available at the Centre for Environmental Data
Analysis (CEDA): http://www.ceda.ac.uk/. A summary of ACCMIP
models and data sets used in this work can be found in Appendix A.
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Appendix A

Table A1. Summary and citations for the ACCMIP models and data sets used in this work.

No. Model name Reference

1 CMAM Canadian Centre for Climate Modelling and Analysis (2011)
2 CICERO Centre for International Climate and Environment Research – Oslo (2011)
3 EMAC DLR German Institute for Atmospheric Physics (2011)
4 GFDL-AM3 Geophysical Fluid Dynamics Laboratory (2011)
5 GISS-E2-R NASA Goddard Institute for Space Studies (2011)
6 GEOSCCM NASA Goddard Space Flight Center (2011)
7 CESM-CAM-superfast Lawrence Livermore National Laboratory (2011)
8 LMDzORINCA Laboratoire des Sciences du Climat et de l’Environnement (2011)
9 MOCAGE Météo-France (2011)
10 NCAR-CAM-3.5 NCAR (National Centre for Atmospheric Research, 2011)
11 MIROC-CHEM NCAS British Atmospheric Data Centre (2011)
12 UM-CAM NIWA (2011)
13 STOC-HadAM3 University of Edinburgh (2011)
14 HadGEM2 Hadley Centre for Climate Prediction and Research (2011)

Figure A1. Final radii in the ozone dimension (DU) for primary
clusters.

Figure A2. Magnitude of the difference between annually inte-
grated model–observation ozone biases (DU) calculated using a
cluster-based MMM and a simple, all-model MMM (see Sect. 5.2).
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