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Abstract. Clustering – the automated grouping of similar data – can provide powerful and unique insight into large and 

complex data sets, in a fast and computationally-efficient manner. While clustering has been used in a variety of fields (from 

medical image processing to economics), its application within atmospheric science has been fairly limited to date, and the 

potential benefits of the application of advanced clustering techniques to climate data (both model output and observations) 

may yet to be fully realised. In this paper, we explore the specific application of clustering to a multi-model climate ensemble. 10 

We hypothesise that clustering techniques can provide (a) a flexible, data-driven, method of testing model-observation 

agreement and, (b) a mechanism with which to identify model development priorities. We focus our analysis on chemistry-

climate model (CCM) output of tropospheric ozone – an important greenhouse gas – from the recent Atmospheric Chemistry 

and Climate Model Inter-comparison Project (ACCMIP). Tropospheric column ozone from the ACCMIP ensemble was 

clustered using the Data Density based Clustering (DDC) algorithm. We find that a multi-model mean (MMM) calculated 15 

using members of the most-populous cluster identified at each location, offers a reduction of up to ~20% in the absolute bias 

between the MMM and an observed satellite-based tropospheric ozone climatology, with respect to a simple, all-model MMM. 

On a spatial basis, the bias is reduced at ~62% of all locations. We further demonstrate that clustering can provide a viable and 

useful framework in which to assess and visualise model spread, offering insight into geographical areas of agreement between 

models and a measure of diversity across an ensemble. Finally, we discuss caveats of the clustering techniques and note that 20 

while we have focused on tropospheric ozone, the principles underlying the cluster-based MMMs are applicable to other 

prognostic variables from climate models.  

1 Introduction 

Clustering is a flexible and unsupervised numerical technique that involves the segregation of data into statistically similar 

groups (or “clusters”). These groups can either be determined entirely by the properties of the data itself or guided by user 25 

constraints. Numerous clustering algorithms have been developed, each with varying degrees of complexity. The k-means 

clustering algorithm, for example, is a relatively simple and popular technique used in several atmospheric science problems 

(e.g., Mace et al., 2011; Qin et al., 2012; Austin et al., 2013; Arroyo et al., 2017). Specifically related to climate science, 

clustering has also been used for automated classification of various remote sensing data (e.g., Viovy, 2000), the interpretation 

of ocean-climate indices and climate patterns (Zscheischler et al., 2012; Yuan and Wood, 2012; Bador et al., 2015), in 30 
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describing spatiotemporal patterns of rainfall (Muñoz Díaz and Rodrigo, 2004), and to classify surface ozone measurements 

from a large network of sites (Lyapina et al., 2016), among several other applications. An area where the applicability of 

clustering has yet to be fully explored is in the analysis of model ensembles; a collection of comparable output from either 

multiple models, or multiple realisations of the same model with perturbed physics or variations in forcing data. One example 

of a model ensemble is that generated during multi-model inter-comparison projects, involving chemical transport models 5 

(CTMs), climate models, or chemistry-climate models (CCMs). Such initiatives are now common and form an integral part of 

scientific assessment of atmospheric composition, particularly in international policy-facing research concerning climate 

change. For example, recent model inter-comparison studies have considered stratospheric ozone layer recovery (Eyring et al., 

2010), the climate impacts of long-term tropospheric ozone trends (Young et al., 2013; Stevenson et al., 2013), and 

paleoclimatology (Braconnot et al., 2012), among others. 10 

 

Multi-model ensembles are used to identify the most likely value for a given variable at a particular place/time, and a range of 

possible values for that variable, under the assumption that all model predictions are equally valid. In most instances, a multi-

model mean (MMM) is computed from a simple arithmetic mean of all models (i.e. a one model one vote approach), such as 

during the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) studies of tropospheric 15 

ozone and the hydroxyl radical, OH (Young et al., 2013; Voulgarakis et al., 2013). For chemical species such as these, that 

exhibit large space/time inhomogeneity in their tropospheric abundance, rarely a single model will be universally best 

performing (i.e. at all locations/times). In this regard, a MMM is a useful quantity and is often considered a best estimate that 

includes robust features (that are still apparent after averaging) from the ensemble of models. In these circumstances however, 

it is also of interest to consider how estimates differ between models (model spread), which is often characterised by the 20 

standard deviation of values from all models, for example in the studies referenced above. Model spread may be used to 

identify areas where the best estimate values may be more, or less, uncertain. For example, if all models agree at a given 

place/time then we can have confidence in the all-model MMM at that location. If all models do not agree, then more involved 

MMM approaches may be taken. For example, this might somehow weight individual model contributions (e.g., DelSole et 

al., 2013; Haughton et al., 2015; Wanders and Wood, 2016), such as based on their performance against a set of observations, 25 

thus potentially diluting spurious features from individual models. However, such approaches have been somewhat rarely 

implemented in recent CCM inter-comparisons and can only really be used for assessing past states, for which observations 

are available. Furthermore, it is not uncommon for individual models to be excluded entirely from a MMM if deemed 

particularly poor on the basis of an evaluation against a set of observations (e.g., Hossaini et al., 2016), or if deemed a 

clear/substantial outlier with respect to the majority of other models (e.g., Eyring et al., 2010). 30 

 

In this study, we hypothesise that clustering techniques can provide (a) a flexible, data-driven, method of testing model-

observation agreement and, (b) a mechanism with which to identify model development priorities. In terms of the former, 

clustering provides a data-driven method of grouping the model output at each place and time by how well each modelled 
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values agrees with the ensemble as a whole. This potentially enables refinement of the ensemble by objectively identifying 

outlier data at a given place and time on a case-by-case basis, thus potentially removing the need to perform blanket model 

exclusions. In terms of the latter, clustering provides potential insight into model development needs through exploring the 

membership of the clusters, for example why a specific model may always be excluded from the most populous cluster at a 

particular location. We focus our analysis on tropospheric column ozone data from 14 atmospheric models (mostly CCMs) 5 

that took part in the ACCMIP inter-comparison (Young et al., 2013). Our specific objectives are to (i.) use clustering to 

subsample tropospheric column ozone estimates produced by the ensemble, (ii.) generate a cluster-based MMM using this 

subsample and evaluate this against more rudimentary approaches by comparison to observations, and (iii.) explore the use of 

clustering as a tool to identify and visualise diversity across a model ensemble and assess the potential of this method to inform 

model development. We demonstrate that, as a consequence of ensemble refinement through clustering, the overall bias 10 

between modelled (i.e. MMM) and observed tropospheric column ozone is reduced, while retention of data from individual 

models is maximised. We also show that by using clustering to characterise model spread, we can highlight regions of time or 

space where our process-level understanding is presumably robust (i.e. the models are in close agreement) and where more 

work is needed to (a) understand why models disagree, and (b) improve our understanding of underlying physical processes 

driving these differences. Advantages of the clustering approach over more traditional weighting methods are discussed, as 15 

are limitations of the techniques and areas of future development. 

 

The paper is structured as follows. Section 2 provides a brief overview of cluster-based classification. Section 3 describes the 

principles of the proposed clustering technique, exemplified using an idealised synthetic data set. Section 4 describes the 

specific application of the clustering techniques to multi-model output from the ACCMIP inter-comparison. Results from the 20 

ACCMIP clustering and discussion are presented in Section 5. Recommendations for future research are given in Section 6 

and we make concluding remarks in Section 7. 

2 A brief overview of cluster-based classification 

Clustering is a well-established technique for the unsupervised grouping (classification) of similar data. The unsupervised 

nature of clustering overcomes many of the traditional short-comings of classification techniques, e.g. no a-priori information 25 

is required, classes (clusters) are data-driven and may adapt to underlying changes in the data relationships. Many offline 

clustering algorithms are available, and no single algorithm can be considered the ‘best’ for all situations. Several in-depth 

reviews of clustering techniques have recently been published (Aggarwal and Reddy, 2014; Nisha and Kaur, 2015; Xu and 

Tian, 2015), therefore here we outline only briefly the features of some common techniques, in the context of this work. 

 30 

Perhaps the most popular method employed within atmospheric science is the k-means clustering algorithm (MacQueen, 

1967). K-means generates hyper-elliptical (i.e. elliptical over > 2 dimensions), unconstrained, clusters offering the benefit of 
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fast processing and a constrained number of clusters. However, the method requires that the number of clusters is specified 

beforehand, limiting its usefulness in data mining and often means that the technique results in clusters that fit the “required 

answer”. Other algorithms that do not require prior knowledge of the data clusters and are therefore considered to be more 

data-driven, include subtractive clustering. This generates the required number of clusters, though is limited by a maximum 

cluster radius, thereby potentially dividing natural groups of data. This technique can also be prohibitively slow where large 5 

data sets are involved, as calculations are repeated for all remaining data samples after each cluster is formed. Recently, purely 

data-driven techniques have been developed, including grid-based algorithms and density-based algorithms. Many of these 

recent developments can match, or exceed, the older techniques for speed and consistency and have the added ability to be 

data-driven with minimal user intervention. As such, these techniques have the potential to provide powerful semi-automated 

insight into large data sets, such as output generated from individual atmospheric models, or a large ensemble of multiple 10 

models. In this study, we use the Data Density based Clustering (DDC) algorithm (Hyde and Angelov, 2014). The underlying 

principle is that data classified into a DDC-generated cluster is more similar to other data within said cluster, than it is to data 

within other clusters. The DDC algorithm has the advantage in that the scope of each cluster is well defined. For example, 

maximum distances can be set, in the physical world as well as in the data space, which define the spatial regions covered by 

clusters and the range of data values to be considered similar. DDC matches simple techniques such as k-means for speed but 15 

requires no prior information on the number of clusters. It is also robust to using larger cluster radii, as the algorithm adjusts 

the radii to match the data contained within the cluster. A simple application of the algorithm is described in Sect. 3 below. 

3 The principles of cluster-based multi-model means 

In this section we explain the principles behind the proposed technique for generating cluster-based MMMs, using a simple 

synthetic data set as an example. Chemistry-climate models attempt to simulate the atmospheric distribution of numerous 20 

chemical compounds including, for example, tropospheric ozone. Model skill/performance is typically assessed by comparison 

to atmospheric observations made at discrete times and locations. For a given comparison, a model may exhibit a phase offset 

in time or space, resulting in a large model-measurement bias, suggesting an inaccurate model – perhaps due to a process-level 

deficiency. However, in some cases phase offsets in space, for example, could be related to a sampling or ‘mismatch’ error, 

particularly when comparing output from coarse resolution models to point source observational data. Such errors are 25 

commonly encountered in inverse modelling studies, for example, that aim to derive top-down emissions of a given compound 

based on atmospheric observations (e.g., Chen and Prinn, 2006). To account for such, a flexible technique that looks beyond 

a specific space/time and that can identify similar data in the surrounding data space is required. To illustrate this, we use a 

simple 2D synthetic data set as shown in Figure 1. 

 30 

The data shown in Figure 1 includes synthetic ‘observations’ (panel a) generated using a sin function. The values on the x and 

y axes are arbitrary and the data is intended to mimic a generic observation that is spatially non-uniform. We also consider 4 
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different sets of synthetic ‘model’ data (panel b) which, with respect to the observations, exhibit (1.) a small consistent positive 

bias (red), (2.) a small consistent negative bias (dark blue), (3.) a large bias (green), and (4.) a slight phase offset (cyan); clearly 

model 3 would be considered a poor/outlier model. Taking the 4 models to be an ensemble, a simple MMM is generated by 

taking the arithmetic mean of the 4 model data sets at each location (i.e. no clustering involved). We also apply the DDC 

algorithm to the data, as shown in panel (c), to generate a cluster-based MMM. The ellipses represent the different clusters 5 

that are formed which, as noted, can extend to nearby surrounding data space. 

 

The DDC-based MMM is calculated by taking the mean of the data in the most populous cluster at each location (hereafter the 

primary cluster); i.e. the cluster that contains the most data samples. For example, with reference to panel (c), a cluster is 

formed at ∼x=0.4, ∼y=-0.8. Data within this cluster is not included in the MMM at this location, as a more populous cluster 10 

at the same location (∼0.4, ∼0.6) is present. Panel (d) of Figure 1 compares each MMM to the observed data; the simple 

arithmetic MMM (one model one vote approach) provides poorer agreement compared to the cluster-based MMM, largely due 

to ‘model 3’ being included in the mean calculation for the former. Note, each MMM is independent of the observations and 

in this regard the process is analogous to a multi-model prediction of a future variable (i.e. with no observational constraint). 

4 Specific application of clustering to ACCMIP model data 15 

4.1 Overview of ACCMIP datasets 

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) was a multi-model initiative conducted 

to investigate the atmospheric abundance of key climate forcing agents, including tropospheric ozone, and their change over 

time (e.g., Young et al., 2013; Stevenson et al., 2013; Lamarque et al., 2013). For our purposes, we use the ACCMIP climate 

model data as an example of a typical multi-model ensemble on which to perform the clustering. A benefit of using ACCMIP 20 

output is that the data has been extensively handled and analysed by various groups, allowing direct comparison of our findings 

with published work, and the data is publicly available. We focus our analysis on modelled tropospheric column ozone data 

(Dobson Units) generated by 14 of the ACCMIP models (see Table A1). A detailed description of the models and their 

underlying processes can be found in the above ACCMIP publications. For each model, we analyse output from the historical 

simulation corresponding to the year 2000 (Young et al., 2013). Within ACCMIP, evaluation of models and the MMM was 25 

performed by comparison to a tropospheric ozone column climatology based on Ozone Monitoring Instrument (OMI) and 

Microwave Limb Sounder (MLS) satellite measurements (Ziemke et al., 2011). The monthly climatology extends from 60 ◦N 

to 60◦S. Following Young et al. (2013), we compare MMMs (generated either with clustering or without) to the observed 

climatology within this latitude range. 

 30 

Initialisation of the clustering algorithm involves selecting suitable initial cluster radii for each of the data dimensions, in this 

case: longitude, latitude and column ozone. In this work, we operate the clustering on a spatial basis only, to account for spatial 
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mismatches as discussed in Sect. 3. When selecting these radii, it should be noted that the clustering algorithms perform best 

with data on a similar scale in each axis. To this end we scale the data to approximately 0-1 in each dimension. 

4.2.1 Ozone radius selection 

Modelled ozone values are scaled to approximately 0-1 using the average minimum value and average range of the data in 

each month as given by Eq. (1): 5 

 

𝑂3𝑆(𝑚,𝑖,𝑡) =
12𝑂3(𝑚,𝑖,𝑡)−∑ min(𝑂3(∗,∗,𝑡))

12
𝑡=1

∑ max(𝑂3(∗,∗,𝑡))
12
𝑡=1 −∑ min(𝑂3(∗,∗,𝑡))

12
𝑡=1

      (1)  

 

Where 𝑂3 and 𝑂3𝑆 are the modelled and scaled ozone values, respectively, at location, 𝑖, as estimated by model, 𝑚, at time 𝑡. 

The initial ozone cluster radius is taken to be the average of twice the standard deviation on the model spread, Eq. (2): 10 

 

𝑟𝑂3 =
2∑ ∑ 𝑆𝐷(𝑂3(∗,𝑖,𝑡))

12
𝑡=1

𝑛
𝑖=1

12𝑛
       (2) 

 

where 𝑆𝐷(𝑂3(∗,𝑖,𝑡)) is the standard deviation of the ozone values of the ensemble at time 𝑡 at location 𝑖, and 𝑛 is the number of 

grid spaces. This corresponds to an initial radius of 8.3 DU (0.1523 when scaled as in equation 1). Note, the cluster radii evolve 15 

in a data driven manner, excluding outliers and extreme values from the clusters. In consequence, final cluster radii using DDC 

range from 0.1-8.3 DU, with 70% of the primary clusters having a radius <7 DU (Figure A1). This radius is indicative of the 

range of O3 data at each grid location, after outliers have been identified by the clustering process. 

4.2.2 Spatial radii selection 

In later sections we show that our cluster-based MMM column ozone field exhibits a lower global mean absolute bias with 20 

respect to observations, compared to the simple arithmetic MMM. This reduction in bias, due to the cluster-based subsampling, 

exhibits some sensitivity to the choice of initial radii in the spatial dimensions. In the latitude dimension, reduction in bias 

exhibits a negative correlation with radius (r = -0.88); i.e. bias is reduced to a lesser degree with larger radii. Results are 

presented from here on for initial cluster radii of 1.5 grid-cells (0.0683 when normalized to 0-1) and 2.5 grid-cells (0.0352) in 

the latitude and longitude direction respectively, as this combination was found to give the greatest reduction in model-25 

observation bias overall. As in Sect. 4.2.1., the cluster radii evolve in a data-driven manner and final cluster radii range from 

1 - 1.6 grid-cells (0.0455 - 0.0728) in the latitude direction, and 1 - 2.6 grid-cells (0.0141 - 0.0367) in the longitude direction. 

Note, 92% and 99% of primary clusters identified in this study have a radius of less than or equal to 1.1 grid-cells in the latitude 

and longitude directions, respectively. A radius of 1.1 grid-cells means that at each location, the primary cluster potentially 

contains data from that cell and from cells with which it shares a border. While data from nearby grid-cells may affect the 30 
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location of a cluster, this data is not included in the cluster-based MMM calculation; the cluster-based MMM at each location 

is the mean of the data in the primary cluster at that location only. 

4.3 Scenarios and Metrics 

Using the principles described above, the DDC algorithm was applied to the ACCMIP model ensemble of tropospheric column 

ozone on a monthly basis, and a MMM value was calculated as an average of model values in the primary cluster at each 5 

location. We also calculated MMMs of the same data using a simple arithmetic mean (all models included, equally weighted) 

and a sigma-mean, without clustering involved in either. The sigma-mean is essentially the average all model data within 1σ 

of the simple arithmetic mean – i.e. a very simple data reduction technique. In the subsequent Results sections, we compare 

each of these MMMs and evaluate their performance by comparison to the satellite-based tropospheric ozone climatology 

described in Sect. 4.1. In particular, we note whether or not the cluster-based MMM reduces model-observation bias with 10 

respect to the most rudimentary approach, the simple arithmetic mean, that omits no model data. In summary, 3 MMMs are 

considered: (1) Simple MMM, (2) Sigma MMM, (3) Cluster-based MMM. Several metrics are used in the ensuing discussion, 

including the model-observation mean bias (equation 3), and the absolute mean bias (equation 4), where 𝑀 and 𝑂 are the 

MMM and observed ozone field, respectively, at location 𝑖.  

 15 

𝑀𝑒𝑎𝑛𝐵𝑖𝑎𝑠 = 
1

𝑛
∑ (𝑀𝑖 − 𝑂𝑖)
𝑛
𝑖=1        (3) 

 

𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝐵𝑖𝑎𝑠 = 
1

𝑛
∑ |𝑀𝑖 − 𝑂𝑖|
𝑛
𝑖=1      (4) 

5 Results and discussion 

5.1 Assessment of cluster-based MMM on a global basis 20 

We first evaluate the relative performance of the cluster-based MMM with respect to the simple MMM on a global monthly 

mean basis. The observed column ozone data (DU) is presented in Table 1, along with equivalent MMM estimates, rows 2 and 

3, obtained using a simple arithmetic mean approach – as in Table 3 of Young et al. (2013) – and a sigma mean approach. 

These are followed by the cluster-based MMM obtained using the DDC clustering method outlined in Section 3. For each 

MMM, the mean bias (equation 3) is given in Table 2. Note, the focus of this work is not to evaluate the skill of individual 25 

ACCMIP models, or the ensemble as a whole, with regard to underlying chemical processes. For that, an in-depth discussion 

can be obtained from Young et al. (2013). Based on Tables 1 and 2 it is clear that the ACCMIP ensemble provide a reasonably 

good simulation of tropospheric column ozone with respect to the observations, in a global mean sense. For example, the 

annual mean bias for each of the various MMMs is <1 DU. The cluster-based MMMs exhibit a bias (-0.7 DU) that is marginally 
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greater than that obtained from the simple arithmetic MMM (-0.4 DU). However, note that the global mean biases reflect an 

amalgamation of positive and negative biases, masking important regional/hemispheric differences as outlined below.  

 

Table 3 is similar to Table 2 but presents the absolute biases, again on a global mean basis. The cluster-based MMM exhibits 

lower global mean absolute biases in all months relative to those obtained from the simple arithmetic mean approach (Figure 5 

2), reducing the MMM global bias by 5-19%, depending on the month. While we do not over interpret our findings from a 

model process standpoint, a distinct monthly variability is apparent in the bias reduction, with the lowest overall bias reduction 

in the months June-August. This is also the case for the sigma MMM, also shown in Figure 2, which exhibits a bias increase 

with respect to the simple MMM during these months, despite offering a slight bias reduction overall. From Tables 1 and 2, 

both the observed annual mean ozone column and the absolute (model-observation) biases are lowest in these months. Based 10 

on the latter, it is perhaps unsurprising, therefore, that the impact of sub-sampling through clustering in these months is 

relatively modest; if all models agree well, few (or no) model data may be excluded. In this case, the cluster-based MMM will 

not vary substantially from the simple arithmetic MMM and relatively little (or no) bias reduction will be observed through 

cluster-based sub-sampling. A similar situation also arises if the models have a wide spread of values at a given location; data 

excluded from the dominant cluster, and thus not included in the cluster-based MMM may be equally divided above and below 15 

the simple MMM. In such a case, removing these data will have little effect and the cluster-based MMM will vary little from 

the simple MMM. 

5.2 Assessment of cluster-based MMM: spatial variability 

We extend the above discussion to evaluate spatial variability in the biases between the various MMMs and the observations. 

Spatial variability of the monthly mean bias (model - observations, DU) for the simple MMM case is shown in Figure 3. A 20 

similar figure but for the cluster-based MMM is shown in Figure 4. We note that our analysis agrees with Young et al. (2013), 

i.e. the ACCMIP ensemble tends to exhibit a high bias with respect to the observations in the Northern Hemisphere (NH), 

and a low bias in the Southern Hemisphere (SH, Figure 3). The positive and negative biases largely cancel yielding an overall 

small negative bias when expressed as a global mean (see Table 2). Based on Figures 3 and 4, differences between the simple 

rudimentary MMM and the cluster-based MMM are difficult to fully discern by eye. The differences are more apparent when 25 

viewed as absolute biases, as given in Figures 5 and 6. However, most striking is Figure 7, which compares the reduction in 

model-observation absolute bias for the cluster-based MMM, relative to the simple arithmetic MMM. Geographically, cluster-

based ensemble sub-sampling reduces the model-observation bias at all latitudes, though particularly in the NH and including 

over central Asia, Europe and the USA – where ozone precursor emissions are generally elevated due to anthropogenic 

processes. Note, the ACCMIP ensemble overestimates the ozone column climatology in the NH (e.g. see Figures 3 and 5 and 30 

previously Young et al. 2013). As such, the NH bias reduction seen in the cluster-based MMM effectively reflects some 

removal of data at the upper end of the model range (i.e. those models with relatively high ozone). Typical bias reduction is 

of the order of 1-5 DU, though larger reductions of >5 DU are found in both hemispheres in some grid-boxes.  
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Also apparent from Figure 7 are regions, particularly in the SH, where the bias reduction from clustering is negative; that is, 

the cluster-based MMM agrees less well with the observations than the simple arithmetic MMM. To understand this, one 

must consider that the clustering approach relies on the density of model data points within the ensemble data space. If data 

from a given model is less in agreement with the other models within the ensemble, but closer to the observed value, data 5 

from said model will not be included in the cluster-based MMM. It is this feature of the clustering process that allows for the 

model spread of an ensemble to be readily investigated and this is discussed in following sections. In general, however, we 

note that the majority of the grid cells see a positive improvement in bias reduction through cluster-based sub-sampling. For 

example, Figure 8 shows a binary map plot of areas where the bias reduction is positive (i.e. red), negative (blue) and where 

there is no change (white). On an annual mean basis, ~62% of grid-cells exhibit a positive bias reduction and a further 9% 10 

exhibit no change in the bias. Additionally, 29% of grid-cells exhibit a negative bias reduction (i.e. the agreement becomes 

‘worse’). Importantly, the magnitude of the positive bias reductions greatly exceeds those of the negative changes as can be 

seen from the histogram given in Figure A2. This suggests that the outliers removed from the ensemble tend to be those in 

relatively strong disagreement with the observations. 

5.3 Insights from cluster population into model spread 15 

Figure 9 shows a histogram of the ratio between the number of members in the second most populous cluster (cluster 2 

hereafter) and the number of members in the most populous cluster (primary cluster, cluster 1 hereafter) at all points in 

space/time. A small number indicates that there is a significant difference, i.e. that cluster 1 has many more members than 

cluster 2. This suggests that the model spread is sufficiently small for most models to be included in cluster 1, and thus the 

models that are excluded from this cluster can be considered outliers. Conversely, if this number is large, this suggests that 20 

model spread is larger at these locations/times. As such, both cluster 1 and cluster 2 can probably be considered equivocal in 

terms of representing the ensemble. As can be seen from Figure 9, in the majority of cases we consider, cluster 1 has 

significantly more members that cluster 2. This confirms that, in the majority of cases, sub-sampling the ensemble based on 

the membership of cluster 1 can be considered to be robust. It is important to note however that there is tail of data points with 

ratio values >0.5 for which sub-sampling based on cluster 1 is less reasonable. 25 

 

We assess the degree to which the ratio between number of members in cluster 2 and cluster 1 varies in space and time (Figure 

10). Higher ratio values tend to occur in the mid-latitudes (suggesting greater model spread), with tropical locations exhibiting 

lower ratios in general. There also appears to be some seasonality to the signal; higher ratios (thus greater model spread) are 

more likely to occur during the summer months. It is interesting to note that regions where the ratio >0.5 seems, by eye, to 30 

coincide with regions where the model-observation bias is increased when the ensemble is sub-sampled to the membership of 

cluster 1. This suggests that by excluding data here we are in fact removing data points which are in closer agreement with the 
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observations. However, in general we calculate no statistically significant  correlation between the ratio values and the change 

(if any) in bias. 

5.4 Insights from cluster membership into model agreement and spread 

We investigate the degree to which individual models are typically included/excluded from the primary cluster by counting 

the number of months where that model is included at each location, as shown in Figure 11. This offers a simple mechanism 5 

to visualise model spread more generally; outlier models are more often excluded, models which fall in the pack are more 

often included. This information can be used together with Figure 6 as a means to identify which models are potentially driving 

model-observation biases in terms of MMM values, and so identify priorities for model development. We outline some 

examples here but do not intend this to be exhaustive, more indicative of how this reasoning/approach potentially provides a 

useful framework to guide further investigation. 10 

 

Model G, for example, differs significantly from the ensemble pack in the mid-latitude NH, over both land and ocean, as 

evidenced by the fact that it is virtually always excluded in this region. Similarly, model N is consistently different over South 

America in particular; this potentially points towards a spurious model feature concerning ozone – e.g. regional precursor 

emissions here. Model K is often not included in the primary cluster at SH locations, suggesting that it differs substantially 15 

from the other models in this region. However, this does not necessarily suggest that the model is in disagreement with 

observations in the SH, merely that Model K differs from the others. In fact, as was noted earlier, the cluster-based MMM 

agrees less well with observations in the SH, compared to the simple MMM, meaning that model K – which will have been 

excluded during the clustering process – could be closer to reality (observations) in this region, relative to the other models. 

We note that all models are included at some locations, i.e. there is no blanket exclusion of certain models from the primary 20 

cluster. In fact, some models, e.g. models C, I and J, are almost always included in the primary cluster at each location. This 

suggests that these models produce ozone fields that are somewhat typical and in broad agreement with the ensemble mean. 

6 Future Work 

While the principles presented here are robust and proven to be beneficial, some areas of methodological 

development/refinement have been identified. For example, we currently assign all model data from the ensemble a cluster 25 

membership and then we use this information to include/exclude model data into an MMM. We have yet to consider the impact 

of weighting data within a cluster by (a) distance from cluster centre and (b) distance from location of simple MMM (as 

opposed to a simple include/exclude rule). Similarly, in future work we will look at the possibility of using clustering to 

generate a weighted all-model MMM, where ensemble members are weighted according to their cluster membership, i.e. 

members of the most populous cluster contributing more to the MMM than the less populous clusters and clear outliers. We 30 

also intend to explore the application of clustering in time, in addition to the mainly spatial methods presented here. Further, 



11 

 

at present clusters are allowed to form in three dimensions, latitude, longitude and the predicted column ozone. In this way we 

allow for a degree of uncertainty in the model output. Future work will build on this by developing methods to incorporate 

estimates of standard deviation and range associated with the modelled mean values into our techniques, thus enabling a more 

sophisticated treatment of uncertainty. Finally, forthcoming model inter-comparison initiatives, e.g. CMIP6, will provide an 

excellent opportunity to apply our methods to consider parameters other than ozone that are of atmospheric interest (e.g. other 5 

short-lived climate forcing agents).  

6 Concluding remarks 

In this paper, we have investigated the applicability of an advanced data clustering method as an analytical/diagnostic tool 

with which to examine multi-model climate output. Relative to more rudimentary approaches, clustering offers a flexible 

method to evaluate inter-model differences. The technique operates by grouping data at a given location based on the density 10 

of data points. The flexibility arises as the clustering method examines surrounding data space (e.g. spatially) to account for 

small spatial/mismatch errors (e.g. arising due to differing coarse model grids), thus offering an advantage over more traditional 

inter-comparison methods. The clustering technique was applied to simulated fields of tropospheric column ozone from the 

14 CCMs that took part in the ACCMIP model inter-comparison. We demonstrate that a cluster-based MMM tropospheric 

column ozone field, calculated using those data which are members of the most populous cluster at each location, exhibits a 15 

lower absolute bias with respect to observations, compared to a simple arithmetic MMM approach. On a global mean basis 

this reduction is observed in all months and, in some months, is as high as ∼20%. Additionally, we show that clustering offers 

a useful framework in which to readily identify and visualise model spread and outliers. We suggest that such techniques could 

prove valuable in the identification of model development areas and provide insight surrounding regional strengths/deficiencies 

of specific models (or an ensemble as a whole), and to help characterise uncertainty. Finally, while we have focused on 20 

tropospheric ozone, we note that there is broad scope to develop the application of these techniques within the atmospheric 

sciences to examine other compounds of climate-relevance. 

Code and data availability 

The clustering code, including demo software (Hyde, 2017) and related data sets, used to generate the results in this paper are 

available via GitHub: https://rhyde67.github.io/CATaCoMB-Climate-Model-Ensemble/. The latest release is available via 25 

Zenodo, DOI: 10.5281/zenodo.1119038. The model data files are available at the Centre for Environmental Data Analysis 

(CEDA): http: //www.ceda.ac.uk/ 
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Table 1. Observed and multi-model mean (MMM) global tropospheric ozone column (DU) between 60°N to 60°S latitude. 

Observations are a satellite-based climatology (Ziemke et al., 2011). Model data is from the historical (year 2000) ACCMIP 

simulation. The simple MMM is the arithmetic mean of all models, the sigma MMM excludes data outside of 1 standard 

deviation from the simple MMM, and the DDC MMM was generated through cluster-based subsampling 

 5 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Mean 

Observation 28.7 28.8 29.7 30.7 31.5 32.6 33.1 32.8 32.8 32.1 31.1 29.8 31.1 

              

Simple MMM 29.4 29.5 31.0 30.4 30.7 31.4 31.9 32.2 32.3 31.4 30.1 29.5 30.7 

Sigma MMM 29.0 29.2 29.9 30.2 30.4 31.1 31.7 32.0 32.0 31.3 30.1 29.4 30.5 
 

             

DDC MMM 29.0 29.2 29.8 30.2 30.5 31.1 31.5 31.9 32.0 31.2 29.8 29.2 30.5 

 

 

Table 2. Global monthly mean bias (DU) in tropospheric ozone column, see Eq. (1), between the various MMMs and 

observations presented in Table 1. 

 10 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Mean 

Simple MMM 0.6 0.7 0.4 -0.3 -0.8 -1.3 -1.2 -0.6 -0.6 -0.7 -1 -0.4 -0.4 

Sigma MMM 0.3 0.5 0.2 -0.5 -1.1 -1.5 -1.4 -0.8 -0.8 -0.8 -1 -0.5 -0.6 
              

DDC MMM 0.2 0.5 0.1 -0.4 -1.0 -1.56 -1.6 -0.9 -0.9 -1.0 -1.3 -0.6 -0.7 

 

 

Table 3. As Table 2 but the absolute bias (DU) according to Eq. (2). 

 

 Jan Feb Mar Apr May Jun Jul Aug  Sep Oct Nov Dec Annual Mean 

Simple MMM 3.5 3.9 3.8 3.7 3.7 3.4 3.1 3  3.9 4.4 4.2 3.8 3.7 

Sigma MMM 3.2 3.6 3.7 3.7 3.7 3.5 3.2 3.1  3.9 4.4 4.1 3.7 3.6 
         

 
     

DDC MMM 3.1 3. 2 3.1 3.2 3.2 3.0 2.9 2.7  3.5 4.1 3.8 3.4 3.3 

 15 
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Table A1. Summary and citations for the ACCMIP models/data sets used in this work 

 

No. Model Name Reference 

1 CMAM Canadian Centre for Climate Modelling and Analysis (2011) 

2 CICERO Centre for International Climate and Environment Research - Oslo (2011) 

3 EMAC DLR German Institute for Atmospheric Physics (2011) 

4 GFDL-AM3 Geophysical Fluid Dynamics Laboratory (2011) 

5 GISS-E2-R NASA Goddard Institute for Space Studies (2011) 

6 GEOSCCM NASA Goddard Space Flight Center (2011) 

7 CESM-CAM-superfast Lawrence Livermore National Laboratory (2011) 

8 LMDzORINCA Laboratoire des Sciences du Climat et de l’Environnement (2011) 

9 MOCAGE Météo-France (2011) 

10 NCAR-CAM-3.5 NCAR (National Centre for Atmospheric Research) et al. (2011) 

11 MIROC-CHEM NCAS British Atmospheric Data Centre (2011) 

12 UM-CAM NIWA (2011) 

13 STOC-HadAM3 University of Edinburgh (2011) 

14 HadGEM2 Hadley Centre for Climate Prediction and Research (2011) 
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Figure 1: Principles of the cluster-based multi model mean (MMM) method illustrated using a synthetic data set. (a) A 

synthetic spatially-varying observation (X). (b) Predictions of X from 4 idealised models (see main text). (c) Cluster analysis 

of the model data sets using the DDC clustering algorithm. Ellipses represent the different clusters that are formed, and the 

black crosses are outliers not included in the clusters. (d) Comparison of the MMM of X derived from either a simple arithmetic 5 

mean of all model data (red) or one based on clusters (green). Observation data from panel (a) is again shown in black. 
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Figure 2. Temporal variability in global mean (tropospheric column ozone) absolute bias reduction (%, MMM ozone - 

observed ozone) with respect to simple arithmetic MMM. Blue points denote bias reduction using DDC clustering to determine 

model inclusion into the MMM. Orange points denote bias reduction using just the model spread (1 Sigma) to determine model 

inclusion into the MMM (i.e. without clustering). 5 
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Figure 3. Monthly bias (DU) between the simple arithmetic multi-model mean (MMM) tropospheric ozone column and the 

observed climatology. 

 

 5 

 

 

Figure 4. As Figure 3 but for the cluster-based MMM. 
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Figure 5. Monthly absolute bias (DU) between the simple arithmetic multi-model mean (MMM) tropospheric ozone column 5 

and the observed climatology. 

 

Figure 6. As Figure 5 but for the cluster-based MMM. 
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Figure 7. Monthly bias reduction (DU) defined as the difference in the absolute bias between the cluster-based MMM ozone 

column and observations, and the simple arithmetic MMM and observations. Where the bias reduction is positive (i.e. red) 

indicates areas where the cluster-based MMM agree better with the observations than the simple arithmetic MMM. In the title 5 

of each panel, the global mean absolute bias reduction, and the absolute bias reduction summed over all grid-cells are shown. 

 

 

Figure 8. As Figure 7 but showing a binary of grid-cells in which the model-observation bias has reduced (red), increased 

(blue) or not changed (white), as a result of the cluster-based ensemble sub-sampling. 10 
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Figure 9: Histogram of ratio of number of members in second most populous cluster (cluster 2) to most populous 

cluster (cluster 1). 

 

 5 

 

 

Figure 10: Spatial and temporal variability in ratio of number of members in second most populous cluster (cluster 2) to most 

populous cluster (cluster 1). 
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Figure 11. Number of months each model (names removed, labelled A-N) are included in the primary cluster. For a given 

region, models that are seldom included (i.e. a low numbers of months) differ more from the ensemble pack. 

 5 
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Figure A1. Final radii in the ozone dimension (DU) for primary clusters. 

 

 

 5 

Figure A2. Magnitude of the yearly column ozone bias reduction due to clustering; clustered MMM vs observations relative 

to simple MMM vs observations, see Sect. 5.2. 


